1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
/*
* Licensed under CLIFE license. See LICENCE.TXT
*
* Produced by: Jeff Lait
*
* CLIFE Development
*
* NAME: thread.cpp ( CLIFE, C++ )
*
* COMMENTS:
* Attempt at a threading class.
*/
#include "thread.h"
#ifdef LINUX
#include "thread_linux.h"
#ifndef iPOWDER
#include <sys/sysinfo.h>
#endif
#else
#include "thread_win.h"
#endif
THREAD *
THREAD::alloc()
{
#ifdef LINUX
return new THREAD_LINUX();
#else
return new THREAD_WIN();
#endif
}
int
THREAD::numProcessors()
{
static int nproc = -1;
if (nproc < 0)
{
#ifdef LINUX
#ifdef iPOWDER
nproc = 1;
#else
nproc = get_nprocs_conf();
#endif
#else
SYSTEM_INFO sysinfo;
GetSystemInfo(&sysinfo);
nproc = sysinfo.dwNumberOfProcessors;
#endif
// Zany users have managed to muck with thier registery to
// get 0 procs returned...
if (nproc < 1)
nproc = 1;
}
return nproc;
}
void *
THREAD::wrapper(void *data)
{
THREAD *thread = (THREAD *) data;
while (1)
{
// Await the thread to be ready.
thread->waittillimready();
thread->setActive(true);
// Hurray! Trigger callback.
if (thread->myCB)
thread->myCB(thread->myCBData);
thread->iamdonenow();
thread->setActive(false);
}
return (void *)1;
}
LOCK::LOCK()
{
#ifdef LINUX
pthread_mutexattr_init(&myLockAttr);
#ifdef iPOWDER
pthread_mutexattr_settype(&myLockAttr, PTHREAD_MUTEX_RECURSIVE);
#else
pthread_mutexattr_settype(&myLockAttr, PTHREAD_MUTEX_RECURSIVE_NP);
#endif
pthread_mutex_init(&myLock, &myLockAttr);
#else
myLock = new CRITICAL_SECTION;
::InitializeCriticalSection(myLock);
#endif
}
LOCK::~LOCK()
{
#ifdef LINUX
pthread_mutex_destroy(&myLock);
pthread_mutexattr_destroy(&myLockAttr);
#else
DeleteCriticalSection(myLock);
delete myLock;
#endif
}
bool
LOCK::tryToLock()
{
#ifdef LINUX
return !pthread_mutex_trylock(&myLock);
#else
return ::TryEnterCriticalSection(myLock) ? true : false;
#endif
}
void
LOCK::lock()
{
#ifdef LINUX
pthread_mutex_lock(&myLock);
#else
::EnterCriticalSection(myLock);
#endif
}
void
LOCK::unlock()
{
#ifdef LINUX
pthread_mutex_unlock(&myLock);
#else
::LeaveCriticalSection(myLock);
#endif
}
bool
LOCK::isLocked()
{
if (tryToLock())
{
unlock();
return false;
}
return true;
}
CONDITION::CONDITION()
{
#ifdef LINUX
pthread_cond_init(&myCond, 0);
#else
myEvent = CreateEvent(0, false, false, 0);
myNumWaiting.set(0);
#endif
}
CONDITION::~CONDITION()
{
#ifdef LINUX
pthread_cond_destroy(&myCond);
#else
CloseHandle(myEvent);
#endif
}
void
CONDITION::wait(LOCK &lock)
{
#ifdef LINUX
pthread_cond_wait(&myCond, &lock.myLock);
#else
myNumWaiting.add(1);
lock.unlock();
WaitForSingleObject(myEvent, INFINITE);
myNumWaiting.add(-1);
lock.lock();
#endif
}
void
CONDITION::trigger()
{
#ifdef LINUX
pthread_cond_signal(&myCond);
#else
// This requires the caller has the lock active so no one
// will start a wait during our test.
if (myNumWaiting > 0)
SetEvent(myEvent);
#endif
}
|