1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
|
/* Test Polyhedron::maximize(const Linear_Expression&, ...)
and Polyhedron::minimize(const Linear_Expression&, ...).
Copyright (C) 2001-2009 Roberto Bagnara <bagnara@cs.unipr.it>
This file is part of the Parma Polyhedra Library (PPL).
The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */
#include "ppl_test.hh"
namespace {
bool
test01() {
Variable x1(0);
Variable x2(1);
C_Polyhedron ph(2);
ph.add_constraint(-2*x1-x2 >= -5);
ph.add_constraint(4*x1-4*x2 >= -5);
ph.add_constraint(x1 >= 0);
ph.add_constraint(x2 >= 0);
print_constraints(ph, "*** ph ***");
Coefficient num;
Coefficient den;
bool included;
Generator g(point());
bool ok = ph.maximize(x1-2*x2, num, den, included, g)
&& num == 5 && den == 2 && included
&& g.is_point()
&& g.coefficient(x1) == 5 && g.coefficient(x2) == 0
&& g.divisor() == 2;
nout << (included ? "maximum" : "supremum") << " = " << num;
if (den != 1)
nout << "/" << den;
nout << " @ ";
print_generator(g);
nout << endl;
if (!ok)
return false;
ok = ph.minimize(x1-2*x2, num, den, included, g)
&& num == -15 && den == 4 && included
&& g.is_point()
&& g.coefficient(x1) == 5 && g.coefficient(x2) == 10
&& g.divisor() == 4;
nout << (included ? "minimum" : "infimum") << " = " << num;
if (den != 1)
nout << "/" << den;
nout << " @ ";
print_generator(g);
nout << endl;
return ok;
}
bool
test02() {
Variable x1(0);
Variable x2(1);
Variable x3(2);
C_Polyhedron ph(3);
ph.add_constraint(-x1-x2-x3 >= -100);
ph.add_constraint(-10*x1-4*x2-5*x3 >= -600);
ph.add_constraint(-x1-x2-3*x3 >= -150);
ph.add_constraint(x1 >= 0);
ph.add_constraint(x2 >= 0);
ph.add_constraint(x3 >= 0);
print_constraints(ph, "*** ph ***");
Coefficient num;
Coefficient den;
bool included;
Generator g(point());
bool ok = ph.maximize(-10*x1-6*x2-4*x3+4, num, den, included, g)
&& num == 4 && den == 1 && included
&& g.is_point()
&& g.coefficient(x1) == 0
&& g.coefficient(x2) == 0
&& g.coefficient(x3) == 0
&& g.divisor() == 1;
nout << (included ? "maximum" : "supremum") << " = " << num;
if (den != 1)
nout << "/" << den;
nout << " @ ";
print_generator(g);
nout << endl;
if (!ok)
return false;
ok = ph.minimize(-10*x1-6*x2-4*x3+4, num, den, included, g)
&& num == -2188 && den == 3 && included
&& g.is_point()
&& g.coefficient(x1) == 100
&& g.coefficient(x2) == 200
&& g.coefficient(x3) == 0
&& g.divisor() == 3;
nout << (included ? "minimum" : "infimum") << " = " << num;
if (den != 1)
nout << "/" << den;
nout << " @ ";
print_generator(g);
nout << endl;
return ok;
}
bool
test03() {
C_Polyhedron ph(0);
print_constraints(ph, "*** ph ***");
Coefficient num;
Coefficient den;
bool included;
Generator g(point());
Linear_Expression LE;
bool ok = ph.maximize(LE, num, den, included, g)
&& num == 0 && den == 1 && included
&& g.is_point()
&& g.divisor() == 1;
nout << (included ? "maximum" : "supremum") << " = " << num;
if (den != 1)
nout << "/" << den;
nout << " @ ";
print_generator(g);
nout << endl;
if (!ok)
return false;
ok = ph.minimize(LE, num, den, included, g)
&& num == 0 && den == 1 && included
&& g.is_point()
&& g.divisor() == 1;
nout << (included ? "minimum" : "infimum") << " = " << num;
if (den != 1)
nout << "/" << den;
nout << " @ ";
print_generator(g);
nout << endl;
return ok;
}
bool
test04() {
C_Polyhedron ph(2, EMPTY);
print_constraints(ph, "*** ph ***");
Coefficient num = 0;
Coefficient den = 0;
bool included = false;
Generator g(point());
Linear_Expression LE;
bool ok = !ph.maximize(LE, num, den, included, g)
&& num == 0 && den == 0 && !included
&& g.is_point()
&& g.divisor() == 1;
ok = ok && !ph.minimize(LE, num, den, included, g)
&& num == 0 && den == 0 && !included
&& g.is_point()
&& g.divisor() == 1;
return ok;
}
} // namespace
BEGIN_MAIN
DO_TEST(test01);
DO_TEST_F8(test02);
DO_TEST(test03);
DO_TEST(test04);
END_MAIN
|