File: ppl_test.cc

package info (click to toggle)
ppl 0.10.2-8
  • links: PTS
  • area: main
  • in suites: squeeze
  • size: 37,976 kB
  • ctags: 16,947
  • sloc: cpp: 168,523; sh: 10,902; makefile: 6,807; perl: 6,208; ansic: 1,300; java: 1,260; ml: 703; sed: 101
file content (478 lines) | stat: -rw-r--r-- 12,674 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
/* Implementation of utility functions used in test programs.
   Copyright (C) 2001-2009 Roberto Bagnara <bagnara@cs.unipr.it>

This file is part of the Parma Polyhedra Library (PPL).

The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.

For the most up-to-date information see the Parma Polyhedra Library
site: http://www.cs.unipr.it/ppl/ . */

#include "ppl_test.hh"
#include <csignal>
#include <iostream>
#include <exception>
#include <limits>
#ifdef PPL_HAVE_FENV_H
#include <fenv.h>
#endif

namespace {

void
unexpected_exception_handler() {
  std::cerr << "unexpected exception thrown" << std::endl;
  exit(1);
}

void
uncaught_exception_handler() {
  std::cerr << "uncaught exception" << std::endl;
  exit(1);
}

#if PPL_HAVE_DECL_SIGACTION

#if defined(PPL_HAVE_SIGINFO_T) && defined(SA_SIGINFO)

void
fpe_sigaction(int sig, siginfo_t* sip, void*) {
  if (sig != SIGFPE) {
    std::cerr << "fpe_handler called on signal different from SIGFPE"
	      << std::endl;
    exit(1);
  }
  const char* s = 0;
  switch (sip->si_code) {
  case FPE_INTDIV:
    s = "integer divide by zero";
    break;
  case FPE_INTOVF:
    s = "integer overflow";
    break;
  case FPE_FLTDIV:
    s = "floating point divide by zero";
    break;
  case FPE_FLTOVF:
    s = "floating point overflow";
    break;
  case FPE_FLTUND:
    s = "floating point underflow";
    break;
  case FPE_FLTRES:
    s = "floating point inexact result";
    break;
  case FPE_FLTINV:
    s = "floating point invalid operation";
    break;
  case FPE_FLTSUB:
    s = "subscript out of range";
    break;
  default:
    break;
  }
  if (s != 0)
    std::cerr << "SIGFPE caught (cause: " << s << ")"
	      << std::endl;
  else {
    std::cerr << "SIGFPE caught (unknown si_code " << sip->si_code << ")"
	      << std::endl;
#if defined(PPL_HAVE_FENV_H)
    std::cerr << "Inquire with fetestexcept(): ";
#ifdef FE_INEXACT
    if (fetestexcept(FE_INEXACT))
      std::cerr << "FE_INEXACT ";
#endif
#ifdef FE_DIVBYZERO
    if (fetestexcept(FE_DIVBYZERO))
      std::cerr << "FE_DIVBYZERO ";
#endif
#ifdef FE_UNDERFLOW
    if (fetestexcept(FE_UNDERFLOW))
      std::cerr << "FE_UNDERFLOW ";
#endif
#ifdef FE_OVERFLOW
    if (fetestexcept(FE_OVERFLOW))
      std::cerr << "FE_OVERFLOW ";
#endif
#if FE_INVALID
    if (fetestexcept(FE_INVALID))
      std::cerr << "FE_INVALID ";
#endif
    std::cerr << std::endl;
#endif // defined(PPL_HAVE_FENV_H)
  }
  exit(1);
}

#else // !defined(PPL_HAVE_SIGINFO_T) || !defined(SA_SIGINFO)

void
fpe_handler(int sig) {
  if (sig != SIGFPE) {
    std::cerr << "fpe_handler called on signal different from SIGFPE"
	      << std::endl;
    exit(1);
  }
  std::cerr << "SIGFPE caught"
            << std::endl;
#if defined(PPL_HAVE_FENV_H)
  std::cerr << "Inquire with fetestexcept(): ";
#ifdef FE_INEXACT
  if (fetestexcept(FE_INEXACT))
    std::cerr << "FE_INEXACT ";
#endif
#ifdef FE_DIVBYZERO
  if (fetestexcept(FE_DIVBYZERO))
    std::cerr << "FE_DIVBYZERO ";
#endif
#ifdef FE_UNDERFLOW
  if (fetestexcept(FE_UNDERFLOW))
    std::cerr << "FE_UNDERFLOW ";
#endif
#ifdef FE_OVERFLOW
  if (fetestexcept(FE_OVERFLOW))
    std::cerr << "FE_OVERFLOW ";
#endif
#if FE_INVALID
  if (fetestexcept(FE_INVALID))
    std::cerr << "FE_INVALID ";
#endif
  std::cerr << std::endl;
#endif // defined(PPL_HAVE_FENV_H)
  exit(1);
}

#endif // !defined(PPL_HAVE_SIGINFO_T) || !defined(SA_SIGINFO)

#endif // PPL_HAVE_DECL_SIGACTION

} // namespace

namespace Parma_Polyhedra_Library {

namespace Test {

void
set_handlers() {
#if PPL_HAVE_DECL_SIGACTION
  struct sigaction action;
  sigemptyset(&action.sa_mask);
#if defined(PPL_HAVE_SIGINFO_T) && defined(SA_SIGINFO)
  action.sa_sigaction = fpe_sigaction;
  action.sa_flags = SA_SIGINFO;
#else // !defined(PPL_HAVE_SIGINFO_T) || !defined(SA_SIGINFO)
  action.sa_handler = fpe_handler;
  action.sa_flags = 0;
#endif // !defined(PPL_HAVE_SIGINFO_T) || !defined(SA_SIGINFO)
  if (sigaction(SIGFPE, &action, NULL) != 0) {
    std::cerr << "sigaction() failed"
	      << std::endl;
    abort();
  }
#endif // PPL_HAVE_DECL_SIGACTION

  std::set_unexpected(unexpected_exception_handler);
  std::set_terminate(uncaught_exception_handler);
}

bool
check_distance(const Checked_Number<mpq_class, Extended_Number_Policy>& d,
               const char* max_d_s, const char* d_name) {
  Checked_Number<mpq_class, Extended_Number_Policy>
    max_d((max_d_s ? max_d_s : "0"), ROUND_NOT_NEEDED);
  assert(max_d >= 0);
  if (d > max_d) {
    nout << "Excessive " << d_name << " distance ";
    if (is_plus_infinity(d))
      nout << "+inf";
    else if (raw_value(d) > std::numeric_limits<double>::max())
      nout << ">" << std::numeric_limits<double>::max();
    else
      nout << raw_value(d).get_d() << " (rounded towards zero)";
    nout << ": should be at most " << max_d << "."
	 << std::endl;
    return false;
  }
  else
    return true;
}

bool
check_result(const BD_Shape<mpq_class>& computed_result,
	     const BD_Shape<mpq_class>& known_result) {
  if (computed_result == known_result)
    return true;
  else {
    using IO_Operators::operator<<;
    nout << "Equality does not hold:"
         << "\ncomputed result is\n"
         << computed_result
         << "\nknown result is\n"
         << known_result
         << endl;
    return false;
  }
}

bool
check_result(const Rational_Box& computed_result,
	     const Rational_Box& known_result) {
  if (computed_result == known_result)
    return true;
  else {
    using IO_Operators::operator<<;
    nout << "Equality does not hold:"
         << "\ncomputed result is\n"
         << computed_result
         << "\nknown result is\n"
         << known_result
         << endl;
    return false;
  }
}

bool
check_result(const Generator& computed_result,
             const Generator& known_result,
             const char* max_r_d_s,
             const char* max_e_d_s,
             const char* max_l_d_s) {
  // Handle in a more efficient way the case where equality is expected.
  if (max_r_d_s == 0 && max_e_d_s == 0 && max_l_d_s == 0) {
    if (computed_result != known_result) {
      using IO_Operators::operator<<;
      nout << "Equality does not hold:"
           << "\ncomputed result is\n"
           << computed_result
           << "\nknown result is\n"
           << known_result
           << endl;
      return false;
    }
    else
      return true;
  }

  Checked_Number<mpq_class, Extended_Number_Policy> r_d;
  rectilinear_distance_assign(r_d, known_result, computed_result, ROUND_UP);
  Checked_Number<mpq_class, Extended_Number_Policy> e_d;
  euclidean_distance_assign(e_d, known_result, computed_result, ROUND_UP);
  Checked_Number<mpq_class, Extended_Number_Policy> l_d;
  l_infinity_distance_assign(l_d, known_result, computed_result, ROUND_UP);
  bool ok_r = check_distance(r_d, max_r_d_s, "rectilinear");
  bool ok_e = check_distance(e_d, max_e_d_s, "euclidean");
  bool ok_l = check_distance(l_d, max_l_d_s, "l_infinity");
  bool ok = ok_r && ok_e && ok_l;
  if (!ok) {
    using IO_Operators::operator<<;
    nout << "Computed result is\n"
         << computed_result
         << "\nknown result is\n"
         << known_result
         << endl;
  }
  return ok;
}

bool
check_result(const Checked_Number<mpq_class, Extended_Number_Policy>& computed,
             const Checked_Number<mpq_class, Extended_Number_Policy>& known,
             const char* max_r_d_s) {
  // Handle in a more efficient way the case where equality is expected.
  if (max_r_d_s == 0) {
    if (computed != known) {
      using IO_Operators::operator<<;
      nout << "Equality does not hold:"
           << "\ncomputed result is\n"
           << computed
           << "\nknown result is\n"
           << known
           << endl;
      return false;
    }
    else
      return true;
  }

  Checked_Number<mpq_class, Extended_Number_Policy> r_d;
  sub_assign_r(r_d, known, computed, ROUND_NOT_NEEDED);
  abs_assign_r(r_d, r_d, ROUND_NOT_NEEDED);
  bool ok = check_distance(r_d, max_r_d_s, "rectilinear");
  if (!ok) {
    using IO_Operators::operator<<;
    nout << "Computed result is\n"
         << computed
         << "\nknown result is\n"
         << known
         << endl;
  }
  return ok;
}

std::ostream&
operator<<(std::ostream& s, const FCAIBVP& x) {
  s << "{";
  for (FCAIBVP::Set::const_iterator i = x.set.begin(),
	 x_end = x.set.end(); i != x_end; ) {
    const Variable& v = Variable(*i++);
    using IO_Operators::operator<<;
    s << v;
    if (i != x_end)
      s << ", ";
  }
  s << "}";
  return s;
}

void
print_constraint(const Constraint& c,
		 const std::string& intro, std::ostream& s) {
  if (!intro.empty())
    s << intro << "\n";
  using IO_Operators::operator<<;
  s << c << std::endl;
}

void
print_constraints(const Polyhedron& ph,
		  const std::string& intro, std::ostream& s) {
  print_constraints(ph.constraints(), intro, s);
}

void
print_constraints(const Constraint_System& cs,
		  const std::string& intro, std::ostream& s) {
  if (!intro.empty())
    s << intro << "\n";
  Constraint_System::const_iterator i = cs.begin();
  Constraint_System::const_iterator cs_end = cs.end();
  bool printed_something = i != cs_end;
  while (i != cs_end) {
    using IO_Operators::operator<<;
    s << *i++;
    if (i != cs_end)
      s << ",\n";
  }
  s << (printed_something ? "." : "true.") << std::endl;
}

void
print_congruence(const Congruence& c,
		 const std::string& intro, std::ostream& s) {
  if (!intro.empty())
    s << intro << "\n";
  using IO_Operators::operator<<;
  s << c << std::endl;
}

void
print_congruences(const Congruence_System& cs,
		  const std::string& intro, std::ostream& s) {
  if (!intro.empty())
    s << intro << std::endl;
  Congruence_System::const_iterator i = cs.begin();
  Congruence_System::const_iterator cs_end = cs.end();
  bool printed_something = i != cs_end;
  while (i != cs_end) {
    using IO_Operators::operator<<;
    s << *i++;
    if (i != cs_end)
      s << "," << std::endl;
  }
  s << (printed_something ? "." : "true.") << std::endl;
}

void
print_congruences(const Grid& gr,
		  const std::string& intro, std::ostream& s) {
  print_congruences(gr.congruences(), intro, s);
}

void
print_generator(const Generator& g,
		const std::string& intro, std::ostream& s) {
  if (!intro.empty())
    s << intro << "\n";
  using IO_Operators::operator<<;
  s << g << std::endl;
}

void
print_generator(const Grid_Generator& g,
		const std::string& intro, std::ostream& s) {
  if (!intro.empty())
    s << intro << "\n";
  using IO_Operators::operator<<;
  s << g << std::endl;
}

void
print_generators(const Polyhedron& ph,
		 const std::string& intro, std::ostream& s) {
  print_generators(ph.generators(), intro, s);
}

void
print_generators(const Grid& gr,
		 const std::string& intro, std::ostream& s) {
  print_generators(gr.grid_generators(), intro, s);
}

void
print_generators(const Generator_System& gs,
		 const std::string& intro, std::ostream& s) {
  if (!intro.empty())
    s << intro << "\n";
  Generator_System::const_iterator i = gs.begin();
  Generator_System::const_iterator gs_end = gs.end();
  bool printed_something = i != gs_end;
  while (i != gs_end) {
    using IO_Operators::operator<<;
    s << *i++;
    if (i != gs_end)
      s << ",\n";
  }
  s << (printed_something ? "." : "false.") << std::endl;
}

void
print_generators(const Grid_Generator_System& gs,
		 const std::string& intro, std::ostream& s) {
  if (!intro.empty())
    s << intro << "\n";
  Grid_Generator_System::const_iterator i = gs.begin();
  Grid_Generator_System::const_iterator gs_end = gs.end();
  bool printed_something = i != gs_end;
  while (i != gs_end) {
    using IO_Operators::operator<<;
    s << *i++;
    if (i != gs_end)
      s << ",\n";
  }
  s << (printed_something ? "." : "false.") << std::endl;
}

void
print_function(const Parma_Polyhedra_Library::Test::Partial_Function& function,
	       const std::string& intro, std::ostream& s) {
  if (!intro.empty())
    s << intro << std::endl;
  function.print(s);
}

} // namespace Test

} // namespace Parma_Polyhedra_Library