File: Prolog_interface_sysindep.dox

package info (click to toggle)
ppl 1%3A1.2-8.1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, forky, sid, trixie
  • size: 44,328 kB
  • sloc: cpp: 212,085; sh: 12,176; makefile: 7,192; perl: 6,333; java: 2,220; ansic: 1,842; ml: 1,132; sed: 80
file content (949 lines) | stat: -rw-r--r-- 35,655 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
/* Configuration Independent Documentation for Prolog.
   Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
   Copyright (C) 2010-2016 BUGSENG srl (http://bugseng.com)

This file is part of the Parma Polyhedra Library (PPL).

The PPL is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the
Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

The PPL is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.

For the most up-to-date information see the Parma Polyhedra Library
site: http://bugseng.com/products/ppl/ . */

/*! \page PI_SI_Features System-Independent Features

\anchor pi_si_features
<H1>System-Independent Features</H1>

The Prolog interface provides access to the numerical abstractions
(convex polyhedra, BD shapes, octagonal shapes, etc.) implemented
by the PPL library.
A general introduction to the numerical abstractions,
their representation in the PPL and the operations provided
by the PPL is given in the main \extref{preamble, PPL user manual}.
Here we just describe those aspects that are specific to the Prolog interface.

\anchor prolog_interface_overview
<H2>Overview</H2>

First, here is a list of notes with general information and advice
on the use of the interface.

- The numerical abstract domains available to the Prolog user consist
  of the <EM>simple</EM> domains, <EM>powersets</EM> of a simple domain and
  <EM>products</EM> of simple domains.
  - The simple domains are:
     - convex polyhedra, which consist of C_Polyhedron and
       NNC_Polyhedron;<BR>
     - weakly relational, which consist of BD_Shape_N and
       Octagonal_Shape_N
       where N is one of the numeric types
       int8, int16, int32, int64, mpz_class, mpq_class,
       float, double, long_double;<BR>
     - boxes which consist of
       Int8_Box, Int16_Box,
       Int32_Box, Int64_Box,
       Uint8_Box, Uint16_Box,
       Uint32_Box, Uint64_Box,
       Double_Box, Long_Double_Box,
       Z_Box, Rational_Box, Float_Box; and<BR>
     - the Grid domain.
  - The powerset domains are Pointset_Powerset_S where S is
    a simple domain.
  - The product domains consist of
    Direct_Product_S_T,
    Smash_Product_S_T,
    Constraints_Product_S_T and
    Shape_Preserving_Product_S_T where S
    and T are simple domains.
- In the following, any of the above numerical
  abstract domains  is called a PPL <EM>domain</EM>
  and any element of a PPL domain is called a <EM>PPL object</EM>.
- The Prolog interface to the PPL is initialized and finalized by the
  predicates <CODE>ppl_initialize/0</CODE> and <CODE>ppl_finalize/0</CODE>.
  Thus the only interface predicates callable after
  <CODE>ppl_finalize/0</CODE> are <CODE>ppl_finalize/0</CODE> itself
  (this further call has no effect) and <CODE>ppl_initialize/0</CODE>,
  after which the interface's services are usable again.
  Some Prolog systems allow the specification of initialization
  and deinitialization functions in their foreign language interfaces.
  The corresponding incarnations of the Prolog interface
  have been written so that <CODE>ppl_initialize/0</CODE> and/or
  <CODE>ppl_finalize/0</CODE> are called automatically.
  Section \ref PI_SD_Features "System-Dependent Features" will detail
  in which cases initialization and finalization is automatically
  performed or is left to the Prolog programmer's responsibility.
  However, for portable applications, it is best
  to invoke <CODE>ppl_initialize/0</CODE> and <CODE>ppl_finalize/0</CODE>
  explicitly: since they can be called multiple times without problems,
  this will result in enhanced portability at a cost that is, by all means,
  negligible.
- A PPL object such as a polyhedron can only be accessed
  by means of a Prolog term called a <EM>handle</EM>.
  Note, however, that the data structure of a handle,
  is implementation-dependent, system-dependent and
  version-dependent, and, for this reason, deliberately left unspecified.
  What we do guarantee is that the handle requires very little memory.
- A Prolog term can be bound to a valid handle for a PPL object by using
  predicates such as
\code
  ppl_new_C_Polyhedron_from_space_dimension/3,
  ppl_new_C_Polyhedron_from_C_Polyhedron/2,
  ppl_new_C_Polyhedron_from_constraints/2,
  ppl_new_C_Polyhedron_from_generators/2,
\endcode
  These predicates will create or copy a PPL polyhedron
  and construct a valid handle for referencing it.
  The last argument is a Prolog term that is
  unified with a new valid handle for accessing this polyhedron.

- As soon as a PPL object is no longer required,
  the memory occupied by it should be released
  using the PPL predicate such as <CODE>ppl_delete_Polyhedron/1</CODE>.
  To understand why this is important,
  consider a Prolog program and a variable that is bound to
  a Herbrand term.
  When the variable dies (goes out of scope) or is uninstantiated
  (on backtracking), the term it is bound to is amenable to garbage collection.
  But this only applies for the standard domain of the language:
  Herbrand terms.
  In Prolog+PPL, when, for example,
  a variable bound to a handle for a Polyhedron dies
  or is uninstantiated,
  the handle can be garbage-collected, but the polyhedron to which
  the handle refers will not be released.
  Once a handle has been used as an argument in
  <CODE>ppl_delete_Polyhedron/1</CODE>,
  it becomes invalid.
- For a PPL object with space dimension \p k,
  the identifiers used for the PPL variables
  must lie between 0 and \f$k-1\f$ and correspond to the indices of the
  associated Cartesian axes.
  For example, when using the predicates that combine PPL polyhedra
  or add constraints or generators to a representation of
  a PPL polyhedron,
  the polyhedra referenced and any constraints or generators in the call
  should follow all the (space) dimension-compatibility rules stated in
  Section \extref{representation, Representations of Convex Polyhedra}
  of the main \extref{preamble, PPL user manual}.
- As explained above, a polyhedron has a fixed topology C or NNC,
  that is determined at the time of its initialization.
  All subsequent operations on the polyhedron must respect all the
  topological compatibility rules stated in Section
  \extref{representation, Representations of Convex Polyhedra}
  of the main \extref{preamble, PPL user manual}.
- Any application using the PPL should make sure that only the
  intended version(s) of the library are ever used.
  Predicates
\code
  ppl_version_major/1,
  ppl_version_minor/1,
  ppl_version_revision/1,
  ppl_version_beta/1,
  ppl_version/1,
  ppl_banner.
\endcode
  allow run-time checking of information about the version being used.

\anchor predicate_specifications
<H2>Predicate Specifications</H2>

The PPL predicates provided by the Prolog interface are specified below.
The specification uses the following grammar rules:
\code

 Number      --> unsigned integer       ranging from 0 to an upper bound
                                        depending on the actual Prolog system.

 C_int       --> Number | - Number      C integer

 C_unsigned  --> Number                 C unsigned integer

 Coeff       --> Number                 used in linear expressions;
                                        the upper bound will depend on how
                                        the PPL has been configured

 Dimension_Type
             --> Number                 used for the number of affine and
                                        space dimensions and the names of
                                        the dimensions;
                                        the upper bound will depend on
                                        the maximum number of dimensions
                                        allowed by the PPL
                                        (see ppl_max_space_dimensions/1)

 Boolean     --> true | false

 Handle      --> Prolog term            used to identify a Polyhedron

 Topology    --> c | nnc                Polyhedral kind;
                                        c is closed and nnc is NNC

 VarId       --> Dimension_Type         variable identifier

 PPL_Var     --> '$VAR'(VarId)          PPL variable

 Lin_Expr    --> PPL_Var                PPL variable
            | Coeff
            | Lin_Expr                  unary plus
            | - Lin_Expr                unary minus
            | Lin_Expr + Lin_Expr       addition
            | Lin_Expr - Lin_Expr       subtraction
            | Coeff * Lin_Expr          multiplication
            | Lin_Expr * Coeff          multiplication

 Relation_Symbol --> =                  equals
            | =<                        less than or equal
            | >=                        greater than or equal
            | <                         strictly less than
            | >                         strictly greater than

 Constraint  --> Lin_Expr Relation_Symbol Lin_Expr
                                        constraint

 Constraint_System                      list of constraints
             --> []
            | [Constraint | Constraint_System]

 Modulus     --> Coeff | - Coeff

 Congruence  --> Lin_Expr =:= Lin_Expr  congruence with modulo 1
            | (Lin_Expr =:= Lin_Expr) / Modulus
                                        congruence with modulo Modulus

 Congruence_System                      list of congruences
             --> []
            | [Congruence | Congruence_System]

 Generator_Denominator --> Coeff        must be non-zero
            | - Coeff

 Generator   --> point(Lin_Expr)        point
            | point(Lin_Expr, Generator_Denominator)
                                        point
            | closure_point(Lin_Expr)   closure point
            | closure_point(Lin_Expr, Generator_Denominator)
                                        closure point
            | ray(Lin_Expr)             ray
            | line(Lin_Expr)            line

 Generator_System                       list of generators
             --> []
            | [Generator | Generator_System]

 Grid_Generator
             --> grid_point(Lin_Expr)   grid point
            | grid_point(Lin_Expr, Generator_Denominator)
                                        grid point
            | parameter(Lin_Expr)       parameter
            | parameter(Lin_Expr, Generator_Denominator)
                                        parameter
            | grid_line(Lin_Expr)       grid line

 Grid_Generator_System                  list of grid generators
             --> []
            | [Grid_Generator | Grid_Generator_System]

 Artificial_Parameter  --> Lin_Expr / Coeff

 Artificial_Parameter_List --> []
            | [Artificial_Parameter | Artificial_Parameter_List]

 Atom        --> Prolog atom

 Universe_or_Empty                      PPL object
             --> universe | empty

 Poly_Relation --> is_disjoint          with a constraint or congruence
            | strictly_intersects       with a constraint or congruence
            | is_included               with a constraint or congruence
            | saturates                 with a constraint or congruence
            | subsumes                  with a (grid) generator

 Relation_List --> []
            | [Poly_Relation | Relation_List]

 Complexity  --> polynomial | simplex | any

 Vars_Pair   --> PPL_Var - PPL_Var      map relation

 P_Func      --> []                     list of map relations
            | [Vars_Pair | P_Func].

 Width  --> bits_8 | bits_16 | bits_32 | bits_64 | bits_128

 Representation  --> unsigned | signed_2_complement

 Overflow  --> overflow_wraps | overflow_undefined | overflow_impossible

 Optimization_Mode --> max | min

 Problem_Status --> unfeasible
            | unbounded
            | optimized

 Control_Parameter_Name --> pricing            for MIP problems
                        | control_strategy     for PIP problems
                        | pivot_row_strategy   for PIP problems

 Control_Parameter_Value
             --> pricing_steepest_edge_float
            | pricing_steepest_edge_exact
            | pricing_textbook
            | control_strategy_first
            | control_strategy_deepest
            | control_strategy_all
            | pivot_row_strategy_first
            | pivot_row_strategy_max_column

 Vars_List   --> []                     list of PPL variables
            | [PPL_Var | Vars_List].
\endcode

\anchor predicate_descriptions
<H2> Predicate Descriptions </H2>

Below is a short description of many of the interface predicates.
For full definitions of terminology used here,
see the main \extref{preamble, PPL user manual}.

\anchor di_predicates
<H3> Domain Independent Predicates </H3>

First we describe the domain independent predicates
that are included with all instantiations of the Prolog interfaces.

<P><CODE> ppl_version_major(?C_int) </CODE><BR>
  <EM>Unifies <CODE>C_int</CODE> with the major number of the PPL version.</EM>

<P><CODE> ppl_version_minor(?C_int) </CODE><BR>
  <EM>Unifies <CODE>C_int</CODE> with the minor number of the PPL version.</EM>

<P><CODE> ppl_version_revision(?C_int) </CODE><BR>
  <EM>Unifies <CODE>C_int</CODE> with the revision number
  of the PPL version.</EM>

<P><CODE> ppl_version_beta(?C_int) </CODE><BR>
  <EM>Unifies <CODE>C_int</CODE> with the beta number of the PPL version.</EM>

<P><CODE> ppl_version(?Atom) </CODE><BR>
  <EM>Unifies <CODE>Atom</CODE> with the PPL version.</EM>

<P><CODE> ppl_banner(?Atom) </CODE><BR>
  <EM>Unifies <CODE>Atom</CODE> with
  information about the PPL version, the licensing, the lack of any
  warranty whatsoever, the C++ compiler used to build the library,
  where to report bugs and where to look for further information.</EM>

<P><CODE> ppl_Coefficient_bits(?Bits) </CODE><BR>

  <EM>Unifies <CODE>Bits</CODE> with the number of bits used to encode a
  Coefficient in the C++ interface; 0 if unbounded.</EM>

<P><CODE> ppl_Coefficient_is_bounded </CODE><BR>

  <EM>Succeeds if and only if the Coefficients in the C++ interface are bounded.</EM>

<P><CODE> ppl_Coefficient_max(Max) </CODE><BR>

  <EM>If the Coefficients in the C++ interface are bounded,
  then the maximum coefficient the C++ interface can handle is
  unified with <CODE>Max</Code>.
  If the Prolog system cannot handle this coefficient, then
  an exception is thrown.
  It fails if the Coefficients in the C++ interface are unbounded.</EM>

<P><CODE> ppl_Coefficient_min(Min) </CODE><BR>

  <EM>If the Coefficients in the C++ interface are bounded,
  then the minimum coefficient the C++ interface can handle is
  unified with <CODE>Min</Code>.
  If the Prolog system cannot handle this coefficient, then
  an exception is thrown.
  It fails if the Coefficients in the C++ interface are unbounded.</EM>

<P><CODE> ppl_max_space_dimension(?Dimension_Type) </CODE><BR>

  <EM>Unifies <CODE>Dimension_Type</CODE> with the maximum space dimension
  this library can handle.</EM>

<P><CODE>
  ppl_initialize
 </CODE><BR>

  <EM>Initializes the PPL interface.
  Multiple calls to <CODE>ppl_initialize</CODE> does no harm.</EM>

<P><CODE>
  ppl_finalize
 </CODE><BR>

  <EM>Finalizes the PPL interface.
  Once this is executed, the next call to an interface predicate must
  either be to <CODE>ppl_initialize</CODE> or to <CODE>ppl_finalize</CODE>.
  Multiple calls to <CODE>ppl_finalize</CODE> does no harm.</EM>

<P><CODE> ppl_set_timeout_exception_atom(+Atom) </CODE><BR>

   <EM>Sets the atom to be thrown by timeout exceptions
   to <CODE>Atom</CODE>.
   The default value is <CODE>time_out</CODE>.</EM>

<P><CODE> ppl_timeout_exception_atom(?Atom) </CODE><BR>

   <EM>The atom to be thrown by timeout exceptions
   is unified with <CODE>Atom</CODE>.</EM>

<P><CODE> ppl_set_timeout(+Csecs) </CODE><BR>

   <EM>Computations taking exponential time will be interrupted
   some time after <CODE>Csecs</CODE> centiseconds after that call.
   If the computation is interrupted that way, the current timeout
   exception atom will be thrown.
   <CODE>Csecs</CODE> must be strictly greater than zero.</EM>

<P><CODE> ppl_reset_timeout </CODE><BR>

   <EM>Resets the timeout time so that the computation is not interrupted.</EM>

<P><CODE> ppl_set_deterministic_timeout(+Unscaled_Weight, +Scale) </CODE><BR>

   <EM>Computations taking exponential time will be interrupted
   some time after reaching the complexity threshold
   \f$\mathrm{Weight} = \mathrm{Unscaled\_Weight} \cdot 2^\mathrm{Scale}\f$.
   If the computation is interrupted that way, the current timeout
   exception atom will be thrown.
   <CODE>Unscaled_Weight</CODE> must be strictly greater than zero;
   <CODE>Scale</CODE> must be non-negative;
   an exception is thrown if the computed weight threshold exceeds
   the maximum allowed value.</EM>
   <P>
   <EM>NOTE:</EM> This "timeout" checking functionality is said to be
   <EM>deterministic</EM> because it is not based on actual elapsed time.
   Its behavior will only depend on (some of the) computations performed
   in the PPL library and it will be otherwise independent from the
   computation environment (CPU, operating system, compiler, etc.).
   The weight mechanism is under beta testing: client applications
   should be ready to reconsider the tuning of these weight thresholds
   when upgrading to newer version of the PPL.

<P><CODE> ppl_reset_deterministic_timeout </CODE><BR>

   <EM>Resets the deterministic timeout so that the computation is not
   interrupted.</EM>

<P><CODE> ppl_set_rounding_for_PPL </CODE><BR>

  <EM>Sets the FPU rounding mode so that the PPL abstractions based on
  floating point numbers work correctly.
  This is performed automatically at initialization-time.  Calling
  this function is needed only if restore_pre_PPL_rounding() has
  previously been called.</EM>


<P><CODE> ppl_restore_pre_PPL_rounding </CODE><BR>

  <EM>Sets the FPU rounding mode as it was before initialization of the PPL.
  After calling this function it is absolutely necessary to call
  set_rounding_for_PPL() before using any PPL abstractions based on
  floating point numbers.
  This is performed automatically at finalization-time.</EM>

<P><CODE> ppl_irrational_precision(?Precision) </CODE><BR>

  <EM>Unifies <CODE>Precision</CODE> with the precision parameter for
  irrational calculations.</EM>

<P><CODE> ppl_set_irrational_precision(+Precision) </CODE><BR>

  <EM>Sets the precision parameter for irrational calculations to
  <CODE>Precision</CODE>. In the following irrational calculations
  returning an unbounded rational (e.g., when computing a square root),
  the lesser between numerator and denominator will be limited to
  <CODE>2**Precision</CODE>.</EM>


\anchor mip_predicates
<H3> Predicates for MIP_Problem </H3>
Here we describe the predicates available for PPL objects
defining mixed integer (linear) programming problems.

<P><CODE>
  ppl_new_MIP_Problem_from_space_dimension(+Dimension_Type, -Handle)
</CODE><BR>

   <EM>Creates an MIP Problem \f$\mathrm{MIP}\f$ with the feasible region
   the vector space of dimension <CODE>Dimension_Type</CODE>,
   objective function \f$0\f$ and optimization mode <CODE>max</CODE>.
   <CODE>Handle</CODE> is unified with the handle for \f$\mathrm{MIP}\f$.</EM>

<P><CODE>
  ppl_new_MIP_Problem(+Dimension_Type, +Constraint_System, +Lin_Expr,
                      +Optimization_Mode, -Handle)
</CODE><BR>

   <EM>Creates an MIP Problem \f$\mathrm{MIP}\f$ with
   the feasible region the vector space of dimension
   <CODE>Dimension_Type</CODE>, represented by <CODE>Constraint_System</CODE>,
   objective function <CODE>Lin_Expr</CODE> and optimization mode
   <CODE>Optimization_Mode</CODE>.
   <CODE>Handle</CODE> is unified with the handle for \f$\mathrm{MIP}\f$.</EM>

<P><CODE>
  ppl_new_MIP_Problem_from_MIP_Problem(+Handle_1, -Handle_2)
</CODE><BR>

   <EM>Creates an MIP Problem \f$\mathrm{MIP}\f$ from the MIP Problem
   referenced by \c Handle_1.
   \c Handle_2 is unified with the handle for \f$\mathrm{MIP}\f$.</EM>

<P><CODE>
  ppl_MIP_Problem_swap(+Handle_1, +Handle_2)
</CODE><BR>

   <EM>Swaps the MIP Problem referenced by <CODE>Handle_1</CODE>
   with the one referenced by <CODE>Handle_2</CODE>.</EM>

<P><CODE>
  ppl_delete_MIP_Problem(+Handle)
</CODE><BR>

   <EM>Deletes the MIP Problem referenced by <CODE>Handle</CODE>.
   After execution,
   <CODE>Handle</CODE> is no longer a valid handle for a PPL MIP Problem.</EM>

<P><CODE>
  ppl_MIP_Problem_space_dimension(+Handle, ?Dimension_Type)
</CODE><BR>

   <EM>Unifies the dimension of the vector space in which the
   MIP Problem referenced by <CODE>Handle</CODE> is embedded
   with <CODE>Dimension_Type</CODE>.</EM>

<P><CODE>
  ppl_MIP_Problem_integer_space_dimensions(+Handle, ?Vars_List)
</CODE><BR>

   <EM>Unifies <CODE>Vars_List</CODE> with a list of variables representing
   the integer space dimensions of the MIP Problem
   referenced by <CODE>Handle</CODE>.</EM>

<P><CODE>
  ppl_MIP_Problem_constraints(+Handle, -Constraint_System)
</CODE><BR>

   <EM>Unifies <CODE>Constraint_System</CODE> with a list of
   the constraints in the constraints system
   representing the feasible region for the MIP Problem
   referenced by <CODE>Handle</CODE>.</EM>

<P><CODE>
  ppl_MIP_Problem_objective_function(+Handle, ?Lin_Expr)
</CODE><BR>

   <EM>Unifies <CODE>Lin_Expr</CODE> with the objective function
   for the MIP Problem referenced by <CODE>Handle</CODE>.</EM>

<P><CODE>
  ppl_MIP_Problem_optimization_mode(+Handle, ?Optimization_Mode)
</CODE><BR>

   <EM>Unifies <CODE>Optimization_Mode</CODE> with the optimization mode
   for the MIP Problem referenced by <CODE>Handle</CODE>.</EM>

<P><CODE>
  ppl_MIP_Problem_clear(+Handle)
</CODE><BR>

  <EM>Resets the MIP problem referenced by <CODE>Handle</CODE>
  to be the trivial problem with
  the feasible region the \f$0\f$-dimensional universe,
  objective function \f$0\f$ and optimization mode <CODE>max</CODE>.</EM>

<P><CODE> ppl_MIP_Problem_add_space_dimensions_and_embed(
             +Handle, +Dimension_Type)
 </CODE><BR>

   <EM>Embeds the MIP problem referenced by <CODE>Handle</CODE>
   in a space that is enlarged by <CODE>Dimension_Type</CODE> dimensions.</EM>

<P><CODE>
  ppl_MIP_Problem_add_to_integer_space_dimensions(+Handle, +Vars_List)
</CODE><BR>

   <EM>Updates the MIP Problem referenced by <CODE>Handle</CODE>
   so that the variables in <CODE>Vars_List</CODE> are added to
   the set of integer space dimensions.</EM>

<P><CODE>
  ppl_MIP_Problem_add_constraint(+Handle, +Constraint)
</CODE><BR>

   <EM>Updates the MIP Problem referenced by <CODE>Handle</CODE>
   so that the feasible region is represented by the original constraint
   system together with the constraint <CODE>Constraint</CODE>.</EM>

<P><CODE>
  ppl_MIP_Problem_add_constraints(+Handle, +Constraint_System)
</CODE><BR>

   <EM>Updates the MIP Problem referenced by <CODE>Handle</CODE>
   so that the feasible region is represented by the original constraint
   system together with all the constraints in
   <CODE>Constraint_System</CODE>.</EM>

<P><CODE>
  ppl_MIP_Problem_set_objective_function(+Handle, +Lin_Expr)
</CODE><BR>

   <EM>Updates the MIP Problem referenced by <CODE>Handle</CODE>
   so that the objective function is changed to <CODE>Lin_Expr</CODE>.</EM>

<P><CODE>
  ppl_MIP_Problem_set_control_parameter(+Handle, +Control_Parameter_Value)
</CODE><BR>

   <EM>Updates the MIP Problem referenced by <CODE>Handle</CODE>
   so that the value for the relevant control parameter name is
   changed to <CODE>Control_Parameter_Value</CODE>.</EM>

<P><CODE>
  ppl_MIP_Problem_get_control_parameter(+Handle, +Control_Parameter_Name,
                                        ?Control_Parameter_Value)
</CODE><BR>

   <EM>Unifies \c Control_Parameter_Value with the value of the
   control parameter \c Control_Parameter_Name.</EM>

<P><CODE>
  ppl_MIP_Problem_set_optimization_mode(+Handle, +Optimization_Mode)
</CODE><BR>

   <EM>Updates the MIP Problem referenced by <CODE>Handle</CODE>
   so that the optimization mode is changed to
   <CODE>Optimization_Mode</CODE>.</EM>

<P><CODE>
  ppl_MIP_Problem_is_satisfiable(+Handle)
</CODE><BR>

  <EM>Succeeds if and only if the MIP Problem referenced by
  <CODE>Handle</CODE> is satisfiable.</EM>

<P><CODE>
  ppl_MIP_Problem_solve(+Handle, ?MIP_Problem_Status)
</CODE><BR>

  <EM>Solves the MIP problem  referenced by
  <CODE>Handle</CODE> and unifies <CODE>MIP_Problem_Status</CODE>
  with:
  <CODE>unfeasible</CODE>, if the MIP problem is not satisfiable;
  <CODE>unbounded</CODE>, if the MIP problem is satisfiable but
  there is no finite bound to the value of the objective function;
  <CODE>optimized</CODE>, if the MIP problem admits an optimal solution.</EM>

<P><CODE>
  ppl_MIP_Problem_feasible_point(+Handle, ?Generator)
</CODE><BR>

  <EM>Unifies  <CODE>Generator</CODE> with a feasible point
  for the MIP problem referenced by <CODE>Handle</CODE>.</EM>

<P><CODE>
  ppl_MIP_Problem_optimizing_point(+Handle, ?Generator)
</CODE><BR>

  <EM>Unifies  <CODE>Generator</CODE> with an optimizing point for
  the MIP problem referenced by <CODE>Handle</CODE>.</EM>

<P><CODE>
  ppl_MIP_Problem_optimal_value(+Handle, ?Coeff_1, ?Coeff_2)
</CODE><BR>

  <EM>Unifies <CODE>Coeff_1</CODE> and <CODE>Coeff_2</CODE>
  with the numerator and denominator, respectively, for the optimal value
  for the MIP problem  referenced by <CODE>Handle</CODE>.</EM>

<P><CODE>
  ppl_MIP_Problem_evaluate_objective_function(+Handle, +Generator,
                                             ?Coeff_1, ?Coeff_2)
</CODE><BR>
  <EM>Evaluates the objective function of the MIP problem  referenced by
  <CODE>Handle</CODE> at point <CODE>Generator</CODE>.
  <CODE>Coefficient_1</CODE> is unified with the numerator and
  <CODE>Coefficient_2</CODE> is unified with the denominator of the
  objective function value at <CODE>Generator</CODE>.</EM>

<P><CODE>
  ppl_MIP_Problem_OK(+Handle)
</CODE><BR>

   <EM>Succeeds only if the MIP Problem referenced by
   <CODE>Handle</CODE> is well formed, i.e., if it
   satisfies all its implementation invariants.
   Useful for debugging purposes.</EM>

<P><CODE>
  ppl_MIP_Problem_ascii_dump(+Handle)
</CODE><BR>

   <EM>Dumps an ascii representation of the PPL internal state for
   the MIP problem referenced by <CODE>Handle</CODE> on
   the standard output.</EM>

<BR>

\anchor pip_predicates
<H3> Predicates for PIP_Problem </H3>
Here we describe some functions available for PPL objects
defining parametric integer programming problems.

<P><CODE>
  ppl_new_PIP_Problem_from_space_dimension(+Dimension_Type, -Handle)
</CODE><BR>

   <EM>Creates a PIP Problem \f$\mathrm{PIP}\f$ with the
   feasible region the vector space of dimension <CODE>dimension</CODE>,
   empty constraint_system and empty set of parametric variables.
   <CODE>Handle</CODE> is unified with the handle for \f$\mathrm{PIP}\f$.</EM>

<P><CODE>
  ppl_new_PIP_Problem_from_PIP_Problem(+Handle_1, -Handle_2)
</CODE><BR>
   <EM>Creates a PIP Problem \f$\mathrm{PIP}\f$ from the PIP Problem
   referenced by \c Handle_1.
   \c Handle_2 is unified with the handle for \f$\mathrm{PIP}\f$.</EM>

<P><CODE>
  ppl_new_PIP_Problem(+Dimension_Type, +Constraint_System, +Vars_List,
                      -Handle)
</CODE><BR>

   <EM>Creates a PIP Problem \f$\mathrm{PIP}\f$ having space
   dimension <CODE>dimension</CODE>, a feasible region represented by
   <CODE>constraint_system</CODE> and parametric variables represented
   by <CODE>Vars_List</CODE>.
   <CODE>Handle</CODE> is unified with the handle for \f$\mathrm{PIP}\f$.</EM>

<P><CODE>
  ppl_PIP_Problem_swap(+Handle_1, +Handle_2)
</CODE><BR>
   <EM>Swaps the PIP Problem referenced by <CODE>Handle_1</CODE>
   with the one referenced by <CODE>Handle_2</CODE>.</EM>

<P><CODE>
  ppl_delete_PIP_Problem(+Handle)
</CODE><BR>
   <EM>Deletes the PIP Problem referenced by <CODE>Handle</CODE>.
   After execution,
   <CODE>Handle</CODE> is no longer a valid handle for a PPL PIP Problem.</EM>

<P><CODE>
  ppl_PIP_Problem_space_dimension(+Handle, ?Dimension_Type)
</CODE><BR>
   <EM>Unifies the dimension of the vector space in which the
   PIP Problem referenced by <CODE>Handle</CODE> is embedded
   with <CODE>Dimension_Type</CODE>.</EM>

<P><CODE>
  ppl_PIP_Problem_parameter_space_dimensions(+Handle, ?Vars_List)
</CODE><BR>
   <EM>Unifies <CODE>Vars_List</CODE> with a list of variables representing
   the parameter space dimensions of the PIP Problem
   referenced by <CODE>Handle</CODE>.</EM>

<P><CODE>
  ppl_PIP_Problem_constraints(+Handle, ?Constraint_System)
</CODE><BR>
   <EM>Unifies <CODE>Constraint_System</CODE> with a list of
   the constraints in the constraints system
   representing the feasible region for the PIP Problem
   referenced by <CODE>Handle</CODE>.</EM>

<P><CODE>
  ppl_PIP_Problem_get_control_parameter(+Handle, +Control_Parameter_Name,
                                        ?Control_Parameter_Value)
</CODE><BR>

   <EM>Unifies \c Control_Parameter_Value with the value of the
   control parameter \c Control_Parameter_Name.</EM>

<P><CODE>
  ppl_PIP_Problem_clear(+Handle)
</CODE><BR>
  <EM>Resets the PIP problem referenced by <CODE>Handle</CODE>
  to be the trivial problem with
  the feasible region the \f$0\f$-dimensional universe.</EM>

<P><CODE> ppl_PIP_Problem_add_space_dimensions_and_embed(
             +Handle, +Dimension_Type1, +Dimension_Type2)
 </CODE><BR>
   <EM>Embeds the PIP problem referenced by <CODE>handle</CODE>
   in a space that is enlarged by <CODE>dimension1</CODE> non-parameter
   dimensions and <CODE>dimension2</CODE> parameter dimensions.</EM>

<P><CODE>
  ppl_PIP_Problem_add_to_parameter_space_dimensions(+Handle, +Vars_List)
</CODE><BR>
   <EM>Updates the PIP Problem referenced by <CODE>Handle</CODE>
   so that the variables in <CODE>Vars_List</CODE> are added to
   the set of parameter space dimensions.</EM>

<P><CODE>
  ppl_PIP_Problem_add_constraint(+Handle, +Constraint)
</CODE><BR>
   <EM>Updates the PIP Problem referenced by <CODE>Handle</CODE>
   so that the feasible region is represented by the original constraint
   system together with the constraint <CODE>Constraint</CODE>.</EM>

<P><CODE>
  ppl_PIP_Problem_add_constraints(+Handle, +Constraint_System)
</CODE><BR>
   <EM>Updates the PIP Problem referenced by <CODE>Handle</CODE>
   so that the feasible region is represented by the original constraint
   system together with all the constraints in
   <CODE>Constraint_System</CODE>.</EM>

<P><CODE>
  ppl_PIP_Problem_set_control_parameter(+Handle, +Control_Parameter_Value)
</CODE><BR>

   <EM>Updates the PIP Problem referenced by <CODE>Handle</CODE>
   so that the value for the relevant control parameter name is
   changed to <CODE>Control_Parameter_Value</CODE>.</EM>

<P><CODE>
  ppl_PIP_Problem_is_satisfiable(+Handle)
</CODE><BR>
  <EM>Succeeds if and only if the PIP Problem referenced by
  <CODE>Handle</CODE> is satisfiable.</EM>

<P><CODE>
  ppl_PIP_Problem_solve(+Handle, ?PIP_Problem_Status)
</CODE><BR>
  <EM>Solves the PIP problem  referenced by
  <CODE>Handle</CODE> and unifies <CODE>PIP_Problem_Status</CODE>
  with:
  <CODE>unfeasible</CODE>, if the PIP problem is not satisfiable;
  <CODE>optimized</CODE>, if the PIP problem admits an optimal solution.</EM>

<P><CODE>
  ppl_PIP_Problem_solution(+Handle1, ?Handle2)
</CODE><BR>
  <EM>Solves the PIP problem referenced by <CODE>Handle1</CODE> and
  creates a PIP tree node \f$\mathrm{Node}\f$ representing this a solution
  if it exists and bottom otherwise
  \c Handle_2 is unified with the handle for \f$\mathrm{Sol}\f$.</EM>

<P><CODE>
  ppl_PIP_Problem_optimizing_solution(+Handle, ?PIP_Tree_Node)
</CODE><BR>
  <EM>Solves the PIP problem referenced by <CODE>Handle1</CODE> and
  creates a PIP tree node \f$\mathrm{Node}\f$ representing this an optimizing
  solution if a solution exists and bottom otherwise
  \c Handle_2 is unified with the handle for \f$\mathrm{Sol}\f$.</EM>

<P><CODE>
  ppl_PIP_Problem_has_big_parameter_dimension(+Handle, +Dimension_Type)
</CODE><BR>
   <EM>Succeeds if and only if the PIP Problem referenced by
       <CODE>Handle</CODE> has a dimension \p dim for the big parameter
       and \p Dimension_Type unifies with \p dim.</EM>

<P><CODE>
  ppl_PIP_Problem_set_big_parameter_dimension(+Handle, +Dimension_Type)
</CODE><BR>

   <EM>Updates the PIP Problem referenced by <CODE>Handle</CODE>
       so that the dimension for the big parameter is \p Dimension_Type.</EM>

<P><CODE>
  ppl_PIP_Problem_OK(+Handle)
</CODE><BR>
   <EM>Succeeds only if the PIP Problem referenced by
   <CODE>Handle</CODE> is well formed, i.e., if it
   satisfies all its implementation invariants.
   Useful for debugging purposes.</EM>

<P><CODE>ppl_PIP_Problem_ascii_dump(+Handle)</CODE><BR>
  <EM>Dumps an ascii representation of the PPL internal state for
  the PIP problem referenced by \c Handle on the standard output.</EM>

<P><CODE>
  ppl_PIP_Tree_Node_constraints(+Handle, ?Constraint_System)
</CODE><BR>
   <EM>Unifies <CODE>Constraint_System</CODE> with a list of
   the parameter constraints in the PIP tree node
   referenced by <CODE>Handle</CODE>.</EM>

<P><CODE>
  ppl_PIP_Tree_Node_is_solution(+Handle)
</CODE><BR>
   <EM>Succeeds if and only if <CODE>handle</CODE> represents
   a solution node.</EM>

<P><CODE>
  ppl_PIP_Tree_Node_is_decision(+Handle)
</CODE><BR>
   <EM>Succeeds if and only if <CODE>handle</CODE> represents
   a decision node.</EM>

<P><CODE>
  ppl_PIP_Tree_Node_is_bottom(+Handle)
</CODE><BR>
   <EM>Succeeds if and only if <CODE>handle</CODE> represents bottom.</EM>

<P><CODE>
  ppl_PIP_Tree_Node_artificials(+Handle, ?Artificial_Parameter_List)
</CODE><BR>
   <EM>Unifies <CODE>Artificial_Parameter_List</CODE> with a list of
   the artificial parameters in the PIP tree node
   referenced by <CODE>Handle</CODE>.</EM>

<P><CODE>
  ppl_PIP_Tree_Node_OK(+Handle)
</CODE><BR>
   <EM>Succeeds only if the PIP tree node referenced by
   <CODE>Handle</CODE> is well formed, i.e., if it
   satisfies all its implementation invariants.
   Useful for debugging purposes.</EM>

<P><CODE>
  ppl_PIP_Tree_Node_parametric_values(+Handle, +Var, ?Lin_Expr)
</CODE><BR>
   <EM>Unifies \p Lin_Expr with a linear expression representing
   the values of problem variable \p Var in the solution node
   represented by <CODE>Handle</CODE>.
   The  linear expression may involve problem parameters
   as well as artificial parameters.</EM>

<P><CODE>
  ppl_PIP_Tree_Node_true_child(+Handle1, ?Handle2)
</CODE><BR>
  <EM>If the PIP_Tree_Node represented by \p Handle1 is a decision node
   unifies the PIP tree node referenced by <CODE>Handle2</CODE>
   with the child on the true branch of the
   PIP tree node represented by <CODE>Handle1</CODE>.
   An exception is thrown if this is not a decision node.</EM>

<P><CODE>
  ppl_PIP_Tree_Node_false_child(+Handle1, ?Handle2)
</CODE><BR>
  <EM>If the PIP_Tree_Node represented by \p Handle1 is a decision node
   unifies the PIP tree node referenced by <CODE>Handle2</CODE>
   with the child on the false branch of the
   PIP tree node represented by <CODE>Handle1</CODE>.
   An exception is thrown if this is not a decision node.</EM>

*/ /* \page PI_SI_Features */