1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191
|
m4_divert(-1)
dnl This m4 file contains the program code for generating Prolog_interface.dox
dnl Copyright (C) 2001-2010 Roberto Bagnara <bagnara@cs.unipr.it>
dnl Copyright (C) 2010-2016 BUGSENG srl (http://bugseng.com)
dnl
dnl This file is part of the Parma Polyhedra Library (PPL).
dnl
dnl The PPL is free software; you can redistribute it and/or modify it
dnl under the terms of the GNU General Public License as published by the
dnl Free Software Foundation; either version 3 of the License, or (at your
dnl option) any later version.
dnl
dnl The PPL is distributed in the hope that it will be useful, but WITHOUT
dnl ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
dnl FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
dnl for more details.
dnl
dnl You should have received a copy of the GNU General Public License
dnl along with this program; if not, write to the Free Software Foundation,
dnl Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02111-1307, USA.
dnl
dnl For the most up-to-date information see the Parma Polyhedra Library
dnl site: http://bugseng.com/products/ppl/ .
dnl category and subcategory headers and descriptions
dnl -----------------------------------------------------------------
dnl *** The constructor, copy, convert and destructor predicates. ***
dnl -----------------------------------------------------------------
m4_define(`m4_category_constr_destr', `dnl
<H2>Constructor, copy, conversion and destructor predicates</H2>
m4_pushdef(`m4_topology_a_replacements', `')`'dnl
m4_pushdef(`m4_Polyhedron_a_topology_replacements', `C , NNC ')`'dnl
')
m4_define(`m4_finalize_category_constr_destr', `dnl
m4_popdef(`m4_a_topology_replacements')`'dnl
m4_popdef(`m4_Polyhedron_a_topology_replacements')`'dnl
')
dnl -----------------------------------------------------------------
dnl The constructor predicates.
dnl -----------------------------------------------------------------
m4_define(`m4_subcategory_build', `dnl
<H3>Constructor predicates for m4_this_topology m4_this_ppl_objects</H3>
The constructor predicates build a
m4_this_topology m4_this_ppl_one_object from a specification
and binds the given variable to a handle for future referencing.
The specification can be:
- the number of space dimensions and an atom indicating if it
is to be the universe or empty element.
- a representation for the particular class of semantic geometric
descriptors to which the element being built belongs.
m4_ifelse(m4_this_interface_class, Polyhedron,
`For example`,'
a C Polyhedron can be built from a list of
non-strict inequality or equality constraints or a list of equality
congruences or a list of generators that contains no closure points.')
')
dnl -----------------------------------------------------------------
dnl The copy and conversion constructor predicates.
dnl -----------------------------------------------------------------
m4_define(`m4_subcategory_convert', `dnl
<H3>Predicates that build new m4_this_topology m4_this_ppl_objects
by copying or converting from
other semantic geometric descriptions</H3>
Besides the constructors listed above, the library also
provides:
- copy constructors that will copy an element belonging
to the same class of semantic geometric descriptions
- conversion operators that build a new semantic geometric
description starting from a \b friend;
that is`,' a semantic geometric description in different class
m4_ifelse(m4_this_interface_class, Polyhedron, `dnl
(e.g.`,' ppl_new_Grid_from_C_Polyhedron`,'
ppl_new_C_Polyhedron_from_BD_Shape_mpq_class`,' etc.)').<BR>
The copy and conversion predicates have two versions,
one with arity 2 for the source and target handles and one
with an extra argument denoting the maximum complexity to be used
in the conversion;
this complexity argument is ignored when the
the friend and the element being built are in the same class.
')
dnl -----------------------------------------------------------------
dnl The destructor predicate
dnl -----------------------------------------------------------------
m4_define(`m4_subcategory_destruct', `dnl
<H3>Destructor predicate</H3>
Below is the destructor predicate for the m4_this_interface_class domain.
')
dnl -----------------------------------------------------------------
dnl *** Predicates that do not modify the polyhedron. ***
dnl -----------------------------------------------------------------
m4_define(`m4_category_const', `dnl
<H2>Predicates that do not change the m4_this_ppl_one_object</H2>
m4_pushdef(`m4_a_has_property_replacements', `dnl
is empty, is the universe, is bounded, contains an integer point,
is topologically closed, is discrete')`'dnl
m4_pushdef(`m4_product_a_has_property_replacements', `dnl
is empty, is the universe, is bounded,
is topologically closed, is discrete')`'dnl
m4_pushdef(`m4_a_comparison_replacements', `dnl
is included in or equal to, is included in but not equal to,
is disjoint from')`'dnl
m4_pushdef(`m4_Pointset_Powerset_a_comparison_replacements', `dnl
m4_a_comparison_replacements,
geometrically covers, geometrically equals')`'dnl
m4_pushdef(`m4_maxmin_replacements', `max, min')`'dnl
m4_pushdef(`m4_a_maxmin_replacements', `above, below')`'dnl
m4_pushdef(`m4_b_maxmin_replacements', `supremum, infinum')`'dnl
m4_pushdef(`m4_maxmin_replacements', `max, min')`'dnl
m4_pushdef(`m4_a_maxmin_replacements', `above, below')`'dnl
m4_pushdef(`m4_b_maxmin_replacements', `supremum, infinum')`'dnl
m4_pushdef(`m4_a_dimension_replacements', `dnl
dimension of the vector space enclosing, affine dimension of')`'dnl
')
m4_define(`m4_finalize_category_const', `dnl
m4_popdef(`m4_has_a_property_replacements')`'dnl
m4_popdef(`m4_product_a_has_property_replacements')`'dnl
m4_popdef(`m4_a_comparison_replacements')`'dnl
m4_popdef(`m4_Pointset_Powerset_a_comparison_replacements')`'dnl
m4_popdef(`m4_maxmin_replacements')`'dnl
m4_popdef(`m4_a_maxmin_replacements')`'dnl
m4_popdef(`m4_b_maxmin_replacements')`'dnl
m4_popdef(`m4_maxmin_replacements')`'dnl
m4_popdef(`m4_a_maxmin_replacements')`'dnl
m4_popdef(`m4_b_maxmin_replacements')`'dnl
m4_popdef(`m4_a_dimension_replacements')`'dnl
')
dnl -----------------------------------------------------------------
dnl Predicates that test a property
dnl -----------------------------------------------------------------
m4_define(`m4_subcategory_testpoly', `dnl
<H3>Test Predicates</H3>
These predicates test the m4_this_ppl_one_object for different properties
and succeed or fail depending on the outcome.
')
dnl -----------------------------------------------------------------
dnl Predicates that get information about the polyhedron.
dnl -----------------------------------------------------------------
m4_define(`m4_subcategory_constpoly', `dnl
<H3>Predicates that return information about the m4_this_ppl_one_object</H3>
These predicates will obtain more detailed information about the
m4_this_ppl_one_object
unifying some of their arguments with the results.
')
dnl -----------------------------------------------------------------
dnl Predicate that dumps.
dnl -----------------------------------------------------------------
m4_define(`m4_subcategory_dump', `dnl
<H3>Ascii dump predicate</H3>
This output predicate is useful for debugging.
')
dnl -----------------------------------------------------------------
dnl *** Space dimension preserving predicates that may modify the ***
dnl *** polyhedron. ***
dnl -----------------------------------------------------------------
m4_define(`m4_category_nonconst', `dnl
<H2>Space-dimension preserving predicates that may change
the m4_this_ppl_one_object</H2>
These predicates may modify the m4_this_ppl_one_object referred to
by the handle in first argument;
the (dimension of the) vector space in which it is embedded is unchanged.
m4_pushdef(`m4_binop_replacements', `dnl
intersection_assign, upper_bound_assign, difference_assign,
time_elapse_assign')`'dnl
m4_pushdef(`m4_Polyhedron_binop_replacements', `dnl
m4_binop_replacements, poly_hull, poly_difference')`'dnl
m4_pushdef(`m4_a_binop_replacements', `dnl
intersection, upper bound, difference, time elapse')`'dnl
m4_pushdef(`m4_Polyhedron_a_binop_replacements', `dnl
m4_a_binop_replacements, poly-hull, poly-difference')`'dnl
m4_pushdef(`m4_a_simplify_replacements', `topological closure')`'dnl
m4_pushdef(`m4_Pointset_Powerset_a_simplify_replacements', `dnl
topological closure, pairwise reduction, omega reduction')`'dnl
')
m4_define(`m4_finalize_category_nonconst', `dnl
m4_popdef(`m4_binop_replacements')`'dnl
m4_popdef(`m4_Polyhedron_binop_replacements')`'dnl
m4_popdef(`m4_a_binop_replacements')`'dnl
m4_popdef(`m4_Polyhedron_a_binop_replacements')`'dnl
m4_popdef(`m4_a_simplify_replacements')`'dnl
m4_popdef(`m4_Pointset_Powerset_a_simplify_replacements')`'dnl
')
dnl -----------------------------------------------------------------
dnl Predicates that may change the polyhedron by adding
dnl to the polyhedron's constraint or generator descriptions.
dnl -----------------------------------------------------------------
m4_define(`m4_subcategory_addto', `dnl
<H3>Predicates that may change the m4_this_ppl_one_object by adding
to its constraint or generator descriptions</H3>
Note that there are two forms of these predicates
differentiated in the names by the
words "add" or "refine with";
see Section \extref{Generic_Operations_on_Semantic_Geometric_Descriptors, Generic Operations on Semantic Geometric Descriptors} in the
main \extref{preamble, PPL User Manual}
for the differences in the semantics and therefore, the expected behavior,
between these forms.
')
dnl -----------------------------------------------------------------
dnl Predicates that transform a polyhedron.
dnl -----------------------------------------------------------------
m4_define(`m4_subcategory_trans', `dnl
<H3>Predicates that transform the m4_this_ppl_one_object</H3>
These predicates enable transformations
such as taking the topological closure (which for the domain of
m4_this_topology m4_this_ppl_one_object is the identity transformation),
unconstraining a specified dimension
as explained in the
main \extref{preamble, PPL User Manual} in Section
\extref{Cylindrification, Cylindrification Operator}
and several different image and preimage affine transfer relations;
for details of the latter see Sections
\extref{Images_and_Preimages_of_Affine_Transfer_Relations, Images and Preimages of Affine Transfer Relations}
and
\extref{Generalized_Affine_Relations, Generalized Affine Relations}')
dnl -----------------------------------------------------------------
dnl Predicates that act as binary operators.
dnl -----------------------------------------------------------------
m4_define(`m4_subcategory_binop', `dnl
<H3>Predicates whose results depend on more than one m4_this_ppl_one_object</H3>
These predicates include the binary operators which will assign to the
m4_this_ppl_one_object referred to by the first argument
its combination with the m4_this_ppl_one_object referred to by the second argument
as described in the
main \extref{preamble, PPL User Manual} in Sections
\extref{Intersection_and_Convex_Polyhedral_Hull, Intersection and Convex Polyhedral Hull}
and
\extref{Convex_Polyhedral_Difference, Convex Polyhedral Difference};
and a linear partitioning operator described below.
')
dnl -----------------------------------------------------------------
dnl Predicates for widening and extrapolation.
dnl -----------------------------------------------------------------
m4_define(`m4_subcategory_widen', `dnl
<H3>Predicates for widening and extrapolation</H3>
In addition to the above binary operators, there are also a number
of widening, extrapolation and narrowing operators
as described in the
main \extref{preamble, PPL User Manual} in Sections
\extref{Widening_Operators, Widening Operators},
\extref{Widening_with_Tokens, Widening with Tokens} and
\extref{Extrapolation_Operators, Extrapolation Operators}.
Note that for all these widening and extrapolation predicates
to behave as specified
the m4_this_ppl_one_object referred to by the second argument has to be
contained in (or equal to) the m4_this_ppl_one_object referred to by the first argument.
')
dnl -----------------------------------------------------------------
dnl *** Predicates that may modify the dimension of the vector space. ***
dnl -----------------------------------------------------------------
m4_define(`m4_category_varspace', `dnl
<H2>Predicates that may modify the vector space</H2>
These predicates enable the modification of the vector space
of the m4_this_ppl_one_object referred to in the first argument.
')
m4_define(`m4_finalize_category_varspace', `dnl
')
dnl -----------------------------------------------------------------
dnl Concatenate predicate
dnl -----------------------------------------------------------------
m4_define(`m4_subcategory_concat', `dnl
<H3>Predicate for concatenation</H3>
For more information on this operation, see Section
\extref{Concatenating_Polyhedra, Concatenating Polyhedra},
of the main \extref{preamble, PPL User Manual}.
')
dnl -----------------------------------------------------------------
dnl Predicates for mapping or changing the space dimensions
dnl -----------------------------------------------------------------
m4_define(`m4_subcategory_spacemod', `dnl
<H3>Predicates for mapping dimensions or changing the vector space</H3>
These predicates enable the modification of the vector space
of the m4_this_ppl_one_object referred to in the first argument.
These predicates enable the modification of the vector space
of the m4_this_ppl_one_object referred to in the first argument.
Detailed descriptions of these can be found in the
main \extref{preamble, PPL User Manual} in Sections
\extref{Adding_New_Dimensions_to_the_Vector_Space, Adding New Dimensions to the Vector Space},
\extref{Removing_Dimensions_from_the_Vector_Space, Removing Dimensions from the Vector Space},
\extref{Mapping_the_Dimensions_of_the_Vector_Space, Mapping the Dimensions of the Vector Space},
\extref{expand_space_dimension, Expanding One Dimension of the Vector Space to Multiple Dimensions}
and
\extref{Folding_Multiple_Dimensions_of_the_Vector_Space_into_One_Dimension, Folding Multiple Dimensions of the Vector Space into One Dimension}.
')
dnl -----------------------------------------------------------------
dnl *** Pointset powerset domains. ***
dnl Note that this is only used for the configure independent manual.
dnl -----------------------------------------------------------------
m4_define(`m4_category_pps', `dnl
<H2>Extra Predicates Specifically for the Pointset Powerset Domains</H2>
The powerset domains can be instantiated by taking as a base domain
any fixed semantic geometric description
(C and NNC polyhedra, BD and octagonal shapes, boxes and grids).
An element of the powerset domain represents a disjunctive collection
of base objects (its disjuncts), all having the same space dimension.
For more information on this construct,
see Section \extref{The_Powerset_Domain, The Powerset Domain}
in the main \extref{preamble, PPL User Manual}.
Besides the predicates that are available in all semantic geometric
descriptions (whose documentation is not repeated here),
the powerset domain also provides several ad hoc predicates.
These are specified below, instantiated for the
PPL domain Pointset_Powerset_C_Polyhedron.
Note that predicates for other pointset powerset domains
will follow similar patterns.
')
m4_define(`m4_finalize_category_pps', `dnl
')
dnl -----------------------------------------------------------------
dnl Predicates for pointset powerset iterators and disjuncts.
dnl -----------------------------------------------------------------
m4_define(`m4_subcategory_pps_iter', `dnl
<H3>Predicates for pointset powerset iterators and disjuncts.</H3>
Iterators allow the user to examine and change individual elements
(called here disjuncts) of a pointset powerset.
Detailed descriptions for adding and removing disjuncts can be found in the
main \extref{preamble, PPL User Manual} in Section
\extref{Adding_a_Disjunct, Adding a Disjunct}.
The following predicates support useful operations
on these iterators and disjuncts via the usual handles.
m4_pushdef(`m4_Pointset_Powerset_a_beginend_replacements',
`beginning, end')`'dnl
')
dnl -----------------------------------------------------------------
dnl Other ad hoc predicates for the pointset_powerset domains.
dnl Note that these are only used for the configure independent manual.
dnl -----------------------------------------------------------------
m4_define(`m4_subcategory_pps_other', `dnl
<H3>Other Ad Hoc Predicates for the pointset powerset domains.</H3>
Collected here are some other predicates that are specific to
pointset powersets of C polyhedra;
these provide operations for
simplifying the powerset,
geometric comparisons
and widening and extrapolation.
Detailed descriptions of these can be found in the
main \extref{preamble, PPL User Manual} in Sections
\extref{Geometric_Comparisons, Geometric Comparisons},
\extref{Certificate_Based_Widenings, Certificate-Based Widenings},
\extref{Powerset_Extrapolation_Operators, Powerset Extrapolation Operators}.
')
dnl -----------------------------------------------------------------
dnl Documentation for each of the build predicates;
dnl -----------------------------------------------------------------
m4_define(`ppl_new_@TOPOLOGY@@CLASS@_from_space_dimension_build_doc', `dnl
<P><CODE>ppl_new_@TOPOLOGY@@CLASS@_from_space_dimension(+Dimension_Type, +Universe_or_Empty, -Handle)</CODE><BR>
<EM>Builds a new @A_TOPOLOGY@`'m4_this_ppl_one_object \f$\cP\f$
with \c Dimension_Type dimensions; it is empty
or the universe depending on whether \c Atom
is \c empty or \c universe|COMMA| respectively.
\c Handle is unified with the handle for \f$\cP\f$.
Thus the query
\code
?- ppl_new_@TOPOLOGY@@CLASS@_from_space_dimension(3|COMMA| universe|COMMA| X).
\endcode
creates the @A_TOPOLOGY@`'m4_this_ppl_one_object defining the
3-dimensional vector space
\f$\Rset^3\f$ with \c X bound to a valid handle for accessing it.</EM>
')
m4_define(`ppl_new_@TOPOLOGY@@CLASS@_from_@BUILD_REPRESENT@s_build_doc',
`dnl
<P><CODE>ppl_new_@TOPOLOGY@@CLASS@_from_@BUILD_REPRESENT@s(+@!BUILD_REPRESENT@_System, -Handle)</CODE><BR>
<EM>Builds a new @A_TOPOLOGY@`'m4_this_ppl_one_object \p P from
\c @!BUILD_REPRESENT@_System.
\c Handle is unified with the handle for \p P.</EM>
')
dnl -----------------------------------------------------------------
dnl Documentation for each of the convert predicates;
dnl -----------------------------------------------------------------
m4_define(`ppl_new_@TOPOLOGY@@CLASS@_from_@FRIEND@_convert_doc', `dnl
<P><CODE>ppl_new_@TOPOLOGY@@CLASS@_from_@FRIEND@(+Handle_1, -Handle_2)</CODE><BR>
<EM>Builds a new @A_TOPOLOGY@`'m4_this_ppl_one_object \p P_1 from
the @!A_FRIEND@ referenced by handle \c Handle_1.
\c Handle_2 is unified with the handle for \p P_1.</EM>
')
m4_define(`ppl_new_@TOPOLOGY@@CLASS@_from_@FRIEND@_with_complexity_convert_doc', `dnl
<P><CODE>ppl_new_@TOPOLOGY@@CLASS@_from_@FRIEND@_with_complexity(+Handle, +Complexity, -Handle)</CODE><BR>
<EM>Builds a new @A_TOPOLOGY@`'m4_this_ppl_one_object \p P_1 from
the @!A_FRIEND@ referenced by handle \c Handle_1
using an algorithm whose complexity does not exceed \c Complexity;
\c Handle_2 is unified with the handle for \p P_1.</EM>
')
dnl -----------------------------------------------------------------
dnl Documentation for the desctructor;
dnl -----------------------------------------------------------------
m4_define(`ppl_delete_@CLASS@_destruct_doc',
`dnl
<P><CODE>ppl_delete_@CLASS@(+Handle)</CODE><BR>
<EM>Invalidates the handle referenced by \c Handle:
this makes sure the corresponding resources will eventually be released.</EM>
')
dnl -----------------------------------------------------------------
dnl Documentation for each of the simple test predicates;
dnl -----------------------------------------------------------------
m4_define(`ppl_@CLASS@_@HAS_PROPERTY@_testpoly_doc',
`dnl
<P><CODE>ppl_@CLASS@_@HAS_PROPERTY@(+Handle)</CODE><BR>
<EM>Succeeds if and only if the m4_this_ppl_one_object referenced by
\c Handle @A_HAS_PROPERTY@.</EM>
')
m4_define(`ppl_@CLASS@_bounds_from_@ABOVEBELOW@_testpoly_doc',
`dnl
<P><CODE>ppl_@CLASS@_bounds_from_@ABOVEBELOW@(+Handle, +Lin_Expr)</CODE><BR>
<EM>Succeeds if and only if <CODE>Lin_Expr</CODE> is bounded from @ABOVEBELOW@
in the m4_this_ppl_one_object referenced by \c Handle.</EM>
')
m4_define(`ppl_@CLASS@_@COMPARISON@_@CLASS@_testpoly_doc',
`dnl
<P><CODE>ppl_@CLASS@_@COMPARISON@_@CLASS@(+Handle_1, +Handle_2)</CODE><BR>
<EM>Succeeds if and only if the m4_this_ppl_one_object referenced by
<CODE>Handle_2</CODE> @A_COMPARISON@
the m4_this_ppl_one_object referenced by <CODE>Handle_1</CODE>.</EM>
')
m4_define(`ppl_@CLASS@_equals_@CLASS@_testpoly_doc',
`dnl
<P><CODE>ppl_@CLASS@_equals_@CLASS@(+Handle_1, +Handle_2)</CODE><BR>
<EM>Succeeds if and only if the m4_this_ppl_one_object referenced by
<CODE>Handle_1</CODE> is
equal to the m4_this_ppl_one_object referenced by <CODE>Handle_2</CODE>.</EM>
')
m4_define(`ppl_@CLASS@_constrains_testpoly_doc',
`dnl
<P><CODE>ppl_@CLASS@_constrains(+Handle, +PPL_Var)</CODE><BR>
<EM>Succeeds if and only if the m4_this_ppl_one_object referenced by
\c Handle constrains the dimension \c PPL_Var.</EM>
')
m4_define(`ppl_@CLASS@_OK_testpoly_doc',
`dnl
<P><CODE>ppl_@CLASS@_OK(+Handle)</CODE><BR>
<EM>Succeeds only if the m4_this_ppl_one_object referenced by
\c Handle is well formed|COMMA| i.e.|COMMA| if it
satisfies all its implementation invariants.
Useful for debugging purposes.</EM>
')
dnl -----------------------------------------------------------------
dnl Documentation for each of the "get information" predicates;
dnl -----------------------------------------------------------------
m4_define(`ppl_@CLASS@_has_@UPPERLOWER@_bound_constpoly_doc',
`dnl
<P><CODE>ppl_@CLASS@_has_@UPPERLOWER@_bound(+Handle, +Var, ?Coeff_1, ?Coeff_2, ?Boolean)</CODE><BR>
<EM>Succeeds if and only if \c Var is @UPPERLOWER@ bounded in
m4_this_ppl_one_object \p P referenced by \c Handle. It is assumed
that \p P is not empty and its space dimension is greater than or equal
to that of \c Var|COMMA| otherwise the behavior is undefined.
\c Coeff_1 is unified with the numerator of the @UPPERLOWER@ bound
and \c Coeff_2 with the denominator of the @UPPERLOWER@ bound.
If the @UPPERLOWER@ is included in \p P|COMMA| then \c Boolean is unified
with the atom \c true and|COMMA| otherwise|COMMA| unified with
the atom \c false.</EM>
')
m4_define(`ppl_@CLASS@_@MAXMIN@_constpoly_doc',
`dnl
<P><CODE>ppl_@CLASS@_@MAXMIN@imize(+Handle, +Lin_Expr, ?Coeff_1, ?Coeff_2, ?Boolean)</CODE><BR>
<EM>Succeeds if and only if m4_this_ppl_one_object \p P referenced by \c Handle
is not empty and \c Lin_Expr is bounded from @A_MAXMIN@ in \p P.
\c Coeff_1 is unified with the numerator of the @B_MAXMIN@ value
and \c Coeff_2 with the denominator of the @B_MAXMIN@ value.
If the @B_MAXMIN@ is also the @MAXMIN@imum|COMMA| \c Boolean is unified
with the atom \c true and|COMMA| otherwise|COMMA| unified with
the atom \c false.</EM>
')
m4_define(`ppl_@CLASS@_@MAXMIN@_with_point_constpoly_doc',
`dnl
<P><CODE>ppl_@CLASS@_@MAXMIN@imize_with_point(+Handle, +Lin_Expr, ?Coeff_1, ?Coeff_2, ?Boolean, ?Point)</CODE><BR>
<EM>Succeeds if and only if m4_this_ppl_one_object \p P referenced by \c Handle
is not empty and \c Lin_Expr is bounded from @A_MAXMIN@ in \p P.
\c Coeff_1 is unified with the numerator of the @B_MAXMIN@ value
and \c Coeff_2 with the denominator of the @B_MAXMIN@ value
and \c Point with a point or closure point where \c Lin_Expr reaches
this value.
If the @B_MAXMIN@ is also the @MAXMIN@imum|COMMA| \c Boolean is unified
with the atom \c true and|COMMA| otherwise|COMMA| unified with the
atom \c false.</EM>
')
m4_define(`ppl_@CLASS@_@DIMENSION@_constpoly_doc',
`dnl
<P><CODE>ppl_@CLASS@_@DIMENSION@(+Handle, ?Dimension_Type)</CODE><BR>
<EM>Unifies \c Dimension_Type with the @A_DIMENSION@
the m4_this_ppl_one_object referenced by \c Handle.</EM>
')
m4_define(`ppl_@CLASS@_relation_with_@RELATION_REPRESENT@_constpoly_doc',
`dnl
<P><CODE>ppl_@CLASS@_relation_with_@RELATION_REPRESENT@(+Handle, +@!RELATION_REPRESENT@, ?Relation_List)</CODE><BR>
<EM>Unifies \c Relation_List with the list of relations the
m4_this_ppl_one_object referenced by \c Handle has with \c @!RELATION_REPRESENT@.
The possible relations are listed in the
grammar rules above.</EM>
')
m4_define(`ppl_@CLASS@_get_@CLASS_REPRESENT@s_constpoly_doc',
`dnl
m4_pushdef(`m4_b_class_represent_replacements', `satisfied by, satisfied by')
m4_pushdef(`m4_Polyhedron_b_class_represent_replacements',
`satisfied by, satisfied by, for')
m4_pushdef(`m4_Grid_b_class_represent_replacements',
`satisfied by, satisfied by, for')
<P><CODE>ppl_@CLASS@_get_@CLASS_REPRESENT@s(+Handle, ?@!CLASS_REPRESENT@_System)</CODE><BR>
<EM>Unifies \c @!CLASS_REPRESENT@_System with
the @CLASS_REPRESENT@s (in the form of a list) in the @CLASS_REPRESENT@ system
@B_CLASS_REPRESENT@ the m4_this_ppl_one_object referenced by \c Handle.</EM>
')
m4_define(`ppl_@CLASS@_get_minimized_@CLASS_REPRESENT@s_constpoly_doc',
`dnl
m4_pushdef(`m4_Polyhedron_b_class_represent_replacements',
`satisfied by, for, satisfied by')
<P><CODE>ppl_@CLASS@_get_minimized_@CLASS_REPRESENT@s(+Handle, ?@!CLASS_REPRESENT@_System)</CODE><BR>
<EM>Unifies \c @!CLASS_REPRESENT@_System with
the @CLASS_REPRESENT@s (in the form of a list)
in the minimized @CLASS_REPRESENT@ system
@B_CLASS_REPRESENT@ the m4_this_ppl_one_object referenced by \c Handle.</EM>
')
m4_define(`ppl_@CLASS@_@MEMBYTES@_constpoly_doc',
`dnl
m4_pushdef(`m4_a_membytes_replacements', `total, external')
<P><CODE>ppl_@CLASS@_@MEMBYTES@(+Handle, ?Number)</CODE><BR>
<EM>Unifies \c Number with the size of the @A_MEMBYTES@ memory in
bytes occupied by the m4_this_ppl_one_object referenced by \c Handle.</EM>
')
dnl -----------------------------------------------------------------
dnl Documentation for the ascii dump;
dnl -----------------------------------------------------------------
m4_define(`ppl_@CLASS@_ascii_dump_dump_doc',
`dnl
<P><CODE>ppl_@CLASS@_ascii_dump(+Handle)</CODE><BR>
<EM>Dumps an ascii representation of the PPL internal state for
the m4_this_ppl_one_object referenced by \c Handle on the standard output.</EM>
')
dnl -----------------------------------------------------------------
dnl Documentation for each of the "add to" predicates;
dnl -----------------------------------------------------------------
m4_define(`ppl_@CLASS@_add_@CLASS_REPRESENT@_addto_doc',
`dnl
m4_popdef(`m4_a_class_represent_replacements')`'dnl
m4_pushdef(`m4_a_class_represent_replacements',
`an equality or a non-strict inequality,
an equality, a line|COMMA| ray or point')`'dnl
<P><CODE>ppl_@CLASS@_add_@CLASS_REPRESENT@(+Handle, +@!CLASS_REPRESENT@)</CODE><BR>
<EM>Updates the m4_this_ppl_one_object referenced by \c Handle to
one obtained by adding
\c @!CLASS_REPRESENT@ to its @CLASS_REPRESENT@ system.
For a C polyhedron|COMMA| \c @!CLASS_REPRESENT@ must be
@A_CLASS_REPRESENT@.</EM>
')
m4_define(`ppl_@CLASS@_add_@CLASS_REPRESENT@s_addto_doc',
`dnl
m4_popdef(`m4_a_class_represent_replacements')`'dnl
m4_pushdef(`m4_a_class_represent_replacements',
`equalities and non-strict inequalities,
equalities, lines|COMMA| rays and points')`'dnl
<P><CODE>ppl_@CLASS@_add_@CLASS_REPRESENT@s(
+Handle,
+@!CLASS_REPRESENT@_System)</CODE><BR>
<EM>Updates the m4_this_ppl_one_object referenced by \c Handle to
one obtained by adding to its @CLASS_REPRESENT@ system the @CLASS_REPRESENT@s in
\c @!CLASS_REPRESENT@_System.
For a C polyhedron|COMMA| \c @!CLASS_REPRESENT@s must be a list of
@A_CLASS_REPRESENT@.</EM>
')
m4_define(`ppl_@CLASS@_refine_with_@REFINE_REPRESENT@_addto_doc',
`dnl
<P><CODE>ppl_@CLASS@_refine_with_@REFINE_REPRESENT@(
+Handle,
+@!REFINE_REPRESENT@)</CODE><BR>
<EM>Updates the m4_this_ppl_one_object referenced by \c Handle to
one obtained by refining its @REFINE_REPRESENT@ system with
\c @!REFINE_REPRESENT@.</EM>
')
m4_define(`ppl_@CLASS@_refine_with_@REFINE_REPRESENT@s_addto_doc',
`dnl
<P><CODE>ppl_@CLASS@_refine_with_@REFINE_REPRESENT@s(
+Handle,
+@!REFINE_REPRESENT@_System)</CODE><BR>
<EM>Updates the m4_this_ppl_one_object referenced by \c Handle to
one obtained by refining its @REFINE_REPRESENT@ system with
the @REFINE_REPRESENT@s in \c @!REFINE_REPRESENT@_System.</EM>
')
dnl -----------------------------------------------------------------
dnl Documentation for each of the binary operator predicates;
dnl -----------------------------------------------------------------
m4_define(`ppl_@CLASS@_@BINOP@_binop_doc',
`dnl
<P><CODE>ppl_@CLASS@_@BINOP@(+Handle_1, +Handle_2)</CODE><BR>
<EM>Assigns to the m4_this_ppl_one_object \p P referenced by \c Handle_1
the @A_BINOP@ of \p P and the m4_this_ppl_one_object referenced by \c Handle_2.</EM>
')
m4_define(`ppl_@CLASS@_@UB_EXACT@_binop_doc',
`dnl
<P><CODE>ppl_@CLASS@_@UB_EXACT@(+Handle_1, +Handle_2)</CODE><BR>
<EM>Succeeds if the least upper bound of the
m4_this_ppl_one_object \p P_1 referenced by \c Handle_1
with the m4_this_ppl_one_object referenced by \c Handle_2 is exact;
in which case the least upper bound is assigned
to \p P_1;
fails otherwise.</EM>
')
m4_define(`ppl_@CLASS@_linear_@PARTITION@_binop_doc',
`dnl
<P><CODE>ppl_@CLASS@_linear_@PARTITION@(+Handle_1, +Handle_2, -Handle_3,
-Handle_4)</CODE><BR>
<EM>\c Handle_1 and \c Handle_2 are handles for elements \p P_1 and \p P_2
in the @CLASS@ domain. The predicate unifies handle
\c Handle_3 to a reference to the intersection of
\p P_1 and \p P_2 and \c Handle_4 to a reference to
a pointset powerset of nnc polyhedra \p P_4;
where \p P_4 is the linear partition of \p P_1 with respect to \p P_2.
This predicate is only provided if the
class \c Pointset_Powerset_NNC_Polyhedron
has been enabled when configuring the library.</EM>
')
m4_define(`ppl_@CLASS@_approximate_@PARTITION@_binop_doc',
`dnl
<P><CODE>ppl_@CLASS@_approximate_@PARTITION@(+Handle_1, +Handle_2, ?Boolean,
-Handle_3, -Handle_4)</CODE><BR>
<EM>\c Handle_1 and \c Handle_2 are handles for elements \p P_1 and \p P_2
in the @CLASS@ domain. The predicate unifies handle
\c Handle_3 to a reference to the intersection of
\p P_1 and \p P_2 and \c Handle_4 to a reference to
a pointset powerset of grids \p P_4 where:<BR>
if there is a finite linear partition of \p P_1 wrt \p P_2
\c Boolean is unified with the atom \c true and
\p P_4 is the linear partition;<BR>
otherwise \c Boolean is unified with the atom \c false
and \p P_4 is set to the singleton set that contains \p P_2.<BR>
This predicate is only provided if the
class \c Pointset_Powerset_Grid
has been enabled when configuring the library.</EM>
')
m4_define(`ppl_@CLASS@_simplify_using_context_assign_binop_doc',
`dnl
<P><CODE>ppl_@CLASS@_simplify_using_context_assign(+Handle_1, +Handle_2, ?Boolean)</CODE><BR>
<EM>Succeeds if and only if the intersection of m4_this_ppl_one_object \p P_1
referenced by \c Handle_1 and the m4_this_ppl_one_object \p P_2 referenced by \c Handle_2
is non-empty.
Assigns to \p P_1 its meet-preserving simplification with
respect to \p P_2.</EM>
')
dnl -----------------------------------------------------------------
dnl Documentation for each of the widen and extrapolation predicates;
dnl -----------------------------------------------------------------
m4_define(`ppl_@CLASS@_widening_assign_with_tokens_widen_doc',
`dnl
<P><CODE>ppl_@CLASS@_widening_assign_with_tokens(+Handle_1, +Handle_2, +C_unsigned_1, ?C_unsigned_2)</CODE><BR>
<EM>Same as predicate `'dnl
m4_ifelse(
m4_this_interface_class, Polyhedron,
<CODE>ppl_@CLASS@_H79_widening_assign_with_tokens</CODE>/4,
m4_this_interface_class, Grid,
<CODE>ppl_@CLASS@_congruence_widening_assign_with_tokens</CODE>/4,
m4_this_ppl_group, box,
<CODE>ppl_@CLASS@_CC76_widening_assign_with_tokens</CODE>/4,
m4_this_ppl_group, wr_shape,
<CODE>ppl_@CLASS@_H79_widening_assign_with_tokens</CODE>/4)</EM>
')
m4_define(`ppl_@CLASS@_widening_assign_widen_doc',
`dnl
<P><CODE>ppl_@CLASS@_widening_assign(+Handle_1, +Handle_2)</CODE><BR>
<EM>Same as predicate `'dnl
m4_ifelse(
m4_this_interface_class, Polyhedron,
<CODE>ppl_@CLASS@_H79_widening_assign</CODE>/2,
m4_this_interface_class, Grid,
<CODE>ppl_@CLASS@_congruence_widening_assign</CODE>/2,
m4_this_ppl_group, box,
<CODE>ppl_@CLASS@_CC76_widening_assign</CODE>/2,
m4_this_ppl_group, wr_shape,
<CODE>ppl_@CLASS@_H79_widening_assign</CODE>/2)</EM>
')
m4_define(`ppl_@CLASS@_@WIDEN@_widening_assign_with_tokens_widen_doc',
`dnl
<P><CODE>ppl_@CLASS@_@WIDEN@_widening_assign_with_tokens(+Handle_1, +Handle_2, +C_unsigned_1, ?C_unsigned_2)</CODE><BR>
<EM>Assigns to the m4_this_ppl_one_object \p P_1 referenced by \c Handle_1
the @WIDEN@-widening of \p P_1 with the m4_this_ppl_one_object
referenced by \c Handle_2.
The widening with tokens delay
technique is applied with \c C_unsigned_1 tokens;
\c C_unsigned_2 is unified with the number of tokens
remaining at the end of the operation.</EM>
')
m4_define(`ppl_@CLASS@_@WIDEN@_widening_assign_widen_doc',
`dnl
<P><CODE>ppl_@CLASS@_@WIDEN@_widening_assign(+Handle_1, +Handle_2)</CODE><BR>
<EM>Assigns to the m4_this_ppl_one_object \p P_1 referenced by \c Handle_1
the @WIDEN@-widening of \p P_1 with the m4_this_ppl_one_object
referenced by \c Handle_2.</EM>
')
m4_define(`ppl_@CLASS@_@LIMITEDBOUNDED@_@WIDENEXPN@_extrapolation_assign_with_tokens_widen_doc',
`dnl
m4_pushdef(`m4_a_limitedbounded_replacements', `,
|COMMA| further intersected with the smallest box containing \\p P_1')
<P><CODE>ppl_@CLASS@_@LIMITEDBOUNDED@_@WIDENEXPN@_extrapolation_assign_with_tokens(+Handle_1, +Handle_2, +Constraint_System, +C_unsigned_1, ?C_unsigned_2)</CODE><BR>
<EM>Assigns to the m4_this_ppl_one_object \p P_1 referenced by \c Handle_1
the @WIDENEXPN@-widening of \p P_1 with the m4_this_ppl_one_object
referenced by \c Handle_2 intersected with the constraints in
\c Constraint_System that are
satisfied by all the points of \p P_1@A_LIMITEDBOUNDED@.
The widening with tokens delay
technique is applied with \c C_unsigned_1 tokens;
\c C_unsigned_2 is unified with the number of tokens
remaining at the end of the operation.</EM>
')
m4_define(`ppl_@CLASS@_@LIMITEDBOUNDED@_@WIDENEXPN@_extrapolation_assign_widen_doc',
`dnl
m4_pushdef(`m4_a_limitedbounded_replacements', `,
|COMMA| further intersected with the smallest box containing \\p P_1')
<P><CODE>ppl_@CLASS@_@LIMITEDBOUNDED@_@WIDENEXPN@_extrapolation_assign(+Handle_1, +Handle_2, +Constraint_System)</CODE><BR>
<EM>Assigns to the m4_this_ppl_one_object \p P_1 referenced by \c Handle_1
the @WIDENEXPN@-widening of \p P_1 with the m4_this_ppl_one_object
referenced by \c Handle_2 intersected with the constraints in
\c Constraint_System that are
satisfied by all the points of \p P_1@A_LIMITEDBOUNDED@.</EM>
')
m4_define(`ppl_@CLASS@_@EXTRAPOLATION@_narrowing_assign_widen_doc',
`dnl
<P><CODE>ppl_@CLASS@_@EXTRAPOLATION@_narrowing_assign(+Handle_1, +Handle_2)</CODE><BR>
<EM>Assigns to the m4_this_ppl_one_object \p P_1 referenced by \c Handle_1
the @EXTRAPOLATION@-narrowing of \p P_1 and the m4_this_ppl_one_object
referenced by \c Handle_2.</EM>
')
m4_define(`ppl_@CLASS@_BHZ03_@A_DISJUNCT_WIDEN@_@DISJUNCT_WIDEN@_widening_assign_widen_doc',
`dnl
<P><CODE>ppl_@CLASS@_BHZ03_@A_DISJUNCT_WIDEN@_@DISJUNCT_WIDEN@_widening_assign(+Handle_1, +Handle_2)</CODE><BR>
<EM>Assigns to the pointset powerset \p P_1 referenced by
\c Handle_1 the \extref{pps_certificate_widening|COMMA| BHZ03-widening}
between \p P_1 and the pointset powerset referenced by
\c Handle_2|COMMA| using the @DISJUNCT_WIDEN@-widening
certified by the convergence certificate for @A_DISJUNCT_WIDEN@.</EM>
')
m4_define(`ppl_@CLASS@_BGP99_@DISJUNCT_WIDEN@_extrapolation_assign_widen_doc',
`dnl
<P><CODE>ppl_@CLASS@_BGP99_@DISJUNCT_WIDEN@_extrapolation_assign(+Handle_1, +Handle_2, C_unsigned)</CODE><BR>
<EM>Assigns to the pointset powerset \p P_1 referenced by
\c Handle_1 the result of applying the
\extref{pps_bgp99_extrapolation|COMMA| BGP99 extrapolation operator}
between \p P_1 and the pointset powerset referenced by
\c Handle_2|COMMA| using the @DISJUNCT_WIDEN@-widening
and the cardinality threshold \c C_unsigned.</EM>
')
dnl -----------------------------------------------------------------
dnl Documentation for each of the transform predicates;
dnl -----------------------------------------------------------------
m4_define(`ppl_@CLASS@_swap_build_trans_doc',
`dnl
<P><CODE>ppl_@CLASS@_swap(+Handle_1, +Handle_2)</CODE><BR>
<EM>Swaps the m4_this_ppl_one_object referenced by \c Handle_1
with the m4_this_ppl_one_object referenced by \c Handle_2.</EM>
')
m4_define(`ppl_@CLASS@_@SIMPLIFY@_trans_doc',
`dnl
<P><CODE>ppl_@CLASS@_@SIMPLIFY@(+Handle)</CODE><BR>
<EM>Assigns to the m4_this_ppl_one_object referenced by \c Handle
its @A_SIMPLIFY@.</EM>
')
m4_define(`m4_a_affimage_replacements',
`image, preimage')
m4_define(`m4_b_affimage_replacements',
`assigning the affine, substituting the affine')
m4_define(`ppl_@CLASS@_@AFFIMAGE@_trans_doc',
`dnl
m4_define(`m4_a_affimage_replacements',
`image, preimage')`'dnl
m4_define(`m4_b_affimage_replacements',
`assigning the affine, substituting the affine')`'dnl
<P><CODE>ppl_@CLASS@_@AFFIMAGE@(+Handle, +PPL_Var, +Lin_Expr, +Coeff)</CODE><BR>
<EM>Transforms the m4_this_ppl_one_object referenced by \c Handle
@B_AFFIMAGE@ expression for \c Lin_Expr/\c Coeff to \c PPL_Var.</EM>
')
m4_define(`ppl_@CLASS@_bounded_@AFFIMAGE@_trans_doc',
`dnl
<P><CODE>ppl_@CLASS@_bounded_@AFFIMAGE@(+Handle, +PPL_Var, +Lin_Expr_1, +Lin_Expr_2, +Coeff)</CODE><BR>
<EM>Assigns to m4_this_ppl_one_object \p P referenced by \c Handle
the generalized @A_AFFIMAGE@ with respect to the
generalized affine transfer relation
\c Lin_Expr_1/Coeff
\f$\leq\f$ \c PPL_Var
\f$\leq\f$ \c Lin_Expr_2/Coeff.</EM>
')
m4_define(`ppl_@CLASS@_generalized_@AFFIMAGE@_trans_doc',
`dnl
<P><CODE>ppl_@CLASS@_generalized_@AFFIMAGE@(+Handle, +PPL_Var, +Relation_Symbol, +Lin_Expr, +Coeff)</CODE><BR>
<EM>Assigns to m4_this_ppl_one_object \p P referenced by \c Handle
the generalized @A_AFFIMAGE@ with respect to the
generalized affine transfer relation
\c PPL_Var \f$\bowtie\f$ \c Lin_Expr/\c Coeff|COMMA|
where \f$\bowtie\f$ is the symbol
represented by \c Relation_Symbol.</EM>
')
m4_define(`ppl_@CLASS@_generalized_@AFFIMAGE@_lhs_rhs_trans_doc',
`dnl
<P><CODE>ppl_@CLASS@_generalized_@AFFIMAGE@_lhs_rhs(+Handle, +Lin_Expr_1, +Relation_Symbol, +Lin_Expr_2)</CODE><BR>
<EM>Assigns to m4_this_ppl_one_object \p P referenced by \c Handle
the generalized @A_AFFIMAGE@ with respect to the
generalized affine transfer relation
\c Lin_Expr_1 \f$\bowtie\f$ \c Lin_Expr_2|COMMA|
where \f$\bowtie\f$ is the symbol
represented by \c Relation_Symbol.</EM>
')
m4_define(`ppl_@CLASS@_generalized_@AFFIMAGE@_with_congruence_trans_doc',
`dnl
<P><CODE>ppl_@CLASS@_generalized_@AFFIMAGE@_with_congruence(+Handle, +PPL_Var, +Relation_Symbol, +Lin_Expr, +Coeff_1, +Coeff_2)</CODE><BR>
<EM>Assigns to m4_this_ppl_one_object \p P referenced by \c Handle
the generalized @A_AFFIMAGE@ with respect to the
generalized affine transfer relation
\c Lin_Expr_1 \f$\equiv_f\f$ \c Lin_Expr_2/\c Coeff_1|COMMA|
where \c Coeff_2 is bound to the modulus \p f.</EM>
')
m4_define(`ppl_@CLASS@_generalized_@AFFIMAGE@_lhs_rhs_with_congruence_trans_doc',
`dnl
<P><CODE>ppl_@CLASS@_generalized_@AFFIMAGE@_lhs_rhs_with_congruence(+Handle, +Lin_Expr_1, +Relation_Symbol, +Lin_Expr_2, +Coeff)</CODE><BR>
<EM>Assigns to m4_this_ppl_one_object \p P referenced by \c Handle
the generalized @A_AFFIMAGE@ with respect to the
generalized affine transfer relation
\c Lin_Expr_1 \f$\equiv_f\f$ \c Lin_Expr_2.
where \c Coeff is bound to the modulus \p f.</EM>
')
m4_define(`ppl_@CLASS@_unconstrain_space_dimension_trans_doc',
`dnl
<P><CODE>ppl_@CLASS@_unconstrain_space_dimension(+Handle, +PPL_Var)</CODE><BR>
<EM>Modifies the m4_this_ppl_one_object \p P referenced by \c Handle by unconstraining
the space dimension \c PPL_Var.</EM>
')
m4_define(`ppl_@CLASS@_unconstrain_space_dimensions_trans_doc',
`dnl
<P><CODE>ppl_@CLASS@_unconstrain_space_dimensions(+Handle, +List_of_PPL_Var)</CODE><BR>
<EM>Modifies the m4_this_ppl_one_object \p P referenced by \c Handle by unconstraining
the space dimensions that are specified in \c List_of_PPL_Var.
The presence of duplicates in \c List_of_PPL_Var is a waste
but an innocuous one.</EM>
')
m4_define(`ppl_@CLASS@_wrap_assign_trans_doc',
`dnl
<P><CODE>ppl_@CLASS@_wrap_assign(+Handle, +List_of_PPL_Var, +Width, +Representation, +Overflow, +Constraint_System, +C_unsigned, +Boolean)</CODE><BR>
<EM>Transforms the m4_this_ppl_one_object \p P referenced by
<CODE>Handle</CODE> by wrapping the dimensions given by
<CODE>List_of_PPL_Vars</CODE> while respecting the specified
<CODE>Width</CODE>|COMMA| <CODE>Representation</CODE> and
<CODE>Overflow</CODE> behavior of all these variables. The
<CODE>Constraint_System</CODE> represents the conditional or
looping construct guard with respect to which wrapping is
performed. The non-negative integer <CODE>C_unsigned</CODE> and
<CODE>Boolean</CODE> allow control of the complexity/precision
ratio; higher values for <CODE>C_unsigned</CODE> will lead to
possibly greater precision while a true value for
<CODE>Boolean</CODE> indicates that the space dimensions should be
wrapped individually. See Section \extref{Wrapping_Operator|COMMA|
Wrapping Operator} for a more detailed description of this
operator.</EM>
')
dnl -----------------------------------------------------------------
dnl Documentation for the concatenation predicates;
dnl -----------------------------------------------------------------
m4_define(`ppl_@CLASS@_@BINOP@_concat_doc',
`dnl
m4_popdef(`m4_binop_replacements')
m4_popdef(`m4_Polyhedron_binop_replacements')
m4_popdef(`m4_a_binop_replacements')
m4_popdef(`m4_Polyhedron_a_binop_replacements')
m4_pushdef(`m4_binop_replacements', `concatenate_assign')
m4_pushdef(`m4_Polyhedron_binop_replacements', `concatenate_assign')
m4_pushdef(`m4_a_binop_replacements', `concatenation')
m4_pushdef(`m4_Polyhedron_a_binop_replacements', `concatenation')
<P><CODE>ppl_@CLASS@_@BINOP@(+Handle_1, +Handle_2)</CODE><BR>
<EM>Assigns to the m4_this_ppl_one_object \p P referenced by \c Handle_1
the @A_BINOP@ of \p P and the m4_this_ppl_one_object referenced by \c Handle_2.</EM>
')
dnl -----------------------------------------------------------------
dnl Documentation for each of the space changing predicates;
dnl -----------------------------------------------------------------
m4_define(`ppl_@CLASS@_add_space_dimensions_@EMBEDPROJECT@_spacemod_doc',
`dnl
<P><CODE>ppl_@CLASS@_add_space_dimensions_@EMBEDPROJECT@(+Handle, +Dimension_Type)</CODE><BR>
<EM>Adds \c Dimension_Type new dimensions to the space enclosing
the m4_this_ppl_one_object \p P referenced by \c Handle
and @EMBEDPROJECT@s \p P in this space.</EM>
')
m4_define(`ppl_@CLASS@_remove_space_dimensions_spacemod_doc',
`dnl
<P><CODE>ppl_@CLASS@_remove_space_dimensions(+Handle, +List_of_PPL_Vars)</CODE><BR>
<EM>Removes from the vector space enclosing
the m4_this_ppl_one_object \p P referenced by \c Handle the space dimensions that
are specified in \c List_of_PPL_Var. The presence
of duplicates in \c List_of_PPL_Var is a waste but an innocuous one.</EM>
')
m4_define(`ppl_@CLASS@_remove_higher_space_dimensions_spacemod_doc',
`dnl
<P><CODE>ppl_@CLASS@_remove_higher_space_dimensions(+Handle, +Dimension_Type)</CODE><BR>
<EM>Removes the higher dimensions from the vector space enclosing
the m4_this_ppl_one_object \p P referenced by \c Handle
so that|COMMA| upon successful return|COMMA| the new space dimension is
\c Dimension_Type.</EM>
')
m4_define(`ppl_@CLASS@_expand_space_dimension_spacemod_doc',
`dnl
<P><CODE>ppl_@CLASS@_expand_space_dimension(+Handle, +PPL_Var, +Dimension_Type)</CODE><BR>
<EM>Expands the \c PPL_Var-th
dimension of the vector space enclosing
the m4_this_ppl_one_object referenced by \c Handle to
\c Dimension_Type new space dimensions.</EM>
')
m4_define(`ppl_@CLASS@_fold_space_dimensions_spacemod_doc',
`dnl
<P><CODE>ppl_@CLASS@_fold_space_dimensions(+Handle, +List_of_PPL_Vars, +PPL_Var)</CODE><BR>
<EM>Modifies the m4_this_ppl_one_object referenced by \c Handle
by folding the
space dimensions contained in \c List_of_PPL_Vars
into dimension \c PPL_Var.
The presence of duplicates in \c List_of_PPL_Vars is a waste
but an innocuous one.</EM>
')
m4_define(`ppl_@CLASS@_map_space_dimensions_spacemod_doc',
`dnl
<P><CODE>ppl_@CLASS@_map_space_dimensions(+Handle, +P_Func)</CODE><BR>
<EM>Remaps the dimensions of the vector space according to a
partial function.
This function is specified by means of the \c P_Func|COMMA|
which has \p n entries.
The result is undefined if \c P_Func does not encode a partial
function.</EM>
')
dnl -----------------------------------------------------------------
dnl Documentation for each of the powerset predicates involving
dnl iterators and disjuncts;
dnl -----------------------------------------------------------------
m4_define(`ppl_new_@CLASS@_iterator_from_iterator_pps_iter_doc',
`dnl
<P><CODE>ppl_new_@CLASS@_iterator_from_iterator(+Iterator_1, -Iterator_2)</CODE><BR>
<EM>Builds a new iterator \p it from the iterator referenced by
\c Iterator_1. <CODE>Iterator_2</CODE> is unified with the handle
for \p it.</EM>
')
m4_define(`ppl_@CLASS@_@SIMPLIFY@_pps_other_doc',
`dnl
m4_pushdef(`m4_Pointset_Powerset_simplify_replacements',
`pairwise_reduce, omega_reduce')
m4_pushdef(`m4_Pointset_Powerset_a_simplify_replacements',
`pairwise reduction, omega reduction')
<P><CODE>ppl_@CLASS@_@SIMPLIFY@(+Handle)</CODE><BR>
<EM>Assigns the result of @A_SIMPLIFY@ on
the pointset powerset referenced by \c Handle.</EM>
')
m4_define(`ppl_@CLASS@_iterator_equals_iterator_pps_iter_doc',
`dnl
<P><CODE>ppl_@CLASS@_iterator_equals_iterator(+Iterator_1, +Iterator_2)</CODE><BR>
<EM>Succeeds if and only if the iterator referenced by
\c Iterator_1 is equal to the iterator referenced by
\c Iterator_2.</EM>
')
m4_define(`ppl_@CLASS@_@BEGINEND@_iterator_pps_iter_doc',
`dnl
<P><CODE>ppl_@CLASS@_@BEGINEND@_iterator(+Handle, -Iterator)</CODE><BR>
<EM>Unifies \c Iterator with a handle to an iterator "pointing"
to the @A_BEGINEND@ of
the sequence of disjuncts of the powerset referred to by \c Handle.</EM>
')
m4_define(`ppl_delete_@CLASS@_iterator_pps_iter_doc',
`dnl
<P><CODE>ppl_delete_@CLASS@_iterator(+Iterator)</CODE><BR>
<EM>Invalidates the handle referenced by <CODE>Iterator</CODE>:
this makes sure the corresponding resources
will eventually be released.</EM>
')
m4_define(`ppl_@CLASS@_@INCDEC@_iterator_pps_iter_doc',
`dnl
m4_pushdef(`m4_Pointset_Powerset_a_incdec_replacements',
`next, previous')
<P><CODE>ppl_@CLASS@_iterator_@INCDEC@(+Iterator)</CODE><BR>
<EM>@!INCDEC@s the iterator referenced by \c Iterator
so that it "points" to the @A_INCDEC@ disjunct.</EM>
')
m4_define(`ppl_@CLASS@_get_disjunct_pps_iter_doc',
`dnl
<P><CODE>ppl_@CLASS@_iterator_get_disjunct(+Iterator, -Handle)</CODE><BR>
<EM>Unifies with \c Handle a reference to the disjunct referred
to by \c Iterator_1.</EM>
')
m4_define(`ppl_@CLASS@_drop_disjunct_pps_iter_doc',
`dnl
<P><CODE>ppl_@CLASS@_drop_disjunct(+Handle, +Iterator)</CODE><BR>
<EM>If \p it is the iterator referred to by \c Iterator|COMMA|
drops from the pointset powerset referenced by \c Handle
the disjunct pointed to by \p it and
assigns to \p it an iterator to the next disjunct.</EM>
')
m4_define(`ppl_@CLASS@_drop_disjuncts_pps_iter_doc',
`dnl
<P><CODE>ppl_@CLASS@_drop_disjuncts(+Handle, +Iterator_1, +Iterator_2)</CODE><BR>
<EM>If \p it_1 and \p it_2 are the iterators referred to by \c Iterator_1
and \c Iterator_2|COMMA| respectively|COMMA|
drops from the pointset powerset referenced by \c Handle
all the disjuncts from \p it_1 to \p it_2 (excluded).</EM>
')
m4_define(`ppl_@CLASS@_add_disjunct_pps_iter_doc',
`dnl
<P><CODE>ppl_@CLASS@_add_disjunct(+Handle_1, +Handle_2)</CODE><BR>
<EM>Adds to the pointset powerset referenced by \c Handle_1 a disjunct
referred to by \c Handle_2.</EM>
')
dnl -----------------------------------------------------------------
dnl Documentation for _other_ ad hoc powerset predicates;
dnl Note: this is only needed for the configure independent manual.
dnl -----------------------------------------------------------------
m4_define(`ppl_@CLASS@_@COMPARISON@_@CLASS@_pps_other_doc',
`dnl
m4_pushdef(`m4_Pointset_Powerset_comparison_replacements',
`geometrically_covers, geometrically_equals')
m4_pushdef(`m4_Pointset_Powerset_a_comparison_replacements',
`geometrically covers, geometrically equals')
<P><CODE>ppl_@CLASS@_@COMPARISON@_@CLASS@(+Handle_1, +Handle_2)</CODE><BR>
<EM>Succeeds if and only if the pointset powerset referenced by
\c Handle_2 @A_COMPARISON@
the pointset powerset referenced by \c Handle_1;
see Section \extref{Geometric_Comparisons|COMMA| Geometric Comparisons}
in the main \extref{preamble|COMMA| PPL User Manual}.</EM>
')
|