1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
#!/usr/bin/env python
import collections
import subprocess
import itertools
import argparse
import tempfile
import logging
import os.path
import sqlite3
import atexit
import shutil
import errno
import shlex
import csv
from taxtastic.refpkg import Refpkg
from Bio import SeqIO
log = logging.getLogger(__name__)
def logging_check_call(cmd, *a, **kw):
log.info(' '.join(cmd))
return subprocess.check_call(cmd, *a, **kw)
def silently_unlink(path):
try:
os.unlink(path)
except OSError, e:
if e.errno != errno.ENOENT:
raise
input_suffixes = {'align-each': 'fasta', 'merge-each': 'sto', 'none': 'sto'}
def main():
logging.basicConfig(
level=logging.INFO, format="%(levelname)s: %(message)s")
parser = argparse.ArgumentParser(
description="Classify query sequences using a hrefpkg.")
parser.add_argument('hrefpkg', help="hrefpkg to classify using")
parser.add_argument('query_seqs', help="input query sequences")
parser.add_argument('classification_db', help="output sqlite database")
parser.add_argument('-j', '--ncores', default=1, type=int, metavar='CORES',
help="number of cores to tell commands to use")
parser.add_argument('-r', '--classification-rank', metavar='RANK',
help="rank to perform the initial NBC classification at")
parser.add_argument('--classifier', default='pplacer',
help="which classifier to use with guppy classify")
parser.add_argument('--pplacer-args', default=[], type=shlex.split,
help="additional arguments for pplacer")
parser.add_argument('--classification-args', default=[], type=shlex.split,
help="additional arguments for guppy classification")
parser.add_argument('--post-prob', default=False, action='store_true',
help="place with posterior probabilities")
parser.add_argument('--workdir', metavar='DIR',
help=("directory to write intermediate files to "
"(default: a temporary directory)"))
parser.add_argument('--disable-cleanup', default=False, action='store_true',
help="don't remove the work directory as the final step")
parser.add_argument('--use-mpi', default=False, action='store_true',
help="run refpkg_align with MPI")
parser.add_argument(
'--alignment', choices=['align-each', 'merge-each', 'none'], default='align-each',
help=("respectively: align each input sequence; subset an input stockholm "
"alignment and merge each sequence to a reference alignment; only subset "
"an input stockholm alignment (default: align-each)"))
parser.add_argument(
'--cmscores', type=argparse.FileType('w'), metavar='FILE',
help="in align-each mode, write out a file containing the cmalign scores")
programs = parser.add_argument_group("external binaries")
programs.add_argument(
'--pplacer', default='pplacer', metavar='PROG', help="pplacer binary to call")
programs.add_argument(
'--guppy', default='guppy', metavar='PROG', help="guppy binary to call")
programs.add_argument(
'--rppr', default='rppr', metavar='PROG', help="rppr binary to call")
programs.add_argument(
'--refpkg-align', default='refpkg_align.py', metavar='PROG',
help="refpkg_align binary to call")
programs.add_argument(
'--cmalign', default='cmalign', metavar='PROG', help="cmalign binary to call")
args = parser.parse_args()
if args.ncores < 0:
args.error('ncores must be >= 0')
mpi_args = []
if args.use_mpi and args.ncores > 0:
mpi_args = ['--use-mpi', '--mpi-arguments', '-np %d' % (args.ncores,)]
if args.workdir is None:
workdir = tempfile.mkdtemp()
else:
workdir = args.workdir
try:
os.makedirs(workdir)
except OSError, e:
if e.errno != errno.EEXIST:
raise
if not args.disable_cleanup:
@atexit.register
def cleanup_workdir():
shutil.rmtree(workdir, ignore_errors=True)
classif_db = os.path.join(workdir, 'classifications.sqlite')
index_refpkg = os.path.join(args.hrefpkg, 'index.refpkg')
index = Refpkg(index_refpkg)
index_rank = index.metadata('index_rank')
classif_rank = args.classification_rank or index_rank
index_counts = os.path.join(args.hrefpkg, 'index-%s.counts' % (classif_rank,))
log.info('performing initial classification at %s', classif_rank)
silently_unlink(classif_db)
logging_check_call(
[args.rppr, 'prep_db', '--sqlite', classif_db, '-c', index_refpkg])
logging_check_call(
[args.guppy, 'classify', '--sqlite', classif_db, '-c', index_refpkg,
'--classifier', 'nbc', '--nbc-rank', classif_rank, '--no-pre-mask',
'--nbc-sequences', args.query_seqs, '--nbc-counts', index_counts,
'-j', str(args.ncores)])
with open(os.path.join(args.hrefpkg, 'index.csv'), 'rU') as fobj:
refpkg_map = dict(csv.reader(fobj))
log.info('determining bins at %s', index_rank)
conn = sqlite3.connect(classif_db)
curs = conn.cursor()
curs.execute("""
SELECT name,
tax_id
FROM multiclass
WHERE want_rank = ?
AND rank = want_rank
""", (index_rank,))
seq_bins = dict(curs)
all_bins = set(seq_bins.itervalues()) & set(refpkg_map)
log.info('classified into %d bins', len(all_bins))
log.debug('bins: %r', all_bins)
bin_outputs = {}
bin_counts = collections.Counter()
input_suffix = input_suffixes[args.alignment]
def binfile(bin):
return os.path.join(workdir, '%s.%s' % (bin, input_suffix))
for bin in all_bins:
bin_outputs[bin] = open(binfile(bin), 'w')
if args.alignment == 'align-each':
for seq in SeqIO.parse(args.query_seqs, 'fasta'):
bin = seq_bins.get(seq.id)
if bin is None or bin not in bin_outputs:
continue
SeqIO.write([seq], bin_outputs[bin], 'fasta')
bin_counts[bin] += 1
# Gross ad-hoc stockholm parser. This is only necessary because biopython
# can't handle the metadata that cmalign adds to the file.
else:
def write_all(lines):
for line in lines:
for fobj in bin_outputs.itervalues():
fobj.write(line)
with open(args.query_seqs, 'r') as fobj:
# Copy the stockholm header,
write_all(itertools.islice(fobj, 3))
# then partition the sequences,
for line in fobj:
# (stopping if we reach the metadata at the end (hopefully it's at
# the end))
if line.startswith('#=GC'):
break
id, seq = line.split()
bin = seq_bins.get(id)
if bin is None or bin not in bin_outputs:
continue
bin_outputs[bin].write(line)
bin_counts[bin] += 1
# and then copy the footer.
write_all([line])
write_all(fobj)
for fobj in bin_outputs.itervalues():
fobj.close()
# This is a bit nasty but I think it's Good Enough. We can change it if we
# encounter problems or need to be more portable.
if args.cmscores is not None:
cmscores_proc = subprocess.Popen(
['romp', 'cmscores', '/dev/stdin'],
stdin=subprocess.PIPE, stdout=args.cmscores)
cmscores_args = [
'--alignment-method', 'INFERNAL',
'--stdout', '/dev/fd/%d' % (cmscores_proc.stdin.fileno(),)]
cmscores_stdout = cmscores_proc.stdout
else:
cmscores_proc = None
cmscores_args = []
cmscores_stdout = open(os.devnull, 'w')
for e, bin in enumerate(all_bins):
log.info('classifying bin %s (%d/%d; %d seqs)',
bin, e + 1, len(all_bins), bin_counts[bin])
input = binfile(bin)
aligned = os.path.join(workdir, bin + '-aligned.sto')
placed = os.path.join(workdir, bin + '.jplace')
refpkg = os.path.join(args.hrefpkg, refpkg_map[bin])
if args.alignment == 'align-each':
logging_check_call(
[args.refpkg_align, 'align', '--output-format', 'stockholm',
refpkg, input, aligned] + mpi_args + cmscores_args)
elif args.alignment == 'merge-each':
refpkg_obj = Refpkg(refpkg)
logging_check_call(
[args.cmalign, '--merge', '-o', aligned, '-1', '--hbanded',
'--sub', '--dna', refpkg_obj.resource_path('profile'),
refpkg_obj.resource_path('aln_sto'), input],
stdout=cmscores_stdout)
elif args.alignment == 'none':
raise NotImplementedError('none')
classifier_args, pplacer_args = [], []
if args.classifier.startswith('nbc') or args.classifier.startswith('hybrid'):
if '--no-pre-mask' not in args.classification_args:
classifier_args.append('--no-pre-mask')
classifier_args.extend(['--nbc-sequences', input])
if args.post_prob:
classifier_args.append('--pp')
pplacer_args.extend(
['-p', '--inform-prior', '--prior-lower', '0.01'])
logging_check_call(
[args.pplacer, '--discard-nonoverlapped', '-c', refpkg,
'-j', str(args.ncores), aligned, '-o', placed]
+ args.pplacer_args
+ pplacer_args)
logging_check_call(
[args.guppy, 'classify', '--sqlite', classif_db, '-c', refpkg, placed,
'-j', str(args.ncores), '--classifier', args.classifier]
+ args.classification_args
+ classifier_args)
if cmscores_proc is not None:
cmscores_proc.communicate()
log.info('cleaning up `multiclass` table')
conn.rollback()
curs = conn.cursor()
curs.execute("""
CREATE TEMPORARY TABLE classified AS
SELECT name,
COUNT(DISTINCT run_id) n_runs
FROM multiclass
JOIN placements USING (placement_id)
GROUP BY name
HAVING n_runs > 1
""")
curs.execute("SELECT name FROM classified WHERE n_runs > 2")
too_many_classifications = [name for name, in curs]
if too_many_classifications:
raise ValueError("some sequences got classified more than twice",
too_many_classifications)
curs.execute("""
DELETE FROM multiclass
WHERE (SELECT run_id
FROM placements p
WHERE p.placement_id = multiclass.placement_id) = 1
AND name IN (SELECT name
FROM classified)
""")
conn.commit()
shutil.copy(classif_db, args.classification_db)
main()
|