1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
/****************************************************************************
* This file is part of PPMd project *
* Written and distributed to public domain by Dmitry Shkarin 1997, *
* 1999-2001 *
* Contents: memory allocation routines *
****************************************************************************/
enum { UNIT_SIZE=12, N1=4, N2=4, N3=4, N4=(128+3-1*N1-2*N2-3*N3)/4,
N_INDEXES=N1+N2+N3+N4 };
#pragma pack(1)
struct BLK_NODE {
DWORD Stamp;
BLK_NODE* next;
BOOL avail() const { return (next != NULL); }
void link(BLK_NODE* p) { p->next=next; next=p; }
void unlink() { next=next->next; }
void* remove() {
BLK_NODE* p=next; unlink();
Stamp--; return p;
}
inline void insert(void* pv,int NU);
} BList[N_INDEXES];
struct MEM_BLK: public BLK_NODE { DWORD NU; } _PACK_ATTR;
#pragma pack()
static BYTE Indx2Units[N_INDEXES], Units2Indx[128]; // constants
static DWORD GlueCount, SubAllocatorSize=0;
static BYTE* HeapStart, * pText, * UnitsStart, * LoUnit, * HiUnit;
inline void PrefetchData(void* Addr)
{
#if defined(_USE_PREFETCHING)
BYTE PrefetchByte = *(volatile BYTE*) Addr;
#endif /* defined(_USE_PREFETCHING) */
}
inline void BLK_NODE::insert(void* pv,int NU) {
MEM_BLK* p=(MEM_BLK*) pv; link(p);
p->Stamp=~0UL; p->NU=NU;
Stamp++;
}
inline UINT U2B(UINT NU) { return 8*NU+4*NU; }
inline void SplitBlock(void* pv,UINT OldIndx,UINT NewIndx)
{
UINT i, k, UDiff=Indx2Units[OldIndx]-Indx2Units[NewIndx];
BYTE* p=((BYTE*) pv)+U2B(Indx2Units[NewIndx]);
if (Indx2Units[i=Units2Indx[UDiff-1]] != UDiff) {
k=Indx2Units[--i]; BList[i].insert(p,k);
p += U2B(k); UDiff -= k;
}
BList[Units2Indx[UDiff-1]].insert(p,UDiff);
}
DWORD _STDCALL GetUsedMemory()
{
DWORD i, RetVal=SubAllocatorSize-(HiUnit-LoUnit)-(UnitsStart-pText);
for (i=0;i < N_INDEXES;i++)
RetVal -= UNIT_SIZE*Indx2Units[i]*BList[i].Stamp;
return RetVal;
}
void _STDCALL StopSubAllocator() {
if ( SubAllocatorSize ) {
SubAllocatorSize=0; delete[] HeapStart;
}
}
BOOL _STDCALL StartSubAllocator(UINT SASize)
{
DWORD t=SASize << 20U;
if (SubAllocatorSize == t) return TRUE;
StopSubAllocator();
if ((HeapStart=new BYTE[t]) == NULL) return FALSE;
SubAllocatorSize=t; return TRUE;
}
static inline void InitSubAllocator()
{
memset(BList,0,sizeof(BList));
HiUnit=(pText=HeapStart)+SubAllocatorSize;
UINT Diff=UNIT_SIZE*(SubAllocatorSize/8/UNIT_SIZE*7);
LoUnit=UnitsStart=HiUnit-Diff; GlueCount=0;
}
static void GlueFreeBlocks()
{
UINT i, k, sz;
MEM_BLK s0, * p, * p0, * p1;
if (LoUnit != HiUnit) *LoUnit=0;
for (i=0, (p0=&s0)->next=NULL;i < N_INDEXES;i++)
while ( BList[i].avail() ) {
p=(MEM_BLK*) BList[i].remove();
if ( !p->NU ) continue;
while ((p1=p+p->NU)->Stamp == ~0UL) {
p->NU += p1->NU; p1->NU=0;
}
p0->link(p); p0=p;
}
while ( s0.avail() ) {
p=(MEM_BLK*) s0.remove(); sz=p->NU;
if ( !sz ) continue;
for ( ;sz > 128;sz -= 128, p += 128)
BList[N_INDEXES-1].insert(p,128);
if (Indx2Units[i=Units2Indx[sz-1]] != sz) {
k=sz-Indx2Units[--i]; BList[k-1].insert(p+(sz-k),k);
}
BList[i].insert(p,Indx2Units[i]);
}
GlueCount=1 << 13;
}
static void* _STDCALL AllocUnitsRare(UINT indx)
{
UINT i=indx;
if ( !GlueCount ) {
GlueFreeBlocks();
if ( BList[i].avail() ) return BList[i].remove();
}
do {
if (++i == N_INDEXES) {
GlueCount--; i=U2B(Indx2Units[indx]);
return (UnitsStart-pText > i)?(UnitsStart -= i):(NULL);
}
} while ( !BList[i].avail() );
void* RetVal=BList[i].remove(); SplitBlock(RetVal,i,indx);
return RetVal;
}
inline void* AllocUnits(UINT NU)
{
UINT indx=Units2Indx[NU-1];
if ( BList[indx].avail() ) return BList[indx].remove();
void* RetVal=LoUnit; LoUnit += U2B(Indx2Units[indx]);
if (LoUnit <= HiUnit) return RetVal;
LoUnit -= U2B(Indx2Units[indx]); return AllocUnitsRare(indx);
}
inline void* AllocContext()
{
if (HiUnit != LoUnit) return (HiUnit -= UNIT_SIZE);
else if ( BList->avail() ) return BList->remove();
else return AllocUnitsRare(0);
}
inline void UnitsCpy(void* Dest,void* Src,UINT NU)
{
DWORD* p1=(DWORD*) Dest, * p2=(DWORD*) Src;
do {
p1[0]=p2[0]; p1[1]=p2[1];
p1[2]=p2[2];
p1 += 3; p2 += 3;
} while ( --NU );
}
inline void* ExpandUnits(void* OldPtr,UINT OldNU)
{
UINT i0=Units2Indx[OldNU-1], i1=Units2Indx[OldNU-1+1];
if (i0 == i1) return OldPtr;
void* ptr=AllocUnits(OldNU+1);
if ( ptr ) {
UnitsCpy(ptr,OldPtr,OldNU); BList[i0].insert(OldPtr,OldNU);
}
return ptr;
}
inline void* ShrinkUnits(void* OldPtr,UINT OldNU,UINT NewNU)
{
UINT i0=Units2Indx[OldNU-1], i1=Units2Indx[NewNU-1];
if (i0 == i1) return OldPtr;
if ( BList[i1].avail() ) {
void* ptr=BList[i1].remove(); UnitsCpy(ptr,OldPtr,NewNU);
BList[i0].insert(OldPtr,Indx2Units[i0]);
return ptr;
} else {
SplitBlock(OldPtr,i0,i1); return OldPtr;
}
}
inline void FreeUnits(void* ptr,UINT NU) {
UINT indx=Units2Indx[NU-1];
BList[indx].insert(ptr,Indx2Units[indx]);
}
inline void SpecialFreeUnit(void* ptr)
{
if ((BYTE*) ptr != UnitsStart) BList->insert(ptr,1);
else { *(DWORD*) ptr=~0UL; UnitsStart += UNIT_SIZE; }
}
inline void* MoveUnitsUp(void* OldPtr,UINT NU)
{
UINT indx=Units2Indx[NU-1];
if ((BYTE*) OldPtr > UnitsStart+16*1024 || (BLK_NODE*) OldPtr > BList[indx].next)
return OldPtr;
void* ptr=BList[indx].remove();
UnitsCpy(ptr,OldPtr,NU); NU=Indx2Units[indx];
if ((BYTE*) OldPtr != UnitsStart) BList[indx].insert(OldPtr,NU);
else UnitsStart += U2B(NU);
return ptr;
}
static inline void ExpandTextArea()
{
BLK_NODE* p;
UINT Count[N_INDEXES]; memset(Count,0,sizeof(Count));
while ((p=(BLK_NODE*) UnitsStart)->Stamp == ~0UL) {
MEM_BLK* pm=(MEM_BLK*) p; UnitsStart=(BYTE*) (pm+pm->NU);
Count[Units2Indx[pm->NU-1]]++; pm->Stamp=0;
}
for (UINT i=0;i < N_INDEXES;i++)
for (p=BList+i;Count[i] != 0;p=p->next)
while ( !p->next->Stamp ) {
p->unlink(); BList[i].Stamp--;
if ( !--Count[i] ) break;
}
}
|