1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
|
/* HAM color table support
* Copyright 1999 by Chris Lawrence
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file COPYING in the main directory of the Linux
* distribution for more details.
*
* The algorithms are basically swiped from:
*
* ppmtoilbm.c - read a portable pixmap and produce an IFF ILBM file
*
* Copyright (C) 1989 by Jef Poskanzer.
* Modified by Ingo Wilken (Ingo.Wilken@informatik.uni-oldenburg.de)
*/
#include <sys/types.h>
#include <linux/fb.h>
#include <ppm.h>
#include "ppmcmap.h"
extern void Die(const char *fmt,...) __attribute__((noreturn));
extern int verbose;
#ifdef VIDEO_HAM
extern u_char FixedHAM6ColorTable[16 * 3];
extern u_char FixedHAM8ColorTable[64 * 3];
extern u_char ColorTable[64 * 3];
/* So we can set these things in RGB order
* (why the HAM palette controls are bass-ackwards is beyond me)
*/
static inline void set_entry(u_char *table, int i, u_char r, u_char g,
u_char b)
{
table[(i*3)+0] = b;
table[(i*3)+1] = r;
table[(i*3)+2] = g;
}
static void make_table(u_char *table, int hamcolors)
{
int entries, val, colors, i, maxval;
double step;
maxval = hamcolors - 1;
/* generate a colormap of 7 "rays" in an RGB color cube:
r, g, b, r+g, r+b, g+b, r+g+b
we need one colormap entry for black, so the number of
entries per ray is (maxcolors-1)/7 */
entries = (hamcolors-1)/7;
colors = 7*entries+1;
step = (double)maxval / (double)entries;
set_entry(table, 0, 0, 0, 0);
for( i = 1; i <= entries; i++ ) {
val = (int)((double)i * step);
set_entry(table, i, val, 0, 0); /* r */
set_entry(table, entries + i, 0, val, 0); /* g */
set_entry(table, 2*entries + i, 0, 0, val); /* b */
set_entry(table, 3*entries + i, val, val, 0); /* r+g */
set_entry(table, 4*entries + i, val, 0, val); /* r+b */
set_entry(table, 5*entries + i, 0, val, val); /* g+b */
set_entry(table, 6*entries + i, val, val, val); /* rgb */
}
}
void make_ham6_table(void)
{
make_table(FixedHAM6ColorTable, 16);
}
void make_ham8_table(void)
{
make_table(FixedHAM8ColorTable, 64);
}
static int countcompare(const void *x, const void *y)
{
colorhist_vector ch1 = (colorhist_vector) x,
ch2 = (colorhist_vector) y;
return ch2->value - ch1->value;
}
static int colorcompare(const void *x, const void *y)
{
u_char *block1 = (u_char *)x, *block2 = (u_char *)y;
int sum1, sum2;
sum1 = block1[0]*block1[0] + block1[1]*block1[1] + block1[2]*block1[2];
sum2 = block2[0]*block2[0] + block2[1]*block2[1] + block2[2]*block2[2];
return sum1 - sum2;
}
void make_ham_table_from_histogram(colorhist_vector chv, int maxval,
int colors, int palettesize,
int cutoff_point)
{
int col, maxdist, i, dist;
if(verbose)
fprintf(stderr, "Scaling and sorting histogram...\n");
/* Scale the colors to the color depth
* (we use 4-bit color for HAM6 and 6-bit color for HAM8)
*/
#if 1
for(i=0; i<colors; i++) {
pixel x;
PPM_DEPTH(x, chv[i].color, maxval, palettesize - 1);
PPM_ASSIGN(chv[i].color, PPM_GETR(x), PPM_GETG(x), PPM_GETB(x));
}
#endif
qsort(chv, colors, sizeof(struct colorhist_item), countcompare);
if(verbose)
fprintf(stderr, "Looking for cutoff point...\n");
if(colors > 1024) {
for(i=1025; i<colors; i++) {
if( chv[i].value < cutoff_point )
colors = i-1;
}
}
if( colors > palettesize ) { /* Consolidate colors */
if(verbose)
fprintf(stderr, "Selecting HAM colormap with %d entries from "
"%d colors...\n", palettesize, colors);
for( maxdist = 1; ; maxdist++ ) {
for( col = colors-1; col > 0; col-- ) {
pixval r, g, b;
r = PPM_GETR(chv[col].color);
g = PPM_GETG(chv[col].color);
b = PPM_GETB(chv[col].color);
/* try to consolidate with an earlier entry */
for( i = 0; i < col; i++ )
{
int tmp;
pixval ir, ig, ib;
ir = PPM_GETR(chv[i].color);
ig = PPM_GETG(chv[i].color);
ib = PPM_GETB(chv[i].color);
tmp = ir - r;
dist = tmp * tmp;
tmp = ig - g;
dist += tmp * tmp;
tmp = ib - b;
dist += tmp * tmp;
/* We have a close one... weigh them together and axe this one */
if( dist <= maxdist ) {
int sum = chv[i].value + chv[col].value;
#ifdef DEBUG
fprintf(stderr, "%5d %5d\r", i, col);
#endif
PPM_ASSIGN(chv[i].color,
(ir*chv[i].value + r*chv[col].value + sum/2) / sum,
(ig*chv[i].value + g*chv[col].value + sum/2) / sum,
(ib*chv[i].value + b*chv[col].value + sum/2) / sum);
/* Bubble this entry up if necessary */
chv[col] = chv[i]; /* temp store */
for( tmp = i-1; tmp >= 0 && chv[tmp].value < chv[col].value;
tmp-- )
chv[tmp+1] = chv[tmp];
chv[tmp+1] = chv[col];
colors--;
/* Shift lower entries up */
if( col < colors)
memmove(&chv[col], &chv[col+1], (colors-col)*sizeof(chv[0]));
if( colors <= palettesize )
goto out;
break;
}
}
}
#ifdef DEBUG
if(verbose)
fprintf(stderr, "\tmaxdist=%d: %d colors left\n", maxdist, colors);
#endif
}
}
out:
/* Stick them into our color table */
for(i=0; i < palettesize; i++) {
pixel x;
pixval r, g, b;
#if 1
x = chv[i].color;
#else
PPM_DEPTH(x, chv[i].color, maxval, (palettesize-1));
#endif
r = PPM_GETR(x);
g = PPM_GETG(x);
b = PPM_GETB(x);
#ifdef DEBUG
fprintf(stderr, "%2d %02x %02x %02x\n", i, r, g, b);
#endif
set_entry(ColorTable, i, r, g, b);
}
/* Sort the colors so hopefully we get black (or something dark) at 0 */
qsort(ColorTable, palettesize, 3*sizeof(ColorTable[0]), colorcompare);
}
#endif
struct fb_cmap *make_directcolor_cmap(struct fb_var_screeninfo *var)
{
/* Hopefully any DIRECTCOLOR device will have a big enough palette
* to handle mapping the full color depth.
* e.g. 8 bpp -> 256 entry palette
*
* We could handle some sort of gamma here
*/
int i, cols, rcols, gcols, bcols;
u_int16_t *red, *green, *blue;
struct fb_cmap *cmap;
rcols = 1 << var->red.length;
gcols = 1 << var->green.length;
bcols = 1 << var->blue.length;
/* Make our palette the length of the deepest color */
cols = (rcols > gcols ? rcols : gcols);
cols = (cols > bcols ? cols : bcols);
red = malloc(cols * sizeof(red[0]));
if(!red) Die("Can't allocate red palette with %d entries.\n", cols);
for(i=0; i< rcols; i++)
red[i] = (65535/(rcols-1)) * i;
green = malloc(cols * sizeof(green[0]));
if(!green) Die("Can't allocate green palette with %d entries.\n", cols);
for(i=0; i< gcols; i++)
green[i] = (65535/(gcols-1)) * i;
blue = malloc(cols * sizeof(blue[0]));
if(!blue) Die("Can't allocate blue palette with %d entries.\n", cols);
for(i=0; i< bcols; i++)
blue[i] = (65535/(bcols-1)) * i;
cmap = malloc(sizeof(struct fb_cmap));
if(!cmap)
Die("Can't allocate color map\n");
cmap->start = 0;
cmap->transp = 0;
cmap->len = cols;
cmap->red = red;
cmap->blue = blue;
cmap->green = green;
cmap->transp = NULL;
return cmap;
}
|