1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
|
#!/usr/bin/env python
"""
An adaptation of pygmy.py ("a rubbish raytracer") employing pprocess
functionality in order to take advantage of multiprocessing environments.
--------
Copyright (C) 2005 Dave Griffiths
Copyright (C) 2006, 2007 Paul Boddie <paul@boddie.org.uk>
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
"""
import Image, ImageDraw, random, copy
from math import *
import pprocess
import sys
def sq(a):
return a*a
class vec:
def __init__(self, x, y, z):
self.x=float(x)
self.y=float(y)
self.z=float(z)
def __add__(self,other):
return vec(self.x+other.x,self.y+other.y,self.z+other.z)
def __sub__(self,other):
return vec(self.x-other.x,self.y-other.y,self.z-other.z)
def __mul__(self,amount):
return vec(self.x*amount,self.y*amount,self.z*amount)
def __div__(self,amount):
return vec(self.x/amount,self.y/amount,self.z/amount)
def __neg__(self):
return vec(-self.x,-self.y,-self.z)
def dot(self,other):
return (self.x*other.x)+(self.y*other.y)+(self.z*other.z)
def cross(self,other):
return vec(self.y*other.z - self.z*other.y,
self.z*other.x - self.x*other.z,
self.x*other.y - self.y*other.x)
def dist(self,other):
return sqrt((other.x-self.x)*(other.x-self.x)+
(other.y-self.y)*(other.y-self.y)+
(other.z-self.z)*(other.z-self.z))
def sq(self):
return sq(self.x)+sq(self.y)+sq(self.z)
def mag(self):
return self.dist(vec(0,0,0))
def norm(self):
mag=self.mag()
if mag!=0:
self.x=self.x/mag
self.y=self.y/mag
self.z=self.z/mag
def reflect(self,normal):
vdn=self.dot(normal)*2
return self-normal*vdn
class line:
def __init__(self, start, end):
self.start=start
self.end=end
def vec(self):
return self.end-self.start
def closestpoint(self, point):
l=self.end-self.start
l2=point-self.start
t=l.dot(l2)
if t<=0: return self.start
if t>l.mag(): return self.end
return self.start+l*t
class renderobject:
def __init__(self, shader):
self.shader=shader
def intersect(self,l):
return "none",vec(0,0,0),vec(0,0,0) # type, position, normal
class plane(renderobject):
def __init__(self,plane,dist,shader):
renderobject.__init__(self,shader)
self.plane=plane
self.dist=dist
def intersect(self,l):
vd=self.plane.dot(l.vec())
if vd==0: return "none",vec(0,0,0),vec(0,0,0)
v0 = -(self.plane.dot(l.start)+self.dist)
t = v0/vd
if t<0 or t>1: return "none",vec(0,0,0),vec(0,0,0)
return "one",l.start+(l.vec()*t),self.plane
class sphere(renderobject):
def __init__(self, pos, radius, shader):
renderobject.__init__(self,shader)
self.pos=pos
self.radius=radius
def disttoline(self,l):
return self.pos.dist(l.closestpoint(self.pos))
def intersect(self,l):
lvec=l.vec()
a = sq(lvec.x)+sq(lvec.y)+sq(lvec.z)
b = 2*(lvec.x*(l.start.x-self.pos.x)+ \
lvec.y*(l.start.y-self.pos.y)+ \
lvec.z*(l.start.z-self.pos.z))
c = self.pos.sq()+l.start.sq() - \
2*(self.pos.x*l.start.x+self.pos.y*l.start.y+self.pos.z*l.start.z)-sq(self.radius)
i = b*b-4*a*c
intersectiontype="none"
pos=vec(0,0,0)
norm=vec(0,0,0)
t=0
if i>0 :
if i==0:
intersectiontype="one"
t = -b/(2*a);
else:
intersectiontype="two"
t = (-b - sqrt( b*b - 4*a*c )) / (2*a)
# just bother with one for the moment
# t2= (-b + sqrt( b*b - 4*a*c )) / (2*a)
if t>0 and t<1:
pos = l.start+lvec*t
norm=pos-self.pos
norm.norm()
else:
intersectiontype="none"
return intersectiontype,pos,norm
def intersects(self,l):
return self.disttoline(l)<self.radius
class light:
def __init__(self):
pass
def checkshadow(self, obj, objects,l):
# shadowing built into the lights (is this right?)
for ob in objects:
if ob is not obj:
intersects,pos,norm = ob.intersect(l)
if intersects is not "none":
return 1
return 0
def light(self, obj, objects, pos, normal):
pass
class parallellight(light):
def __init__(self, direction, col):
direction.norm()
self.direction=direction
self.col=col
def inshadow(self, obj, objects, pos):
# create a longish line towards the light
l = line(pos,pos+self.direction*1000)
return self.checkshadow(obj,objects,l)
def light(self, shaderinfo):
if self.inshadow(shaderinfo["thisobj"],shaderinfo["objects"],shaderinfo["position"]): return vec(0,0,0)
return self.col*self.direction.dot(shaderinfo["normal"])
class pointlight(light):
def __init__(self, position, col):
self.position=position
self.col=col
def inshadow(self, obj, objects, pos):
l = line(pos,self.position)
return self.checkshadow(obj,objects,l)
def light(self, shaderinfo):
if self.inshadow(shaderinfo["thisobj"],shaderinfo["objects"],shaderinfo["position"]): return vec(0,0,0)
direction = shaderinfo["position"]-self.position;
direction.norm()
direction=-direction
return self.col*direction.dot(shaderinfo["normal"])
class shader:
def __init__(self):
pass
# a load of helper functions for shaders, need much improvement
def getreflected(self,shaderinfo):
depth=shaderinfo["depth"]
col=vec(0,0,0)
if depth>0:
lray=copy.copy(shaderinfo["ray"])
ray=lray.vec()
normal=copy.copy(shaderinfo["normal"])
ray=ray.reflect(normal)
reflected=line(shaderinfo["position"],shaderinfo["position"]+ray)
obj=shaderinfo["thisobj"]
objects=shaderinfo["objects"]
newshaderinfo = copy.copy(shaderinfo)
newshaderinfo["ray"]=reflected
newshaderinfo["depth"]=depth-1
# todo - depth test
for ob in objects:
if ob is not obj:
intersects,position,normal = ob.intersect(reflected)
if intersects is not "none":
newshaderinfo["thisobj"]=ob
newshaderinfo["position"]=position
newshaderinfo["normal"]=normal
col=col+ob.shader.shade(newshaderinfo)
return col
def isoccluded(self,ray,shaderinfo):
dist=ray.mag()
test=line(shaderinfo["position"],shaderinfo["position"]+ray)
obj=shaderinfo["thisobj"]
objects=shaderinfo["objects"]
# todo - depth test
for ob in objects:
if ob is not obj:
intersects,position,normal = ob.intersect(test)
if intersects is not "none":
return 1
return 0
def doocclusion(self,samples,shaderinfo):
# not really very scientific, or good in any way...
oc=0.0
for i in range(0,samples):
ray=vec(random.randrange(-100,100),random.randrange(-100,100),random.randrange(-100,100))
ray.norm()
ray=ray*2.5
if self.isoccluded(ray,shaderinfo):
oc=oc+1
oc=oc/float(samples)
return 1-oc
def getcolour(self,ray,shaderinfo):
depth=shaderinfo["depth"]
col=vec(0,0,0)
if depth>0:
test=line(shaderinfo["position"],shaderinfo["position"]+ray)
obj=shaderinfo["thisobj"]
objects=shaderinfo["objects"]
newshaderinfo = copy.copy(shaderinfo)
newshaderinfo["ray"]=test
newshaderinfo["depth"]=depth-1
# todo - depth test
for ob in objects:
if ob is not obj:
intersects,position,normal = ob.intersect(test)
if intersects is not "none":
newshaderinfo["thisobj"]=ob
newshaderinfo["position"]=position
newshaderinfo["normal"]=normal
col=col+ob.shader.shade(newshaderinfo)
return col
def docolourbleed(self,samples,shaderinfo):
# not really very scientific, or good in any way...
col=vec(0,0,0)
for i in range(0,samples):
ray=vec(random.randrange(-100,100),random.randrange(-100,100),random.randrange(-100,100))
ray.norm()
ray=ray*5
col=col+self.getcolour(ray,shaderinfo)
col=col/float(samples)
return col
def shade(self,shaderinfo):
col=vec(0,0,0)
for lite in shaderinfo["lights"]:
col=col+lite.light(shaderinfo)
return col
class world:
def __init__(self,width,height):
self.lights=[]
self.objects=[]
self.cameratype="persp"
self.width=width
self.height=height
self.backplane=2000.0
self.imageplane=5.0
self.aspect=self.width/float(self.height)
def render_row(self, channel, sy):
"""
Render the given row, using the 'channel' provided to communicate
result data back to the coordinating process, and using 'sy' as the row
position. A tuple containing 'sy' and a list of result numbers is
returned by this function via the given 'channel'.
"""
row = []
for sx in range(0,self.width):
x=2*(0.5-sx/float(self.width))*self.aspect
y=2*(0.5-sy/float(self.height))
if self.cameratype=="ortho":
ray = line(vec(x,y,0),vec(x,y,self.backplane))
else:
ray = line(vec(0,0,0),vec(x,y,self.imageplane))
ray.end=ray.end*self.backplane
col=vec(0,0,0)
depth=self.backplane
shaderinfo={"ray":ray,"lights":self.lights,"objects":self.objects,"depth":2}
for obj in self.objects:
intersects,position,normal = obj.intersect(ray)
if intersects is not "none":
if position.z<depth and position.z>0:
depth=position.z
shaderinfo["thisobj"]=obj
shaderinfo["position"]=position
shaderinfo["normal"]=normal
col=obj.shader.shade(shaderinfo)
row.append(col)
channel.send((sy, row))
def render(self, filename, limit):
"""
Render the image with many processes, saving it to 'filename', using the
given process 'limit' to constrain the number of processes used.
"""
image = Image.new("RGB", (self.width, self.height))
exchange = PyGmyExchange(self.width, self.height, image, limit=limit)
render_row = exchange.manage(self.render_row)
for y in range(0, self.height):
render_row(y)
exchange.finish()
image.save(filename)
class PyGmyExchange(pprocess.Exchange):
"A convenience class for parallelisation."
def __init__(self, width, height, image, *args, **kw):
"""
Initialise the exchange, adding extra PyGmy-specific data such as the
'width' and 'height' of the eventual 'image'.
"""
pprocess.Exchange.__init__(self, *args, **kw)
self.draw = ImageDraw.Draw(image)
self.total = width * height
self.count = 0
def store_data(self, channel):
"Store the data arriving on the given 'channel'."
sy, row = channel.receive()
for sx, col in enumerate(row):
self.draw.point((sx,sy),fill=(col.x*255,col.y*255,col.z*255))
self.count = self.count + 1
percent = int((self.count/float(self.total))*100)
sys.stdout.write(("\010" * 9) + "%3d%% %3d" % (percent, sy))
sys.stdout.flush()
# vim: tabstop=4 expandtab shiftwidth=4
|