File: simple_managed_map_reusable.py

package info (click to toggle)
pprocess 0.3.1-1
  • links: PTS, VCS
  • area: main
  • in suites: lenny
  • size: 404 kB
  • ctags: 440
  • sloc: python: 2,048; makefile: 106; sh: 41
file content (60 lines) | stat: -rw-r--r-- 1,131 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#!/usr/bin/env python

"""
A simple example of parallel computation using a map and managed callables.
"""

import pprocess
import time
#import random

# Array size and a limit on the number of processes.

N = 10
limit = 10
delay = 1

# Work function and monitoring class.

def calculate(i, j):

    """
    A supposedly time-consuming calculation on 'i' and 'j'.
    """

    #time.sleep(delay * random.random())
    time.sleep(delay)
    return i * N + j

# Main program.

if __name__ == "__main__":

    t = time.time()

    # Initialise the results using a map with a limit on the number of
    # channels/processes.

    results = pprocess.Map(limit=limit, reuse=1)

    # Wrap the calculate function and manage it.

    calc = results.manage(pprocess.MakeReusable(calculate))

    # Perform the work.

    print "Calculating..."
    for i in range(0, N):
        for j in range(0, N):
            calc(i, j)

    # Show the results.

    for i in range(0, N):
        for result in results[i*N:i*N+N]:
            print result,
        print

    print "Time taken:", time.time() - t

# vim: tabstop=4 expandtab shiftwidth=4