1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373
|
(* Taken from bap (https://github.com/BinaryAnalysisPlatform/bap) which is under
the MIT license:
https://github.com/BinaryAnalysisPlatform/bap/blob/345d13d1114e2640c183f864b1a62b25b9b96b1c/lib/knowledge/bap_knowledge.ml
*)
open Core_kernel [@@warning "-D"] [@@warning "-D"]
open Monads.Std
module Unix = Caml_unix [@@warning "-49"]
type ('a, 'b) eq = ('a, 'b) Type_equal.t = T : ('a, 'a) eq
module Order = struct
type partial = LT | EQ | GT | NC [@@deriving sexp, equal]
module type S = sig
type t
val order : t -> t -> partial
end
end
type conflict = exn = ..
module Conflict = struct
type t = conflict = ..
let to_string = Stdlib.Printexc.to_string
let pp ppf err = Format.fprintf ppf "%s" (to_string err)
let register_printer = Stdlib.Printexc.register_printer
let sexp_of_t err = Sexp.Atom (to_string err)
end
module type Id = sig
type t [@@deriving sexp, hash]
val zero : t
val pp : Format.formatter -> t -> unit
val of_string : string -> t
include Comparable.S_binable with type t := t
include Binable.S with type t := t
end
module Oid : sig
include Id
val zero : t
val first : t
val succ : t -> t
val fits : int -> bool
val of_int : int -> t
val fits_int : t -> bool
val to_int : t -> int
val to_int63 : t -> Int63.t
val incr : t ref -> unit
module Tree : sig
type key = t
type 'a t
val empty : 'a t
val is_empty : 'a t -> bool
val find_exn : 'a t -> key -> 'a
val find : 'a t -> key -> 'a option
val max_elt : 'a t -> (key * 'a) option
val min_elt : 'a t -> (key * 'a) option
val mem : 'a t -> key -> bool
val singleton : key -> 'a -> 'a t
val set : 'a t -> key -> 'a -> 'a t
val remove : 'a t -> key -> 'a t
val update : 'a t -> key -> f:('a option -> 'a) -> 'a t
val update_with : 'a t -> key -> has:('a -> 'a) -> nil:(unit -> 'a) -> 'a t
val merge : 'a t -> 'a t -> f:(key -> 'a -> 'a -> 'a) -> 'a t
val iter : 'a t -> f:(key -> 'a -> unit) -> unit
val fold : 'a t -> init:'b -> f:(key -> 'a -> 'b -> 'b) -> 'b
val keys : 'a t -> key list
val elements : 'a t -> 'a list
val to_list : 'a t -> (key * 'a) list
val to_sequence : 'a t -> (key * 'a) Sequence.t
end
end = struct
include Int63
let first = one
let is_null x = x = zero
let to_int = to_int_trunc
let to_int63 x = x
let fits _ = true [@@inline]
let fits_int _ = true [@@inline]
let pp ppf x = Format.fprintf ppf "<%#0Lx>" (to_int64 x)
module Tree = struct
type key = t
(* sets bit to zero and all lower bits to one *)
let mask ~bit x =
let m = one lsl to_int bit in
x lor (m - one) land lnot m
let ( lsr ) = shift_right_logical
let clz v = of_int (clz v) [@@inline]
let numbits v = of_int 63 - clz v [@@inline]
let highest_bit x = numbits x - one
let is_zero ~bit x = x land (one lsl to_int bit) = zero
module Key = struct
(*
+-----------+-------------------------+
| branching | payload |
+-----------+-------------------------+
62 57 56 0
Note, that we store the branching bit position,
not the mask itself.
*)
type t = { key : key } [@@unboxed]
let payload_size = 57
let branching_size = 6
let branching_mask = of_int64_exn (-144115188075855872L)
(* 0b1111110000....0 *)
let payload_mask =
of_int64_exn 144115188075855871L (* 0b0000001111....1 *)
let branching { key } = (key land branching_mask) lsr 57 [@@inline]
let payload { key } = key land payload_mask [@@inline]
let create ~branching ~payload = { key = (branching lsl 57) lor payload }
type order = NA | LB | RB
let compare k k' =
let x = payload k in
let bit = branching k in
let m = one lsl to_int bit in
let y = k' lor (m - one) land lnot m in
if x = y then if k' land m = zero then LB else RB else NA
[@@inline]
let equal { key = k1 } { key = k2 } = equal k1 k2 [@@inline]
let pp ppf key =
Format.fprintf ppf "%a:%a" pp (branching key) pp (payload key)
end
type +'a t = Bin of Key.t * 'a t * 'a t | Tip of key * 'a | Nil
let empty = Nil
let[@inline] is_empty = function Nil -> true | _ -> false
let branching_bit a b = highest_bit (a lxor b)
let rec find_exn t k =
match t with
| Nil -> raise Stdlib.Not_found
| Tip (k', v) when k = k' -> v
| Tip _ -> raise Stdlib.Not_found
| Bin (k', l, r) -> (
match Key.compare k' k with
| NA -> raise Stdlib.Not_found
| LB -> find_exn l k
| RB -> find_exn r k)
let find t k = try Some (find_exn t k) with Stdlib.Not_found -> None
let mem k t =
try
ignore (find_exn k t);
true
with Stdlib.Not_found -> false
let node payload branching l r =
match (l, r) with
| Nil, o | o, Nil -> o
| _ -> Bin (Key.create ~branching ~payload, l, r)
let of_key key l r =
match (l, r) with Nil, o | o, Nil -> o | _ -> Bin (key, l, r)
let join t1 p1 t2 p2 =
let switch = branching_bit p1 p2 in
let prefix = mask p1 ~bit:switch in
if is_zero p1 ~bit:switch then node prefix switch t1 t2
else node prefix switch t2 t1
let singleton k v = Tip (k, v)
let rec update_with t k ~has ~nil =
match t with
| Nil -> Tip (k, nil ())
| Tip (k', v') ->
if k = k' then Tip (k, has v') else join t k' (Tip (k, nil ())) k
| Bin (k', l, r) -> (
match Key.compare k' k with
| NA -> join (Tip (k, nil ())) k t (Key.payload k')
| LB -> Bin (k', update_with l k ~has ~nil, r)
| RB -> Bin (k', l, update_with r k ~has ~nil))
[@@specialise]
let rec update t k ~f =
match t with
| Nil -> Tip (k, f None)
| Tip (k', v') ->
if k = k' then Tip (k, f (Some v')) else join t k' (Tip (k, f None)) k
| Bin (k', l, r) -> (
match Key.compare k' k with
| NA -> join (Tip (k, f None)) k t (Key.payload k')
| LB -> Bin (k', update l k f, r)
| RB -> Bin (k', l, update r k f))
[@@specialise]
let rec set t k v =
match t with
| Nil -> Tip (k, v)
| Tip (k', _) -> if k = k' then Tip (k, v) else join t k' (Tip (k, v)) k
| Bin (k', l, r) -> (
match Key.compare k' k with
| NA -> join (Tip (k, v)) k t (Key.payload k')
| LB -> Bin (k', set l k v, r)
| RB -> Bin (k', l, set r k v))
let rec remove t k =
match t with
| Nil -> Nil
| Tip (k', _) -> if k = k' then Nil else t
| Bin (k', l, r) -> (
match Key.compare k' k with
| NA -> t
| LB -> of_key k' (remove l k) r
| RB -> of_key k' l (remove r k))
let rec merge t1 t2 ~f =
match (t1, t2) with
| Nil, t | t, Nil -> t
| Tip (k, v1), t | t, Tip (k, v1) ->
update t k ~f:(function None -> v1 | Some v2 -> f k v1 v2)
| Bin (p1, l1, r1), Bin (p2, l2, r2) -> (
if Key.equal p1 p2 then of_key p1 (merge l1 l2 ~f) (merge r1 r2 ~f)
else
let k1 = Key.payload p1 and k2 = Key.payload p2 in
let b1 = Key.branching p1 and b2 = Key.branching p2 in
match Key.compare p1 k2 with
| NA -> join t1 k1 t2 k2
| RB ->
if is_zero ~bit:b1 k2 then Bin (p1, merge l1 t2 ~f, r1)
else Bin (p1, l1, merge r1 t2 ~f)
| LB ->
if is_zero ~bit:b2 k1 then Bin (p2, merge t1 l2 ~f, r2)
else Bin (p2, l2, merge t1 r2 ~f))
[@@specialise]
let rec iter t ~f =
match t with
| Nil -> ()
| Tip (k, v) -> f k v
| Bin (_, l, r) ->
iter l ~f;
iter r ~f
[@@specialise]
let rec fold t ~init ~f =
match t with
| Nil -> init
| Tip (k, v) -> f k v init
| Bin (_, l, r) -> fold r ~f ~init:(fold l ~init ~f)
[@@specialise]
let rec max_elt = function
| Nil -> None
| Tip (k, v) -> Some (k, v)
| Bin (_, _, r) -> max_elt r
let rec min_elt = function
| Nil -> None
| Tip (k, v) -> Some (k, v)
| Bin (_, _, r) -> min_elt r
let elements = fold ~f:(fun _ x xs -> x :: xs) ~init:[]
let keys = fold ~f:(fun x _ xs -> x :: xs) ~init:[]
let to_list tree =
let rec list acc = function
| Nil -> acc
| Tip (k, x) -> (k, x) :: acc
| Bin (_, l, r) -> list (list acc l) r
in
list [] tree
let to_sequence tree =
let open Sequence.Generator in
let rec seq = function
| Nil -> return ()
| Tip (k, x) -> yield (k, x)
| Bin (_, l, r) -> seq l >>= fun () -> seq r
in
run (seq tree)
end
end
module Pid = Oid
let user_package = "user"
let keyword_package = "keyword"
type fullname = { package : string; name : string }
[@@deriving bin_io, equal, compare, sexp]
module Name : sig
type t [@@deriving bin_io, compare, sexp]
val create : ?package:string -> string -> t
val read : ?package:string -> string -> t
val show : t -> string
val unqualified : t -> string
val package : t -> string
val str : unit -> t -> string
val hash : t -> int
val full : t -> fullname
module Full : sig
type t = fullname
val create : ?package:string -> string -> t
val read : ?package:string -> string -> t
val short : t -> string
val package : t -> string
val to_string : t -> string
include Base.Comparable.S with type t := t
end
val normalize_name :
[ `Literal | `Reading ] -> package:string -> string -> string
val normalize_package : [ `Literal | `Reading ] -> string -> string
val find_separator : string -> int option
include Base.Comparable.S with type t := t
include Binable.S with type t := t
include Stringable.S with type t := t
include Pretty_printer.S with type t := t
end = struct
let full { package; name } =
if String.(package = keyword_package || package = user_package) then name
else package ^ ":" ^ name
let separator = ':'
let escape_char = '\\'
let escapeworthy = [ separator ]
let is_escaped s = String.Escaping.is_char_escaped s ~escape_char
let find_separator s =
if String.is_empty s then None
else String.Escaping.index s ~escape_char separator
let is_separator_unescaped s p c =
Char.equal separator c && not (is_escaped s p)
let unescaped_exists_so_escape ?(skip_pos = -1) s =
let buf = Buffer.create (String.length s + 1) in
Stdlib.StringLabels.iteri s ~f:(fun p c ->
if p <> skip_pos && is_separator_unescaped s p c then
Buffer.add_char buf escape_char;
Buffer.add_char buf c);
Buffer.contents buf
let has_unescaped ?pos s =
Option.is_some
@@ String.lfindi ?pos s ~f:(fun p c -> is_separator_unescaped s p c)
let escape_all_unescaped ?(is_keyword = false) s =
match s with
| "" -> s
| ":" -> if is_keyword then s else "\\:"
| _ ->
let pos = if is_keyword then 1 else 0 in
if has_unescaped ~pos s then unescaped_exists_so_escape ~skip_pos:pos s
else s
let escape_all_literally =
unstage @@ String.Escaping.escape ~escapeworthy ~escape_char
let unescape = unstage @@ String.Escaping.unescape ~escape_char
(* invariant, keywords are always prefixed with [:] *)
let normalize_name input ~package name =
match input with
| `Literal ->
if String.equal package keyword_package then
":" ^ escape_all_literally name
else escape_all_literally name
| `Reading ->
let escape = escape_all_unescaped in
if String.equal package keyword_package then
if not (String.is_prefix ~prefix:":" name) then ":" ^ escape name
else ":" ^ escape @@ String.subo ~pos:1 name
else escape name
let normalize_package input package =
let package = if String.is_empty package then user_package else package in
match input with
| `Literal -> escape_all_literally package
| `Reading -> escape_all_unescaped package
module Full = struct
type t = fullname
let create ?(package = user_package) name =
let package = normalize_package `Literal package in
let name = normalize_name `Literal ~package name in
{ package; name }
let short x = unescape @@ x.name
let package x = unescape @@ x.package
let to_string name = full name
let read ?(package = user_package) s : t =
let package = normalize_package `Literal package in
let escape = escape_all_unescaped in
match find_separator s with
| None ->
let name = normalize_name `Reading ~package s in
{ package; name }
| Some 0 ->
let package = keyword_package and name = escape ~is_keyword:true s in
{ package; name }
| Some len ->
let package = escape (String.sub s ~pos:0 ~len) in
let name =
normalize_name `Reading ~package @@ String.subo s ~pos:(len + 1)
in
{ package; name }
include Base.Comparable.Make (struct
type t = fullname [@@deriving compare, sexp]
end)
end
module Id : sig
type t [@@deriving bin_io, compare, sexp]
val intern : fullname -> t
val fullname : t -> fullname
val hash : t -> int
end = struct
let registry = Hashtbl.create (module Int63)
(* using FNV-1a algorithm *)
let hash_name =
let open Int63 in
let init = of_int64_exn 0xCBF29CE484222325L in
let m = of_int64_exn 0x100000001B3L in
let hash init =
String.fold ~init ~f:(fun h c -> h lxor of_int (Char.to_int c) * m)
in
fun { package; name } -> hash (hash init package) name
let intern name =
let id = hash_name name in
match Hashtbl.find registry id with
| None ->
Hashtbl.add_exn registry id name;
id
| Some name' ->
if equal_fullname name name' then id
else
invalid_argf
"Names %S and %S have the same hash value, Change one of them."
(full name) (full name') ()
let fullname id =
match Hashtbl.find registry id with
| Some name -> name
| None -> { package = "id"; name = sprintf "%Lx" (Int63.to_int64 id) }
include Int63
let sexp_of_t id = Sexp.Atom (Full.to_string (fullname id))
let t_of_sexp = function
| Sexp.Atom str -> intern (Full.read str)
| _ -> invalid_arg "KB.Name.sexp_of_t: expects an atom"
end
type t = Id.t [@@deriving bin_io, compare, sexp]
let full = Id.fullname
let create ?package name = Id.intern @@ Full.create ?package name
let keyword = create ~package:keyword_package
let read ?package name = Id.intern @@ Full.read ?package name
let package t = Full.package Id.(fullname t)
let short t = Full.short Id.(fullname t)
let unqualified t = short t
let to_string t = Full.to_string Id.(fullname t)
let show t = to_string t
let of_string s = read s
let str () s = to_string s
let pp ppf x = Format.fprintf ppf "%s" (show x)
let hash = Id.hash
include Base.Comparable.Make (struct
type t = Id.t [@@deriving bin_io, compare, sexp]
end)
end
module Agent : sig
type t
type id
type reliability
type signs
val register :
?desc:string -> ?package:string -> ?reliability:reliability -> string -> t
val registry : unit -> id list
val authorative : reliability
val reliable : reliability
val trustworthy : reliability
val doubtful : reliability
val unreliable : reliability
val name : id -> Name.t
val desc : id -> string
val reliability : id -> reliability
val set_reliability : id -> reliability -> unit
val pp : Format.formatter -> t -> unit
val pp_id : Format.formatter -> id -> unit
val pp_reliability : Format.formatter -> reliability -> unit
(* the private interface *)
val weight : t -> int
val id : t -> id
include Base.Comparable.S with type t := t
end = struct
module Id = String
type t = Id.t
type agent = Id.t
type id = Id.t
type reliability = A | B | C | D | E [@@deriving sexp]
type info = { name : Name.t; desc : string; rcls : reliability }
type signs = Set.M(String).t
let agents : (agent, info) Hashtbl.t = Hashtbl.create (module String)
let authorative = A
let reliable = B
let trustworthy = C
let doubtful = D
let unreliable = E
let weight = function A -> 16 | B -> 8 | C -> 4 | D -> 2 | E -> 1
let id x = x
let register ?(desc = "no description provided") ?package
?(reliability = trustworthy) name =
let name = Name.create ?package name in
let agent = Stdlib.Digest.string (Name.show name) in
if Hashtbl.mem agents agent then
failwithf
"An agent with name `%a' already exists, please choose another name"
Name.str name ();
Hashtbl.add_exn agents agent { desc; name; rcls = reliability };
agent
let registry () = Hashtbl.keys agents
let info agent = Hashtbl.find_exn agents agent
let name agent = (info agent).name
let desc agent = (info agent).desc
let reliability agent = (info agent).rcls
let weight agent = weight (reliability agent)
let set_reliability agent rcls =
Hashtbl.update agents agent ~f:(function
| None -> assert false
| Some agent -> { agent with rcls })
let pp ppf agent = Name.pp ppf (name agent)
let pp_reliability ppf r = Sexp.pp ppf (sexp_of_reliability r)
let pp_id ppf agent =
let { name; desc; rcls } = info agent in
Format.fprintf ppf "Class %a %a - %s" pp_reliability rcls Name.pp name desc
include (String : Base.Comparable.S with type t := t)
end
module Opinions : sig
type 'a t
val empty : equal:('a -> 'a -> bool) -> 'a -> 'a t
val inspect : ('a -> Sexp.t) -> 'a t -> Sexp.t
val add : Agent.t -> 'a -> 'a t -> 'a t
val of_list :
equal:('a -> 'a -> bool) -> 'a -> (Agent.t, 'a) List.Assoc.t -> 'a t
val choice : 'a t -> 'a
val compare_votes : 'a t -> 'a t -> int
val join : 'a t -> 'a t -> 'a t
end = struct
type 'a opinion = { opinion : 'a; votes : Set.M(Agent).t }
type 'a t = {
opinions : 'a opinion list;
equal : 'a -> 'a -> bool;
empty : 'a;
}
let empty ~equal empty = { opinions = []; equal; empty }
let inspect sexp_of_opinion { opinions } =
Sexp.List
(List.rev_map opinions ~f:(fun { opinion } -> sexp_of_opinion opinion))
let add_opinion op ({ opinions; equal } as ops) =
let casted, opinions =
List.fold opinions ~init:(false, [])
~f:(fun (casted, opinions) ({ opinion; votes } as elt) ->
if (not casted) && equal opinion op.opinion then
(true, { opinion; votes = Set.union votes op.votes } :: opinions)
else (casted, elt :: opinions))
in
if casted then { ops with opinions }
else { ops with opinions = op :: opinions }
let add agent opinion ({ empty; equal } as ops) =
if equal opinion empty then ops
else add_opinion { opinion; votes = Set.singleton (module Agent) agent } ops
let join x y =
List.fold y.opinions ~init:x ~f:(fun ops op -> add_opinion op ops)
let votes_sum =
Set.fold ~init:0 ~f:(fun sum agent -> sum + Agent.weight agent)
let count_votes { opinions } =
List.fold opinions ~init:0 ~f:(fun sum { votes } -> sum + votes_sum votes)
let compare_votes x y = compare (count_votes x) (count_votes y)
let of_list ~equal bot =
let init = empty ~equal bot in
List.fold ~init ~f:(fun opts (agent, data) -> add agent data opts)
let compare x y =
let w1 = votes_sum x.votes and w2 = votes_sum y.votes in
match Int.compare w1 w2 with
| 0 -> Set.compare_direct x.votes y.votes
| n -> n
let choice { opinions; empty } =
List.max_elt opinions ~compare |> function
| Some { opinion } -> opinion
| None -> empty
end
module Domain = struct
type 'a t = {
inspect : 'a -> Sexp.t;
empty : 'a;
order : 'a -> 'a -> Order.partial;
join : 'a -> 'a -> ('a, conflict) result;
name : string;
}
let inspect d = d.inspect
let empty d = d.empty
let order d = d.order
let join d = d.join
let name d = d.name
let is_empty { empty; order } x = Order.equal_partial (order empty x) EQ
type conflict += Join : string * ('a -> Sexp.t) * 'a * 'a -> conflict
let () =
Conflict.register_printer @@ function
| Join (dom, inspect, x, y) ->
Option.some
@@ Format.asprintf "Domain %s doesn't have a join for values %a and %a"
dom Sexp.pp_hum (inspect x) Sexp.pp_hum (inspect y)
| _ -> None
let make_join name inspect order x y =
match order x y with
| Order.GT -> Ok x
| EQ | LT -> Ok y
| NC -> Error (Join (name, inspect, x, y))
let define ?(inspect = sexp_of_opaque) ?join ~empty ~order name =
{
inspect;
empty;
order;
name;
join =
(match join with Some f -> f | None -> make_join name inspect order);
}
let partial_of_total order x y : Order.partial =
match order x y with 0 -> EQ | 1 -> GT | _ -> LT
let total ?inspect ?join ~empty ~order name =
define ?inspect ?join ~empty name ~order:(partial_of_total order)
let flat ?inspect ?join ~empty ~equal name =
define ?inspect ?join ~empty name ~order:(fun x y ->
match (equal empty x, equal empty y) with
| true, true -> EQ
| true, false -> LT
| false, true -> GT
| false, false -> if equal x y then EQ else NC)
let powerset (type t o)
(module S : Comparator.S with type t = t and type comparator_witness = o)
?(inspect = S.comparator.sexp_of_t) name =
let empty = Set.empty (module S) in
let order x y : Order.partial =
if Set.equal x y then EQ
else if Set.is_subset x y then LT
else if Set.is_subset y x then GT
else NC
in
let join x y = Ok (Set.union x y) in
let module Inspectable = struct
include S
let sexp_of_t = inspect
end in
let inspect = [%sexp_of: Base.Set.M(Inspectable).t] in
define ~inspect ~empty ~order ~join name
let opinions ?(inspect = sexp_of_opaque) ~empty ~equal name =
let empty = Opinions.empty ~equal empty in
let order = partial_of_total Opinions.compare_votes in
let inspect = Opinions.inspect inspect in
define ~inspect ~empty ~order name
let mapping (type k o d)
(module K : Comparator.S with type t = k and type comparator_witness = o)
?(inspect = sexp_of_opaque) ?join ~equal name =
let empty = Map.empty (module K) in
let join =
match join with
| Some join -> join
| None ->
fun x y ->
if equal x y then Ok y else Error (Join (name, inspect, x, y))
in
let join x y =
let module Join = struct
exception Conflict of conflict
end in
try
Result.return
@@ Map.merge x y ~f:(fun ~key:_ -> function
| `Left v | `Right v -> Some v
| `Both (x, y) -> (
match join x y with
| Error conflict -> raise @@ Join.Conflict conflict
| Ok z -> Some z))
with Join.Conflict err -> Error err
in
let inspect xs =
Sexp.List (Map.keys xs |> List.map ~f:K.comparator.sexp_of_t)
in
let order x y =
Map.symmetric_diff x y ~data_equal:equal
|> Sequence.fold ~init:(0, 0, 0) ~f:(fun (l, m, r) -> function
| _, `Left _ -> (l + 1, m, r)
| _, `Right _ -> (l, m, r + 1)
| _, `Unequal _ -> (l, m + 1, r))
|> function
| 0, 0, 0 -> Order.EQ
| 0, 0, _ -> LT
| _, 0, 0 -> GT
| _, _, _ -> NC
in
define ~inspect ~join ~empty ~order name
let optional ?(inspect = sexp_of_opaque) ?join ~equal name =
let join_data =
match join with
| Some join -> join
| None ->
fun x y ->
if equal x y then Ok y else Error (Join (name, inspect, x, y))
in
let inspect = sexp_of_option inspect in
let join x y =
match (x, y) with
| None, x | x, None -> Ok x
| Some x, Some y -> (
match join_data x y with
| Ok x -> Ok (Some x)
| Error err -> Error err)
in
flat ~inspect ~join ~empty:None ~equal:(Option.equal equal) name
let string =
define "string" ~empty:"" ~inspect:sexp_of_string ~order:(fun x y ->
match (String.is_empty x, String.is_empty y) with
| true, true -> EQ
| true, false -> GT
| false, true -> LT
| false, false -> partial_of_total String.compare x y)
let bool = optional ~inspect:sexp_of_bool ~equal:Bool.equal "bool"
end
module Persistent = struct
type 'a t =
| String : string t
| Define : { of_string : string -> 'a; to_string : 'a -> string } -> 'a t
| Derive : {
of_persistent : 'b -> 'a;
to_persistent : 'a -> 'b;
persistent : 'b t;
}
-> 'a t
let string = String
let define ~to_string ~of_string = Define { to_string; of_string }
let derive ~to_persistent ~of_persistent persistent =
Derive { to_persistent; of_persistent; persistent }
let of_binable : type a. (module Binable.S with type t = a) -> a t =
fun r ->
Define { to_string = Binable.to_string r; of_string = Binable.of_string r }
let rec to_string : type a. a t -> a -> string =
fun p x ->
match p with
| String -> x
| Define { to_string } -> to_string x
| Derive { to_persistent; persistent } ->
to_string persistent (to_persistent x)
let rec of_string : type a. a t -> string -> a =
fun p s ->
match p with
| String -> s
| Define { of_string } -> of_string s
| Derive { of_persistent; persistent } ->
of_persistent (of_string persistent s)
module Chunk = struct
(* bin_io will pack len+data, and restore it correspondingly *)
type t = { data : string } [@@deriving bin_io]
end
module KV = struct
type t = { key : string; data : string } [@@deriving bin_io]
end
module Chunks = struct
type t = Chunk.t list [@@deriving bin_io]
end
module KVS = struct
type t = KV.t list [@@deriving bin_io]
end
let chunks = of_binable (module Chunks)
let kvs = of_binable (module KVS)
let list p =
derive chunks
~to_persistent:(List.rev_map ~f:(fun x -> { Chunk.data = to_string p x }))
~of_persistent:(List.rev_map ~f:(fun { Chunk.data } -> of_string p data))
let array p =
derive chunks
~to_persistent:
(Array.fold ~init:[] ~f:(fun xs x ->
{ Chunk.data = to_string p x } :: xs))
~of_persistent:
(Array.of_list_rev_map ~f:(fun { Chunk.data } -> of_string p data))
let sequence p =
derive chunks
~to_persistent:(fun xs ->
Sequence.to_list_rev
@@ Sequence.map xs ~f:(fun x -> { Chunk.data = to_string p x }))
~of_persistent:(fun xs ->
Sequence.of_list
@@ List.rev_map xs ~f:(fun { Chunk.data } -> of_string p data))
let set c p =
derive (list p) ~to_persistent:Set.to_list ~of_persistent:(Set.of_list c)
let map c pk pd =
derive kvs
~to_persistent:
(Map.fold ~init:[] ~f:(fun ~key ~data xs ->
{ KV.key = to_string pk key; KV.data = to_string pd data } :: xs))
~of_persistent:
(List.fold ~init:(Map.empty c) ~f:(fun xs { KV.key; data } ->
let key = of_string pk key and data = of_string pd data in
Map.add_exn xs ~key ~data))
let name = of_binable (module Name)
end
type 'a obj = Oid.t
module Registry = struct
type info = { desc : string option }
type 'a rule = {
name : Name.t;
provides : 'a;
requires : Name.t list;
parameters : string list list;
comment : string;
}
type unfinished = Unifinished
type finished = Name.t
type def = unfinished rule
type doc = finished rule
let sexp_of_rule { name } = Name.sexp_of_t name
module Rule = struct
type t = finished rule
let hash { provides = name } = Name.hash name
let sexp_of_t = sexp_of_rule
include
Base.Comparable.Inherit
(Name)
(struct
type t = finished rule
let component { name } = name
let sexp_of_t = sexp_of_rule
end)
end
let public = Hashtbl.create (module Name)
let classes = Hashtbl.create (module String)
let slots = Hashtbl.create (module String)
let rules = Hash_set.create (module Rule)
let is_present ~package namespace name =
match Hashtbl.find namespace package with
| None -> false
| Some names -> Map.mem names name
let register kind namespace ?desc ?(package = user_package) name =
if is_present ~package namespace name then
failwithf
"Failed to declare a new %s, there is already a %s named `%s' in \
package `%s'"
kind kind name package ();
let info = { desc } in
Hashtbl.update namespace package ~f:(function
| None -> Map.singleton (module String) name info
| Some names -> Map.add_exn names ~key:name ~data:info);
Name.create ~package name
let start_rule ?package name =
{
name = Name.create ?package name;
provides = Unifinished;
requires = [];
parameters = [];
comment = "";
}
let rule_require name rule = { rule with requires = name :: rule.requires }
let rule_provide name rule = { rule with provides = name }
let rule_dynamic params rule =
{ rule with parameters = params :: rule.parameters }
let rule_comment comment rule = Hash_set.add rules { rule with comment }
let add_class = register "class" classes
let add_slot = register "property" slots
let is_public cls = Hashtbl.mem public cls
let public_class cls = Hashtbl.add_exn public cls []
let update_class ~cls ~slot =
if is_public cls then Hashtbl.add_multi public cls slot
let find namespace name =
let names = Hashtbl.find_exn namespace (Name.package name) in
Map.find_exn names (Name.unqualified name)
end
module Documentation = struct
module type Element = sig
type t
val name : t -> Name.t
val desc : t -> string
end
let agents = Agent.registry
module Agent = struct
type t = Agent.id
let of_agent = Agent.id
let name = Agent.name
let desc = Agent.desc
end
module Pair = struct
type t = Name.t * Registry.info
let name = fst
let desc (_, { Registry.desc }) = match desc with None -> "" | Some d -> d
end
module Class = Pair
module Property = Pair
module Rule = struct
open Registry
type t = Rule.t
let name t = t.name
let desc r = r.comment
let property name = (name, Registry.(find slots) name)
let provides r = property r.provides
let requires r = List.map ~f:property r.requires
let parameters r = r.parameters
let refmt input =
let max_column = 70 in
let buffer = Buffer.create 64 in
Buffer.add_string buffer "-- ";
let column = ref 3 in
let prev = ref ' ' in
let in_white () = Char.(!prev = ' ') in
let push c =
if !column >= max_column && in_white () then (
Buffer.add_string buffer "\n-- ";
column := 4);
Buffer.add_char buffer c;
if Char.is_whitespace c then prev := ' ' else prev := c;
incr column
in
let skip = () in
String.iter input ~f:(fun c ->
if Char.is_whitespace c then if in_white () then skip else push ' '
else push c);
Buffer.contents buffer
let pp_parameters ppf = function
| [] -> ()
| ps ->
List.iter ps ~f:(fun ps ->
let pp_sep ppf () = Format.fprintf ppf ", " in
Format.fprintf ppf "(%a)"
Format.(pp_print_list ~pp_sep pp_print_string)
ps)
let pp ppf { parameters; provides; requires; name; comment } =
if String.(comment <> "") then Format.fprintf ppf "%s@\n" (refmt comment);
Format.fprintf ppf "@[<v2>%a%a ::=@\n" Name.pp name pp_parameters
parameters;
let max_len = ref (String.length (Name.to_string provides)) in
List.iter requires ~f:(fun name ->
let len = String.length (Name.to_string name) in
max_len := Int.max len !max_len;
Format.fprintf ppf "%a@\n" Name.pp name);
let sep = String.make !max_len '-' in
Format.fprintf ppf "%s@\n%a@]@\n" sep Name.pp provides
end
let classes () =
Hashtbl.to_alist Registry.public
|> List.map ~f:(fun (cls, slots) ->
( (cls, Registry.(find classes) cls),
List.map slots ~f:(fun slot -> (slot, Registry.(find slots) slot))
))
let rules () = Hash_set.to_list Registry.rules
end
module Class = struct
type +'s info = { name : Name.t; sort : 's }
let id { name } = name
type (+'a, +'s) t = 's info
let newclass ?(public = false) ?desc ?package name sort =
let name = Registry.add_class ?desc ?package name in
if public then Registry.public_class name;
{ name; sort }
let declare :
?public:bool ->
?desc:string ->
?package:string ->
string ->
's ->
('k, 's) t =
fun ?public ?desc ?package name data ->
newclass ?public ?desc ?package name data
let refine { name } sort = { name; sort }
let same x y = Name.equal x.name y.name
let equal : type a b.
(a, _) t -> (b, _) t -> (a obj, b obj) Type_equal.t option =
fun x y -> Option.some_if (same x y) Type_equal.T
let assert_equal x y =
match equal x y with
| Some t -> t
| None ->
failwithf
"assert_equal: wrong assertion, classes of %s and %s are different"
(Name.to_string x.name) (Name.to_string y.name) ()
let sort { sort } = sort
let name { name } = name
end
module Dict = struct
module Key = struct
module Uid = Int
let last_id = ref 0
type 'a witness = ..
module type Witness = sig
type t
type _ witness += Id : t witness
end
type 'a typeid = (module Witness with type t = 'a)
type 'a t = {
ord : Uid.t;
key : 'a typeid;
name : Name.t;
show : 'a -> Sexp.t;
}
let newtype (type a) () : a typeid =
let module Type = struct
type t = a
type _ witness += Id : t witness
end in
(module Type)
let create ~name show =
let key = newtype () in
incr last_id;
{ key; ord = !last_id; name; show }
let uid { ord } = ord [@@inline]
let compare k1 k2 =
let k1 = uid k1 and k2 = uid k2 in
(Uid.compare [@inlined]) k1 k2
[@@inline]
let name x = x.name
let to_sexp x = x.show
let equal x y = Int.equal x.ord y.ord [@@inline]
let same (type a b) x y : (a, b) Type_equal.t =
if equal x y then
let module X = (val x.key : Witness with type t = a) in
let module Y = (val y.key : Witness with type t = b) in
match X.Id with
| Y.Id -> Type_equal.T
| _ -> failwith "broken type equality"
else failwith "types are not equal"
let ( < ) x y = uid x < uid y [@@inline]
let ( > ) x y = uid x > uid y [@@inline]
let ( = ) x y = uid x = uid y [@@inline]
let ( <> ) x y = uid x <> uid y [@@inline]
(** Allen's Interval Algebra
The Allen's Interval Algebra [1,2] describes 13 possible relations
between two intervals. See also [3] for the nice visualizations and an
available description.
[1]: https://doi.org/10.1145/182.358434 [2]:
https://doi.org/10.1111/j.1467-8640.1989.tb00329.x [3]:
https://www.thomasalspaugh.org/pub/fnd/allen.html *)
module Interval = struct
type order =
| Before
| Meets
| Overlaps
| Finished
| Contains
| Starts
| Equals
| Started
| During
| Finishes
| Overlapped
| Met
| After
let invert f a b c d = f c d a b [@@inline]
let meets _ b c _ = b = c [@@inline]
let met a b c d = invert meets a b c d [@@inline] [@@specialise]
let before _ b c _ = b < c [@@inline]
let after a b c d = invert before a b c d [@@inline] [@@specialise]
let overlaps a b c d = a < c && b < d && b > c [@@inline]
let overlapped a b c d = invert overlaps a b c d [@@inline] [@@specialise]
let starts a b c d = a = c && b < d [@@inline]
let started a b c d = invert starts a b c d [@@inline] [@@specialise]
let finishes a b c d = a > c && b = d [@@inline]
let finished a b c d = invert finishes a b c d [@@inline] [@@specialise]
let during a b c d = a > c && b < d [@@inline]
let contains a b c d = invert during a b c d [@@inline] [@@specialise]
let equals a b c d = a = c && b = d [@@inline]
let relate a b c d =
match () with
| () when meets a b c d -> Meets
| () when met a b c d -> Met
| () when before a b c d -> Before
| () when after a b c d -> After
| () when overlaps a b c d -> Overlaps
| () when overlapped a b c d -> Overlapped
| () when starts a b c d -> Starts
| () when started a b c d -> Started
| () when finishes a b c d -> Finishes
| () when finished a b c d -> Finished
| () when during a b c d -> During
| () when contains a b c d -> Contains
| () when equals a b c d -> Equals
| () -> assert false
[@@inline]
end
(** Extension of the Allen's Algebra over points.
A point can have only five relations to an interval. *)
module Point = struct
type order =
| Before (* preceeds the interval *)
| Starts (* equal to the start *)
| During (* inside of the interval *)
| Finishes (* equal to the end *)
| After (* follows the interval *)
let before p a _ = p < a [@@inline]
let starts p a _ = p = a [@@inline]
let during p a b = p > a && p < b [@@inline]
let finishes p _ b = p = b [@@inline]
let after p _ b = p > b [@@inline]
let relate p a b =
match () with
| () when before p a b -> Before
| () when starts p a b -> Starts
| () when during p a b -> During
| () when finishes p a b -> Finishes
| () when after p a b -> After
| () -> assert false
[@@inline]
end
end
type 'a key = 'a Key.t
(* five leaves holding from zero to four elements and
three non-leaf trees that can either lean left (when
the left tree/leg is shorter, lean right (the right one
is shorter), or stand on equal legs.
*)
type record =
| T0
| T1 : 'a key * 'a -> record
| T2 : 'a key * 'a * 'b key * 'b -> record
| T3 : 'a key * 'a * 'b key * 'b * 'c key * 'c -> record
| T4 : 'a key * 'a * 'b key * 'b * 'c key * 'c * 'd key * 'd -> record
| LL : record * 'a key * 'a * record -> record (* h(x) = h(y) - 1 *)
| EQ : record * 'a key * 'a * record -> record (* h(x) = h(y) *)
| LR : record * 'a key * 'a * record -> record (* h(x) = h(y) + 1 *)
type t = record
let pp_field ppf (k, v) =
Format.fprintf ppf "%s : %a"
(Name.to_string (Key.name k))
Sexp.pp_hum (Key.to_sexp k v)
let rec pp_fields ppf = function
| T0 -> ()
| T1 (ka, a) -> Format.fprintf ppf "%a" pp_field (ka, a)
| T2 (ka, a, kb, b) ->
Format.fprintf ppf "%a;@ %a" pp_field (ka, a) pp_field (kb, b)
| T3 (ka, a, kb, b, kc, c) ->
Format.fprintf ppf "%a;@ %a;@ %a" pp_field (ka, a) pp_field (kb, b)
pp_field (kc, c)
| T4 (ka, a, kb, b, kc, c, kd, d) ->
Format.fprintf ppf "%a;@ %a;@ %a;@ %a" pp_field (ka, a) pp_field (kb, b)
pp_field (kc, c) pp_field (kd, d)
| LR (x, ka, a, y) ->
Format.fprintf ppf "%a;@ %a;@ %a" pp_fields x pp_field (ka, a) pp_fields
y
| LL (x, ka, a, y) ->
Format.fprintf ppf "%a;@ %a;@ %a" pp_fields x pp_field (ka, a) pp_fields
y
| EQ (x, ka, a, y) ->
Format.fprintf ppf "%a;@ %a;@ %a" pp_fields x pp_field (ka, a) pp_fields
y
let pp ppf t = Format.fprintf ppf "{@[<2>@,%a@]}" pp_fields t
let pp_elt ppf (k, v) =
Format.fprintf ppf "%d:%a" (Key.uid k) Sexp.pp_hum (Key.to_sexp k v)
let pp_elt ppf (k, _) = Format.fprintf ppf "%d" (Key.uid k)
let rec pp_tree ppf = function
| T0 -> Format.fprintf ppf "()"
| T1 (ka, a) -> Format.fprintf ppf "(%a)" pp_elt (ka, a)
| T2 (ka, a, kb, b) ->
Format.fprintf ppf "(%a,%a)" pp_elt (ka, a) pp_elt (kb, b)
| T3 (ka, a, kb, b, kc, c) ->
Format.fprintf ppf "(%a,%a,%a)" pp_elt (ka, a) pp_elt (kb, b) pp_elt
(kc, c)
| T4 (ka, a, kb, b, kc, c, kd, d) ->
Format.fprintf ppf "(%a,%a,%a,%a)" pp_elt (ka, a) pp_elt (kb, b) pp_elt
(kc, c) pp_elt (kd, d)
| LR (x, k, a, y) ->
Format.fprintf ppf "LR(%a,%a,%a)" pp_tree x pp_elt (k, a) pp_tree y
| LL (x, k, a, y) ->
Format.fprintf ppf "LL(%a,%a,%a)" pp_tree x pp_elt (k, a) pp_tree y
| EQ (x, k, a, y) ->
Format.fprintf ppf "EQ(%a,%a,%a)" pp_tree x pp_elt (k, a) pp_tree y
let empty = T0
let is_empty = function T0 -> true | _ -> false
(*
- LL (x,y) : h(x) = h(y) - 1
- EQ (x,y) : h(x) = h(y)
- LR (x,y) : h(x) = h(y) + 1
*)
let ( <$ ) k1 k2 =
let k1 = Key.uid k1 and k2 = Key.uid k2 in
(Key.Uid.( < ) [@inlined]) k1 k2
[@@inline]
let make0 = T0 [@@inlined]
let make1 k a = T1 (k, a) [@@inline]
let make2 ka a kb b = T2 (ka, a, kb, b) [@@inline]
let make3 ka a kb b kc c = T3 (ka, a, kb, b, kc, c) [@@inline]
let make4 ka a kb b kc c kd d = T4 (ka, a, kb, b, kc, c, kd, d) [@@inline]
let make5 ka a kb b kc c kd d ke e =
EQ (make2 ka a kb b, kc, c, make2 kd d ke e)
[@@inline]
let make6 ka a kb b kc c kd d ke e kf f =
EQ (T2 (ka, a, kb, b), kc, c, T3 (kd, d, ke, e, kf, f))
[@@inline]
let make7 ka a kb b kc c kd d ke e kf f kg g =
EQ (T3 (ka, a, kb, b, kc, c), kd, d, T3 (ke, e, kf, f, kg, g))
[@@inline]
let make8 ka a kb b kc c kd d ke e kf f kg g kh h =
EQ (T3 (ka, a, kb, b, kc, c), kd, d, T4 (ke, e, kf, f, kg, g, kh, h))
[@@inline]
let make9 ka a kb b kc c kd d ke e kf f kg g kh h ki i =
EQ (T4 (ka, a, kb, b, kc, c, kd, d), ke, e, T4 (kf, f, kg, g, kh, h, ki, i))
[@@inline]
let make10 ka a kb b kc c kd d ke e kf f kg g kh h ki i kj j =
LL (make4 ka a kb b kc c kd d, ke, e, make5 kf f kg g kh h ki i kj j)
[@@inline]
type 'r visitor = { visit : 'a. 'a key -> 'a -> 'r -> 'r }
let rec foreach x ~init f =
match x with
| T0 -> init
| T1 (ka, a) -> f.visit ka a init
| T2 (ka, a, kb, b) -> f.visit ka a init |> f.visit kb b
| T3 (ka, a, kb, b, kc, c) ->
f.visit ka a init |> f.visit kb b |> f.visit kc c
| T4 (ka, a, kb, b, kc, c, kd, d) ->
f.visit ka a init |> f.visit kb b |> f.visit kc c |> f.visit kd d
| LL (x, k, a, y) -> foreach y f ~init:(f.visit k a @@ foreach x ~init f)
| EQ (x, k, a, y) -> foreach y f ~init:(f.visit k a @@ foreach x ~init f)
| LR (x, k, a, y) -> foreach y f ~init:(f.visit k a @@ foreach x ~init f)
type ('b, 'r) app = { app : 'a. 'a key -> 'a -> 'b -> 'r }
let cmp x y = Key.compare x y [@@inline]
let eq x y = Key.compare x y = 0 [@@inline]
exception Rol_wrong_rank of record
exception Ror_wrong_rank of record
let rol = function
| LL (x, ka, a, LL (y, kb, b, z)) ->
(*
* h(x) = m-2
* h(LL(y,b,z)=m
* h(y)=m-2
* h(z)=m-1
* ----------------
* h(EQ(x,a,y)) = m-1
* h(EQ(EQ(x,ka,a,y),b,z)) = m
*)
EQ (EQ (x, ka, a, y), kb, b, z)
| LL (x, ka, a, EQ (y, kb, b, z)) ->
(*
* h(x) = m-2
* h(EQ(y,b,z))=m
* h(y)=m-1
* h(z)=m-1
* ----------------
* h(LL(x,a,y)) = m
* h(LR(LL(x,a,y),b,z)) = m+1
*)
LR (LL (x, ka, a, y), kb, b, z)
| LL (w, ka, a, LR (LL (x, kb, b, y), kc, c, z)) ->
(*
* h(w) = m-2
* h(LR(LL(x,b,y),c,z))=m
* h(z)=m-2
* h(LL(x,b,y))=m-1
* h(y)=m-2
* h(x)=m-3
* ----------------
* h(LR(w,a,x))=m-1, h(x) < h(w)
* h(EQ(y,kc,c,z))=m-1, h(y) = h(z)
* h(EQ (LR(w,ka,a,x),kb,b,EQ(y,kc,c,z))) = m
*)
EQ (LR (w, ka, a, x), kb, b, EQ (y, kc, c, z))
| LL (w, ka, a, LR (EQ (x, kb, b, y), kc, c, z)) ->
(*
* h(w) = m-2
* h(LR(EQ(x,b,y),c,z))=m
* h(z)=m-2
* h(EQ(x,b,y))=m-1
* h(y)=m-2
* h(x)=m-2
* ----------------
* h(EQ(w,a,x))=m-1, h(x) = h(w)
* h(EQ(y,kc,c,z))=m-1, h(y) = h(z)
* h(EQ (EQ(w,ka,a,x),kb,b,EQ(y,kc,c,z))) = m
*)
EQ (EQ (w, ka, a, x), kb, b, EQ (y, kc, c, z))
| LL (w, ka, a, LR (LR (x, kb, b, y), kc, c, z)) ->
(*
* h(w) = m-2
* h(LR(LR(x,b,y),c,z))=m
* h(z)=m-2
* h(LR(x,b,y))=m-1
* h(y)=m-3
* h(x)=m-2
* ----------------
* h(EQ(w,a,x))=m-1, h(x) = h(w)
* h(LL(y,kc,c,z))=m-1, h(y) < h(z)
* h(EQ (EQ(w,ka,a,x),kb,b,LL(y,kc,c,z))) = m
*)
EQ (EQ (w, ka, a, x), kb, b, LL (y, kc, c, z))
| r -> raise (Rol_wrong_rank r)
[@@inline]
let ror = function
| LR (LR (x, ka, a, y), kb, b, z) ->
(*
* h(z) = m-2
* h(LR(x,a,y))=m
* h(y)=m-2
* h(x)=m-1
* ------------------
* h(EQ(y,b,z))=m-1, h(y) = h(z)
* h(EQ (x,a,EQ(y,kb,b,z))) = m
*)
EQ (x, ka, a, EQ (y, kb, b, z))
| LR (EQ (x, ka, a, y), kb, b, z) ->
(*
* h(z) = m-2
* h(EQ(x,a,y))=m
* h(y)=m-1
* h(x)=m-1
* ------------------
* h(LR(y,b,z))=m, h(y) > h(z)
* h(LL (x,a,LR(y,b,z))) = m+1, h(x) < m
*)
LL (x, ka, a, LR (y, kb, b, z))
| LR (LL (w, ka, a, LR (x, kb, b, y)), kc, c, z) ->
(*
* h(z) = m-2
* h(LL (w,a,LR(x,b,y)))=m
* h(LR(x,b,y))=m-1
* h(w)=m-2
* h(x)=m-2
* h(y)=m-3
* -------------------------
* h(EQ(w,a,x)) = m-1, h(x) = h(w)
* h(LL(y,c,z)) = m-1, h(y) < h(z)
*)
EQ (EQ (w, ka, a, x), kb, b, LL (y, kc, c, z))
| LR (LL (w, ka, a, EQ (x, kb, b, y)), kc, c, z) ->
(*
* h(z) = m-2
* h(LL (w,a,EQ(x,b,y)))=m
* h(EQ(x,b,y))=m-1
* h(w)=m-2
* h(x)=m-2
* h(y)=m-2
* -------------------------
* h(EQ(w,a,x)) = m-1, h(x) = h(w)
* h(EQ(y,c,z)) = m-1, h(y) = h(z)
*)
EQ (EQ (w, ka, a, x), kb, b, EQ (y, kc, c, z))
| LR (LL (w, ka, a, LL (x, kb, b, y)), kc, c, z) ->
(*
* h(z) = m-2
* h(LL (w,a,LL(x,b,y)))=m
* h(LL(x,b,y))=m-1
* h(w)=m-2
* h(x)=m-3
* h(y)=m-2
* -------------------------
* h(LR(w,a,x)) = m-1, h(x) < h(w)
* h(EQ(y,c,z)) = m-1, h(y) = h(z)
*)
EQ (LR (w, ka, a, x), kb, b, EQ (y, kc, c, z))
| r -> raise (Ror_wrong_rank r)
[@@inline]
let rank_increases was now =
match (was, now) with
| (T0 | T1 _ | T2 _ | T3 _ | T4 _), LR _
| (T0 | T1 _ | T2 _ | T3 _ | T4 _), EQ _
| (T0 | T1 _ | T2 _ | T3 _ | T4 _), LL _ ->
true
| EQ _, LL _ | EQ _, LR _ -> true
| LR _, LL _ | LL _, LR _ -> false
| _ -> false
[@@inline]
(* [p += c] updates the right subtree of [p] with [c].
pre: rank p > 1 /\ rank c > 1 *)
let ( += ) p c' =
match p with
| LL (b, k, x, c) ->
if rank_increases c c' then rol (LL (b, k, x, c')) else LL (b, k, x, c')
| LR (b, k, x, c) ->
if rank_increases c c' then EQ (b, k, x, c') else LR (b, k, x, c')
| EQ (b, k, x, c) ->
if rank_increases c c' then LL (b, k, x, c') else EQ (b, k, x, c')
| _ -> failwith "+=: rank < 2"
[@@inline]
(* [b =+ p] updates the left subtree of [p] with [b].
pre: rank p > 1 /\ rank b > 1 *)
let ( =+ ) b' p =
match p with
| LL (b, k, x, c) ->
if rank_increases b b' then EQ (b', k, x, c) else LL (b', k, x, c)
| LR (b, k, x, c) ->
if rank_increases b b' then ror (LR (b', k, x, c)) else LR (b', k, x, c)
| EQ (b, k, x, c) ->
if rank_increases b b' then LR (b', k, x, c) else EQ (b', k, x, c)
| _ -> failwith "=+: rank < 2"
[@@inline]
(* pre:
- a is not in t;
- for all functions except [bal] t is balanced;
- for [bal] the input is t is disbalanced.
post:
- a is in t', and len t' = len t + 1
- h(t') >= h(t)
- t' is balanced
*)
let rec insert : type a. a key -> a -> record -> record =
fun ka a -> function
| T0 -> make1 ka a
| T1 (kb, b) -> if ka <$ kb then make2 ka a kb b else make2 kb b ka a
| T2 (kb, b, kc, c) ->
if ka <$ kb then make3 ka a kb b kc c
else if ka <$ kc then make3 kb b ka a kc c
else make3 kb b kc c ka a
| T3 (kb, b, kc, c, kd, d) ->
if ka <$ kc then
if ka <$ kb then make4 ka a kb b kc c kd d
else make4 kb b ka a kc c kd d
else if ka <$ kd then make4 kb b kc c ka a kd d
else make4 kb b kc c kd d ka a
| T4 (kb, b, kc, c, kd, d, ke, e) ->
if ka <$ kd then
if ka <$ kc then
if ka <$ kb then make5 ka a kb b kc c kd d ke e
else make5 kb b ka a kc c kd d ke e
else make5 kb b kc c ka a kd d ke e
else if ka <$ ke then make5 kb b kc c kd d ka a ke e
else make5 kb b kc c kd d ke e ka a
| LL (b, k, _, c) as t ->
if ka <$ k then insert ka a b =+ t else t += insert ka a c
| LR (b, k, _, c) as t ->
if ka <$ k then insert ka a b =+ t else t += insert ka a c
| EQ (b, k, _, c) as t ->
if ka <$ k then insert ka a b =+ t else t += insert ka a c
(* [merge k x y] *)
type merge = { merge : 'a. 'a key -> 'a -> 'a -> 'a }
let merge : type a b. merge -> a key -> b key -> b -> a -> a =
fun { merge } ka kb b a ->
let T = Key.same ka kb in
merge kb b a
let app = merge
let rec upsert ~update:ret ~insert:add ka a t =
match t with
| T0 -> add (make1 ka a)
| T1 (kb, b) ->
if eq ka kb then ret (fun f -> make1 ka (app f ka kb b a))
else add (insert ka a t)
| T2 (kb, b, kc, c) ->
if eq ka kb then ret (fun f -> make2 ka (app f ka kb b a) kc c)
else if eq ka kc then ret (fun f -> make2 kb b ka (app f ka kc c a))
else add (insert ka a t)
| T3 (kb, b, kc, c, kd, d) -> (
match cmp ka kc with
| 0 -> ret (fun f -> make3 kb b ka (app f ka kc c a) kd d)
| 1 ->
if eq ka kd then ret (fun f -> make3 kb b kc c ka (app f ka kd d a))
else add (insert ka a t)
| _ ->
if eq ka kb then ret (fun f -> make3 ka (app f ka kb b a) kc c kd d)
else add @@ insert ka a t)
| T4 (kb, b, kc, c, kd, d, ke, e) -> (
match cmp ka kd with
| 0 -> ret @@ fun f -> make4 kb b kc c ka (app f ka kd d a) ke e
| 1 ->
if eq ka ke then
ret @@ fun f -> make4 kb b kc c kd d ka (app f ka ke e a)
else add @@ insert ka a t
| _ -> (
match cmp ka kc with
| 0 -> ret @@ fun f -> make4 kb b ka (app f ka kc c a) kd d ke e
| 1 -> add @@ insert ka a t
| _ ->
if eq ka kb then
ret @@ fun f -> make4 ka (app f ka kb b a) kc c kd d ke e
else add @@ insert ka a t))
| LL (x, kb, b, y) -> (
match cmp ka kb with
| 0 -> ret @@ fun f -> LL (x, ka, app f ka kb b a, y)
| 1 ->
upsert ka a y
~update:(fun k -> ret @@ fun f -> LL (x, kb, b, k f))
~insert:(fun y -> add (t += y))
| _ ->
upsert ka a x
~update:(fun k -> ret @@ fun f -> LL (k f, kb, b, y))
~insert:(fun x -> add (x =+ t)))
| EQ (x, kb, b, y) -> (
match cmp ka kb with
| 0 -> ret @@ fun f -> EQ (x, ka, app f ka kb b a, y)
| 1 ->
upsert ka a y
~update:(fun k -> ret @@ fun f -> EQ (x, kb, b, k f))
~insert:(fun y -> add (t += y))
| _ ->
upsert ka a x
~update:(fun k -> ret @@ fun f -> EQ (k f, kb, b, y))
~insert:(fun x -> add (x =+ t)))
| LR (x, kb, b, y) -> (
match cmp ka kb with
| 0 -> ret @@ fun f -> LR (x, ka, app f ka kb b a, y)
| 1 ->
upsert ka a y
~update:(fun k -> ret @@ fun f -> LR (x, kb, b, k f))
~insert:(fun y -> add (t += y))
| _ ->
upsert ka a x
~update:(fun k -> ret @@ fun f -> LR (k f, kb, b, y))
~insert:(fun x -> add (x =+ t)))
[@@specialise]
let monomorphic_merge : type t. t key -> (t -> t -> t) -> merge =
fun k f ->
{
merge =
(fun (type a) (kb : a key) (b : a) (a : a) : a ->
let T = Key.same k kb in
f b a);
}
[@@specialise]
let update f ka a x =
let f = monomorphic_merge ka f in
upsert ka a x ~update:(fun k -> k f) ~insert:(fun x -> x)
[@@specialise]
let set ka a x =
let f = monomorphic_merge ka (fun _ x -> x) in
upsert ka a x ~update:(fun k -> k f) ~insert:(fun x -> x)
exception Field_not_found
let return (type a b) (k : a key) (ka : b key) (a : b) : a =
let T = Key.same k ka in
a
[@@inline]
let rec get k = function
| T0 -> raise Field_not_found
| T1 (ka, a) -> if eq k ka then return k ka a else raise Field_not_found
| T2 (ka, a, kb, b) -> (
match cmp k kb with
| 0 -> return k kb b
| 1 -> raise Field_not_found
| _ -> if eq k ka then return k ka a else raise Field_not_found)
| T3 (ka, a, kb, b, kc, c) -> (
match cmp k kb with
| 0 -> return k kb b
| 1 -> if eq k kc then return k kc c else raise Field_not_found
| _ -> if eq k ka then return k ka a else raise Field_not_found)
| T4 (ka, a, kb, b, kc, c, kd, d) -> (
match cmp k kc with
| 0 -> return k kc c
| 1 -> if eq k kd then return k kd d else raise Field_not_found
| _ -> (
match cmp k kb with
| 0 -> return k kb b
| 1 -> raise Field_not_found
| _ -> if eq k ka then return k ka a else raise Field_not_found))
| LL (x, ka, a, y) -> (
match cmp k ka with 0 -> return k ka a | 1 -> get k y | _ -> get k x)
| EQ (x, ka, a, y) -> (
match cmp k ka with 0 -> return k ka a | 1 -> get k y | _ -> get k x)
| LR (x, ka, a, y) -> (
match cmp k ka with 0 -> return k ka a | 1 -> get k y | _ -> get k x)
let find k x = try Some (get k x) with Field_not_found -> None
let fold_merge (type a) m x y =
foreach y ~init:x
{
visit =
(fun (type b c) (ka : b key) (a : b) x ->
upsert ka a x ~insert:(fun x -> x) ~update:(fun k -> k m));
}
let merge_11 m ka a kb b =
match Key.compare ka kb with
| 0 -> make1 ka (app m ka kb b a)
| 1 -> make2 kb b ka a
| _ -> make2 ka a kb b
[@@inline]
let merge_12 m ka a kb b kc c =
match Key.Point.relate ka kb kc with
| Before -> make3 ka a kb b kc c
| Starts -> make2 ka (app m ka kb b a) kc c
| During -> make3 kb b ka a kc c
| Finishes -> make2 kb b ka (app m ka kc c a)
| After -> make3 kb b kc c ka a
[@@inline]
let merge_13 m ka a kb b kc c kd d =
match Key.Point.relate ka kb kd with
| Before -> make4 ka a kb b kc c kd d
| Starts -> make3 ka (app m ka kb b a) kc c kd d
| Finishes -> make3 kb b kc c kd (app m kd ka a d)
| After -> make4 kb b kc c kd d ka a
| During -> (
match Key.compare ka kc with
| 0 -> make3 kb b kc (app m kc ka a c) kd d
| 1 -> make4 kb b kc c ka a kd d
| _ -> make4 kb b ka a kc c kd d)
[@@inline]
let merge_22 m ka a kb b kc c kd d =
match Key.Interval.relate ka kb kc kd with
| Meets -> make3 ka a kb (app m kb kc c b) kd d
| Met -> make3 kc c kd (app m kd ka a d) kb b
| Before -> make4 ka a kb b kc c kd d
| After -> make4 kc c kd d ka a kb b
| Overlaps -> make4 ka a kc c kb b kd d
| Overlapped -> make4 kc c ka a kd d kb b
| Starts -> make3 ka (app m ka kc c a) kb b kd d
| Started -> make3 ka (app m ka kc c a) kd d kb b
| Finishes -> make3 kc c ka a kb (app m kb kd d b)
| Finished -> make3 ka a kc c kb (app m kb kd d b)
| During -> make4 kc c ka a kb b kd d
| Contains -> make4 ka a kc c kd d kb b
| Equals -> make2 ka (app m ka kc c a) kb (app m kb kd d b)
[@@inline]
let merge m x y =
if phys_equal x y then x
else
match (x, y) with
| T0, x | x, T0 -> x
| T1 (ka, a), T1 (kb, b) -> merge_11 m ka a kb b
| T1 (ka, a), T2 (kb, b, kc, c) -> merge_12 m ka a kb b kc c
| T2 (kb, b, kc, c), T1 (ka, a) -> merge_12 m ka a kb b kc c
| T1 (ka, a), T3 (kb, b, kc, c, kd, d) -> merge_13 m ka a kb b kc c kd d
| T3 (kb, b, kc, c, kd, d), T1 (ka, a) -> merge_13 m ka a kb b kc c kd d
| T2 (ka, a, kb, b), T2 (kc, c, kd, d) -> merge_22 m ka a kb b kc c kd d
| _ -> fold_merge m x y
[@@inline]
let sexp_of_t dict =
Sexp.List
(foreach ~init:[] dict
{
visit =
(fun k x xs ->
Sexp.List
[ Sexp.Atom (Name.to_string (Key.name k)); Key.to_sexp k x ]
:: xs);
})
let pp_key ppf { Key.name } = Format.fprintf ppf "%s" (Name.to_string name)
end
module Record = struct
module Key = Dict.Key
module Uid = Dict.Key.Uid
type record = Dict.t
type t = record
type 'a key = 'a Dict.key
module Repr = struct
type entry = { name : Name.t; data : string } [@@deriving bin_io]
type t = entry list [@@deriving bin_io]
end
type vtable = {
order : 'a. 'a key -> 'a -> 'a -> Order.partial;
join : 'a. 'a key -> 'a -> 'a -> ('a, conflict) result;
inspect : 'a. 'a key -> 'a -> Sexp.t;
}
type slot_io = {
reader : string -> record -> record;
writer : record -> string option;
}
let io : slot_io Hashtbl.M(Name).t = Hashtbl.create (module Name)
let vtables : vtable Hashtbl.M(Uid).t = Hashtbl.create (module Uid)
let empty = Dict.empty
let is_empty = Dict.is_empty
let uid = Key.uid
let domain k = Hashtbl.find_exn vtables (uid k)
exception Not
let ( <:= ) x y =
try
Dict.foreach ~init:() x
{
visit =
(fun k x () ->
match Dict.find k y with
| None -> raise Not
| Some y -> (
match (domain k).order k x y with
| LT | EQ -> ()
| GT | NC -> raise Not));
};
true
with Not -> false
let order : t -> t -> Order.partial =
fun x y ->
if phys_equal x y then EQ
else
match (x, y) with
| T0, (T1 _ | T2 _ | T3 _ | T4 _) -> LT
| (T1 _ | T2 _ | T3 _ | T4 _), T0 -> GT
| _ -> (
match (x <:= y, y <:= x) with
| true, false -> LT
| true, true -> EQ
| false, true -> GT
| false, false -> NC)
exception Merge_conflict of conflict
let domain_merge =
{
Dict.merge =
(fun k x y ->
match (domain k).join k x y with
| Ok x -> x
| Error err -> raise (Merge_conflict err));
}
let resolving_merge on_conflict =
{
Dict.merge =
(fun k x y ->
match (domain k).join k x y with
| Ok b -> b
| Error err -> (
match on_conflict with
| `drop_left -> y
| `drop_right -> x
| `fail -> raise (Merge_conflict err)));
}
let commit (type p) _ (key : p Key.t) v x =
match v with
| Dict.T0 -> Ok (Dict.make1 key x)
| _ -> (
try
Result.return
@@ Dict.upsert key x v ~insert:Fn.id ~update:(fun k -> k domain_merge)
with Merge_conflict err -> Error err)
let put k v x = Dict.set k x v
let get : type a. a Key.t -> a Domain.t -> record -> a =
fun k { Domain.empty } data ->
match Dict.find k data with None -> empty | Some x -> x
let splice = Dict.app
let join x y =
try Ok (Dict.merge domain_merge x y) with Merge_conflict err -> Error err
let try_merge ~on_conflict x y =
try Ok (Dict.merge (resolving_merge on_conflict) x y)
with Merge_conflict err -> Error err
let eq = Dict.Key.same
let register_persistent (type p) (key : p Key.t) (p : p Persistent.t) =
let slot = Key.name key in
Hashtbl.add_exn io ~key:slot
~data:
{
reader =
(fun x dict ->
let x = Persistent.of_string p x in
Dict.insert key x dict);
writer =
(fun dict ->
match Dict.find key dict with
| None -> None
| Some s -> Some (Persistent.to_string p s));
}
include
Binable.Of_binable
(Repr)
(struct
type t = record
let to_binable s =
Dict.foreach s ~init:[]
{
visit =
(fun k _ xs ->
let name = Key.name k in
match Hashtbl.find io name with
| None -> xs
| Some { writer } -> (
match writer s with
| None -> xs
| Some data -> Repr.{ name; data } :: xs));
}
let of_binable entries =
List.fold entries ~init:empty ~f:(fun s { Repr.name; data } ->
match Hashtbl.find io name with
| None -> s
| Some { reader } -> reader data s)
end) [@@warning "-D"]
let eq = Dict.Key.same
let register_domain : type p. p Key.t -> p Domain.t -> unit =
fun key dom ->
let vtable =
{
order =
(fun (type a) (k : a key) (x : a) (y : a) ->
let T = eq k key in
dom.order x y);
inspect =
(fun (type a) (k : a key) (x : a) ->
let T = eq k key in
dom.inspect x);
join =
(fun (type a) (k : a key) (x : a) (y : a) : (a, conflict) result ->
let T = eq k key in
dom.join x y);
}
in
Hashtbl.add_exn vtables ~key:(uid key) ~data:vtable
let sexp_of_t x = Dict.sexp_of_t x
let t_of_sexp = opaque_of_sexp
let inspect = sexp_of_t
let pp_text ppf s = Format.fprintf ppf "@[<1>\"%a\"@]" Format.pp_print_text s
let is_text = String.exists ~f:Char.is_whitespace
let rec pp_hum ppf = function
| Sexp.Atom s ->
if is_text s then pp_text ppf s else Format.pp_print_string ppf s
| Sexp.List xs ->
Format.fprintf ppf "(@[<hv>";
Format.pp_print_list pp_hum ppf xs ~pp_sep:Format.pp_print_space;
Format.fprintf ppf "@])"
let pp_payload ppf = function
| [ Sexp.Atom str ] ->
Format.fprintf ppf "@[<1>\"%a\"@]" Format.pp_print_text str
| other -> Format.fprintf ppf "%a" pp_hum (Sexp.List other)
let pp ppf x = pp_hum ppf (inspect x)
let pp_slots slots ppf x =
let slots = Set.of_list (module String) slots in
let no_name = Option.is_none (Set.nth slots 1) in
match (inspect x : Sexp.t) with
| Atom _ -> assert false
| List xs ->
let first = ref true in
Format.fprintf ppf "@[<v>";
List.iter xs ~f:(function
| Sexp.List (Atom slot :: payload) as data when Set.mem slots slot ->
if not first.contents then Format.fprintf ppf "@,";
first := false;
if no_name then Format.fprintf ppf "%a" pp_payload payload
else Format.fprintf ppf "%a" pp_hum data
| _ -> ());
Format.fprintf ppf "@]"
end
module Knowledge = struct
type +'a value = { cls : 'a; data : Record.t; time : Int63.t }
type (+'a, +'s) cls = ('a, 's) Class.t
type 'a obj = Oid.t
type 'p domain = 'p Domain.t
type 'a persistent = 'a Persistent.t
type 'a ord = Oid.comparator_witness
type conflict = Conflict.t = ..
type pid = Pid.t
type oid = Oid.t [@@deriving bin_io, compare, sexp]
type cell = { car : oid; cdr : oid } [@@deriving bin_io, compare, sexp]
module Cell = struct
type t = cell
include Comparable.Make_binable (struct
type t = cell [@@deriving bin_io, compare, sexp]
end)
end
module Env = struct
type workers = { waiting : unit Pid.Tree.t; current : unit Pid.Tree.t }
type work = Done | Work of workers
type info = {
data : Record.t;
comp : work Map.M(Name).t;
name : fullname option;
}
type objects = {
last : Oid.t;
vals : info Oid.Tree.t;
objs : Oid.t Map.M(Name.Full).t;
pubs : Oid.Set.t Map.M(String).t;
}
let empty_class =
{
last = Oid.first;
vals = Oid.Tree.empty;
objs = Map.empty (module Name.Full);
pubs = Map.empty (module String);
}
type t = {
classes : objects Map.M(Name).t;
package : string;
context : Dict.t;
}
end
type state = Env.t
let empty : Env.t =
{
package = user_package;
classes = Map.empty (module Name);
context = Dict.empty;
}
let noinfo : Env.info =
{ data = Record.empty; comp = Map.empty (module Name); name = None }
type 'a knowledge = {
run :
'r. reject:(conflict -> 'r) -> accept:('a -> state -> 'r) -> state -> 'r;
}
module Knowledge = struct
type 'a t = 'a knowledge
type _ error = conflict
let fail p : 'a t = { run = (fun ~reject ~accept:_ _ -> reject p) }
[@@inline]
let catch x err =
{
run =
(fun ~reject ~accept s ->
x.run s ~accept ~reject:(fun p -> (err p).run ~reject ~accept s));
}
[@@inline]
include Monad.Make (struct
type 'a t = 'a knowledge
let return x : 'a t = { run = (fun ~reject:_ ~accept s -> accept x s) }
[@@inline]
let bind : 'a t -> ('a -> 'b t) -> 'b t =
fun x f ->
{
run =
(fun ~reject ~accept s ->
x.run s ~reject ~accept:(fun x s -> (f x).run ~reject ~accept s));
}
[@@inline]
let map : 'a t -> f:('a -> 'b) -> 'b t =
fun x ~f ->
{
run =
(fun ~reject ~accept s ->
x.run s ~reject ~accept:(fun x s -> accept (f x) s));
}
[@@inline]
let map = `Custom map
end)
end
open Knowledge.Syntax
module Slot = struct
type ('p, 'r) action = { run : Oid.t -> 'r; pid : pid }
type (+'a, 'p) t = {
cls : ('a, unit) cls;
dom : 'p Domain.t;
key : 'p Dict.Key.t;
name : Name.t;
desc : string option;
promises : (pid, ('p, unit knowledge) action) Hashtbl.t;
watchers : (pid, ('p, 'p -> unit knowledge) action) Hashtbl.t;
}
type pack = Pack : ('a, 'p) t -> pack
let repository = Hashtbl.create (module Name)
let register slot =
Hashtbl.update repository slot.cls.name ~f:(function
| None -> [ Pack slot ]
| Some xs -> Pack slot :: xs)
let enum { Class.name } = Hashtbl.find_multi repository name
let declare ?(public = false) ?desc ?persistent ?package cls name
(dom : 'a Domain.t) =
let name = Registry.add_slot ?desc ?package name in
let key = Dict.Key.create ~name dom.inspect in
if public then Registry.update_class ~cls:cls.Class.name ~slot:name;
Option.iter persistent (Record.register_persistent key);
Record.register_domain key dom;
let promises = Hashtbl.create (module Pid) in
let watchers = Hashtbl.create (module Pid) in
let cls = Class.refine cls () in
let slot = { cls; dom; key; name; desc; promises; watchers } in
register slot;
slot
let cls x = x.cls
let domain x = x.dom
let name { name } = name
let desc x = match x.desc with None -> "no description" | Some s -> s
end
type (+'a, 'p) slot = ('a, 'p) Slot.t
module Value = struct
type +'a t = 'a value
(* we could use an extension variant or create a new OCaml object
instead of incrementing a second, but they are less reliable
and heavier *)
let next_second =
let current = ref Int63.zero in
fun () ->
Int63.incr current;
!current
let empty cls = { cls; data = Record.empty; time = next_second () }
let is_empty { data } = Record.is_empty data
let order { data = x } { data = y } = Record.order x y
let refine { data; cls; time } s = { data; time; cls = Class.refine cls s }
let cls { cls } = cls
let create cls data = { cls; data; time = next_second () }
let put { Slot.key; dom } v x =
if Domain.is_empty dom x then v
else { v with data = Record.put key v.data x; time = next_second () }
let get { Slot.key; dom } { data } = Record.get key dom data
let has { Slot.key; dom } { data } =
not @@ Domain.is_empty dom @@ Record.get key dom data
let strip : type a b. (a value, b value) Type_equal.t -> (a, b) Type_equal.t
=
fun T -> T
type strategy = [ `drop_left | `drop_right ]
let merge ?(on_conflict = `drop_old) x y =
let on_conflict : strategy =
match on_conflict with
| `drop_old ->
if Int63.(x.time < y.time) then `drop_left else `drop_right
| `drop_new ->
if Int63.(x.time < y.time) then `drop_right else `drop_left
| #strategy as other -> other
in
match Record.try_merge ~on_conflict x.data y.data with
| Ok data -> { x with time = next_second (); data }
| Error _ ->
(* try_merge fails only if `fail is passed *)
assert false
let join x y =
match Record.join x.data y.data with
| Ok data -> Ok { x with data; time = next_second () }
| Error c -> Error c
module type S = sig
type t [@@deriving sexp]
val empty : t
val domain : t domain
include Base.Comparable.S with type t := t
include Binable.S with type t := t
end
module Comparator = Base.Comparator.Make1 (struct
type 'a t = 'a value
let sexp_of_t = sexp_of_opaque
let compare x y =
match Record.order x.data y.data with
| LT -> -1
| EQ -> 0
| GT -> 1
| NC -> Int63.compare x.time y.time
end)
include Comparator
type 'a ord = comparator_witness
let derive : type a b.
(a, b) cls ->
(module S
with type t = (a, b) cls t
and type comparator_witness = (a, b) cls ord) =
fun cls ->
let module R = struct
type t = (a, b) cls value
let sexp_of_t x = Record.sexp_of_t x.data
let t_of_sexp = opaque_of_sexp
let empty = empty cls
include
Binable.Of_binable
(Record)
(struct
type t = (a, b) cls value
let to_binable : 'a value -> Record.t = fun { data } -> data
let of_binable : Record.t -> 'a value =
fun data -> { cls; data; time = next_second () }
end) [@@warning "-D"]
type comparator_witness = Comparator.comparator_witness
include Base.Comparable.Make_using_comparator (struct
type t = (a, b) cls value
let sexp_of_t = sexp_of_t
include Comparator
end)
let domain =
Domain.define ~empty ~order ~join ~inspect:sexp_of_t
(Name.unqualified (Class.name cls))
end in
(module R)
let pp ppf x = Record.pp ppf x.data
let pp_slots slots ppf x = Record.pp_slots slots ppf x.data
end
module Class = struct
include Class
let property = Slot.declare
module Abstract = struct
let property = Slot.declare
end
end
let get () : state knowledge =
{ run = (fun ~reject:_ ~accept s -> accept s s) }
[@@inline]
let put s = { run = (fun ~reject:_ ~accept _ -> accept () s) } [@@inline]
let gets f = { run = (fun ~reject:_ ~accept s -> accept (f s) s) }
[@@inline] [@@specialise]
let update f = { run = (fun ~reject:_ ~accept s -> accept () (f s)) }
[@@inline] [@@specialise]
let objects { Class.name } =
get () >>| fun { classes } ->
match Map.find classes name with
| None -> Env.empty_class
| Some objs -> objs
[@@inline]
let update_objects { Class.name } f =
update @@ fun state ->
let objs =
f
@@
match Map.find state.classes name with
| None -> Env.empty_class
| Some objs -> objs
in
{ state with classes = Map.set state.classes name objs }
[@@specialise]
let map_update_objects { Class.name } f =
get () >>= fun state ->
let objs =
match Map.find state.classes name with
| None -> Env.empty_class
| Some objs -> objs
in
f objs @@ fun objs res ->
put { state with classes = Map.set state.classes name objs } >>| fun () ->
res
[@@specialise]
module Object = struct
type +'a t = 'a obj
type 'a ord = Oid.comparator_witness
let with_new_object objs f =
let next = Oid.succ objs.Env.last in
f next { objs with Env.last = next }
let create : ('a, _) cls -> 'a obj Knowledge.t =
fun cls ->
objects cls >>= fun objs ->
with_new_object objs @@ fun obj objs ->
( update @@ function
| { classes } as s ->
{ s with classes = Map.set classes ~key:cls.name ~data:objs } )
>>| fun () -> obj
let null _ = Oid.zero
let is_null = Oid.equal Oid.zero
(* an interesting question, what we shall do if
1) an symbol is deleted
2) a data object is deleted?
So far we ignore both deletes.
*)
let delete { Class.name } obj =
update @@ function
| { classes } as s ->
{
s with
classes =
Map.change classes name ~f:(function
| None -> None
| Some objs ->
Some { objs with vals = Oid.Tree.remove objs.vals obj });
}
let scoped cls scope =
create cls >>= fun obj ->
scope obj >>= fun r ->
delete cls obj >>| fun () -> r
let do_intern =
let is_public { package } obj { Env.pubs } =
match Map.find pubs package with
| None -> false
| Some pubs -> Set.mem pubs obj
in
let unchanged id = Knowledge.return id in
let publicize { package } obj : Env.objects -> Env.objects =
fun objects ->
{
objects with
pubs =
Map.update objects.pubs package ~f:(function
| None -> Set.singleton (module Oid) obj
| Some pubs -> Set.add pubs obj);
}
in
let createsym ~public name classes clsid objects s =
with_new_object objects @@ fun obj objects ->
let vals =
Oid.Tree.update_with objects.vals obj
~has:(fun info -> { info with name = Some name })
~nil:(fun () -> { noinfo with name = Some name })
in
let objs = Map.add_exn objects.objs name obj in
let objects = { objects with objs; vals } in
let objects = if public then publicize name obj objects else objects in
put { s with classes = Map.set classes clsid objects } >>| fun () -> obj
in
fun ?(public = false) ?desc:_ name { Class.name = id } ->
get () >>= fun ({ classes } as s) ->
let objects =
match Map.find classes id with
| None -> Env.empty_class
| Some objs -> objs
in
match Map.find objects.objs name with
| None -> createsym ~public name classes id objects s
| Some obj when not public -> unchanged obj
| Some obj ->
if is_public name obj objects then unchanged obj
else
let objects = publicize name obj objects in
put { s with classes = Map.set classes id objects } >>| fun () ->
obj
(* any [:] in names here are never treated as separators,
contrary to [read], where they are, and [do_intern] where
a leading [:] in a name will be left for keywords *)
let intern ?public ?desc ?package name cls =
match package with
| Some package ->
do_intern ?public ?desc (Name.Full.create ~package name) cls
| None ->
get () >>= fun { Env.package } ->
let name =
{ package; name = Name.normalize_name `Literal ~package name }
in
do_intern ?public ?desc name cls
let uninterned_repr cls obj = Format.asprintf "#<%s %a>" cls Oid.pp obj
let to_string { Class.name = cls as cname } { Env.package; classes } obj =
let cls =
if String.equal package (Name.package cls) then Name.unqualified cls
else Name.to_string cls
in
match Map.find classes cname with
| None -> uninterned_repr cls obj
| Some { Env.vals } -> (
match Oid.Tree.find vals obj with
| Some { name = Some fname } ->
if String.equal fname.package package then fname.name
else Name.Full.to_string fname
| _ -> uninterned_repr cls obj)
let repr cls obj =
if is_null obj then !!"nil"
else get () >>| fun env -> to_string cls env obj
let read cls = function
| "nil" -> !!(null cls)
| input -> (
try
Scanf.sscanf input "#<%s %s@>" @@ fun _ obj ->
Knowledge.return (Oid.of_string obj)
with _ ->
get () >>= fun { Env.package } ->
do_intern (Name.Full.read ~package input) cls)
let cast : type a b. (a obj, b obj) Type_equal.t -> a obj -> b obj =
fun Type_equal.T x -> x
let id x = Oid.to_int63 x
module type S = sig
type t [@@deriving sexp]
include Base.Comparable.S with type t := t
include Binable.S with type t := t
end
let derive : type a.
(a, _) cls ->
(module S with type t = a obj and type comparator_witness = a ord) =
fun _ ->
let module Comparator = struct
type t = a obj
let sexp_of_t = Oid.sexp_of_t
let t_of_sexp = Oid.t_of_sexp
type comparator_witness = a ord
let comparator = Oid.comparator
end in
let module R = struct
include Comparator
include
Binable.Of_binable
(Oid)
(struct
type t = a obj
let to_binable = Fn.id
let of_binable = Fn.id
end) [@@warning "-D"]
include Base.Comparable.Make_using_comparator (Comparator)
end in
(module R)
end
type conflict +=
| Non_monotonic_update of {
slot : Name.t;
repr : string;
error : Conflict.t;
trace : Stdlib.Printexc.raw_backtrace;
}
let () =
Conflict.register_printer (function
| Non_monotonic_update { slot; repr; error; trace } ->
Option.some
@@ Format.asprintf
"Unable to update the slot %a of %s,\n%a\nBacktrace:\n%s" Name.pp
slot repr Conflict.pp error
(Stdlib.Printexc.raw_backtrace_to_string trace)
| _ -> None)
let non_monotonic slot obj error trace =
Object.repr (Slot.cls slot) obj >>= fun obj ->
Knowledge.fail
(Non_monotonic_update { slot = Slot.name slot; repr = obj; error; trace })
let commit : type a p. (a, p) slot -> a obj -> p -> unit Knowledge.t =
fun slot obj x ->
get () >>= function
| { classes } as s -> (
let ({ Env.vals } as objs) =
match Map.find classes slot.cls.name with
| None -> Env.empty_class
| Some objs -> objs
in
try
put
{
s with
classes =
Map.set classes ~key:slot.cls.name
~data:
{
objs with
vals =
Oid.Tree.update_with vals obj
~nil:(fun () ->
{ noinfo with data = Record.(put slot.key empty x) })
~has:(fun info ->
match
Record.commit slot.dom slot.key info.data x
with
| Ok data -> { info with data }
| Error err -> raise (Record.Merge_conflict err));
};
}
with Record.Merge_conflict err ->
non_monotonic slot obj err @@ Stdlib.Printexc.get_raw_backtrace ())
let notify { Slot.watchers } obj data =
Hashtbl.data watchers
|> Knowledge.List.iter ~f:(fun { Slot.run } -> run obj data)
let provide : type a p. (a, p) slot -> a obj -> p -> unit Knowledge.t =
fun slot obj x ->
if Object.is_null obj || Domain.is_empty slot.dom x then Knowledge.return ()
else commit slot obj x >>= fun () -> notify slot obj x
let pids = ref Pid.zero
type conflict += Empty : ('a, 'b) slot -> conflict | Reject : conflict
let reject () = Knowledge.fail Reject
let guard cnd = if not cnd then reject () else Knowledge.return ()
let proceed ~unless:cnd = guard (not cnd)
let on cnd yes = if cnd then yes else reject ()
let unless cnd no = if cnd then reject () else no
let with_empty ~missing scope =
Knowledge.catch (scope ()) (function
| Empty _ | Reject -> Knowledge.return missing
| other -> Knowledge.fail other)
let register_watcher (type a b) (s : (a, b) slot) run =
Pid.incr pids;
let pid = !pids in
Hashtbl.add_exn s.watchers pid { run; pid };
pid
let register_promise (type a b) (s : (a, b) slot) run =
Pid.incr pids;
let pid = !pids in
Hashtbl.add_exn s.promises pid { run; pid };
pid
let remove_promise (s : _ slot) pid = Hashtbl.remove s.promises pid
let remove_watcher (s : _ slot) pid = Hashtbl.remove s.watchers pid
let wrap (s : _ slot) get obj =
let missing = Domain.empty s.dom in
with_empty ~missing @@ fun () -> get obj
let promising s ~promise:get scoped =
let pid =
register_promise s @@ fun obj ->
wrap s get obj >>= fun x ->
if Domain.is_empty s.dom x then Knowledge.return () else provide s obj x
in
scoped () >>= fun r ->
remove_promise s pid;
Knowledge.return r
let promise s get =
ignore @@ register_promise s
@@ fun obj ->
wrap s get obj >>= fun x ->
if Domain.is_empty s.dom x then Knowledge.return () else provide s obj x
let uid { Slot.name } = name
type slot_status = Sleep | Awoke | Ready of Dict.record
let is_empty { Slot.dom; key } v = Domain.is_empty dom (Record.get key dom v)
[@@inline]
let status : ('a, _) slot -> 'a obj -> slot_status knowledge =
fun slot obj ->
objects slot.cls >>| fun { vals } ->
match Oid.Tree.find_exn vals obj with
| exception Stdlib.Not_found -> Sleep
| { data; comp = slots } -> (
match Map.find slots (uid slot) with
| Some (Work _) -> Awoke
| other -> (
match (other, Record.is_empty data) with
| Some (Work _), _ -> assert false
| None, true -> Sleep
| Some Done, true -> Ready Record.empty
| Some Done, false -> Ready data
| None, false -> if is_empty slot data then Sleep else Ready data))
let update_slot : ('a, _) slot -> 'a obj -> _ -> unit knowledge =
fun slot obj f ->
update_objects slot.cls @@ fun ({ vals } as objs) ->
let vals =
Oid.Tree.update_with vals obj
~nil:(fun () ->
{ noinfo with comp = Map.singleton (module Name) (uid slot) (f None) })
~has:(fun info ->
{ info with comp = Map.update info.comp (uid slot) ~f })
in
{ objs with vals }
let enter_slot : ('a, _) slot -> 'a obj -> unit knowledge =
fun s x ->
update_slot s x @@ function
| Some _ -> assert false
| None -> Work { waiting = Pid.Tree.empty; current = Pid.Tree.empty }
let leave_slot : ('a, 'p) slot -> 'a obj -> unit Knowledge.t =
fun s x ->
update_slot s x @@ function Some (Work _) -> Done | _ -> assert false
let update_work s x f =
update_slot s x @@ function Some (Work w) -> f w | _ -> assert false
let enter_promise s x p =
update_work s x @@ fun { waiting; current } ->
Work { waiting; current = Pid.Tree.set current p () }
let leave_promise s x p =
update_work s x @@ fun { waiting; current } ->
Work { waiting; current = Pid.Tree.remove current p }
let enqueue_promises s x =
update_work s x @@ fun { waiting; current } ->
Work
{ current; waiting = Pid.Tree.merge current waiting ~f:(fun _ _ _ -> ()) }
let no_work = Env.Work { waiting = Pid.Tree.empty; current = Pid.Tree.empty }
let dequeue_waiting : ('a, 'p) slot -> 'a obj -> _ Knowledge.t =
fun s x ->
map_update_objects s.cls @@ fun ({ vals } as objs) k ->
let ({ Env.comp = works } as info) = Oid.Tree.find_exn vals x in
Map.find_exn works (uid s) |> function
| Env.Done -> assert false
| Env.Work { waiting } ->
let waiting =
Pid.Tree.fold waiting ~init:[] ~f:(fun p () ps ->
Hashtbl.find_exn s.Slot.promises p :: ps)
in
let info = { info with comp = Map.set works (uid s) no_work } in
let objs = { objs with vals = Oid.Tree.set vals x info } in
k objs waiting
let initial_promises { Slot.promises } = Hashtbl.data promises
let current : type a p. (a, p) slot -> a obj -> p Knowledge.t =
fun slot id ->
objects slot.cls >>| fun { Env.vals } ->
match Oid.Tree.find_exn vals id with
| exception Stdlib.Not_found -> slot.dom.empty
| { data } -> Record.get slot.key slot.dom data
let rec collect_inner : ('a, 'p) slot -> 'a obj -> _ -> _ =
fun slot obj promises ->
current slot obj >>= fun was ->
Knowledge.List.iter promises ~f:(fun { Slot.run; pid } ->
enter_promise slot obj pid >>= fun () ->
run obj >>= fun () -> leave_promise slot obj pid)
>>= fun () ->
dequeue_waiting slot obj >>= fun waiting ->
match waiting with
| [] -> Knowledge.return ()
| promises -> (
current slot obj >>= fun now ->
match slot.dom.order now was with
| EQ | LT -> Knowledge.return ()
| GT | NC -> collect_inner slot obj promises)
let collect : type a p. (a, p) slot -> a obj -> p Knowledge.t =
fun slot id ->
if Object.is_null id then !!(Domain.empty slot.dom)
else
status slot id >>= function
| Ready v -> Knowledge.return @@ Record.get slot.key slot.dom v
| Awoke -> enqueue_promises slot id >>= fun () -> current slot id
| Sleep ->
enter_slot slot id >>= fun () ->
collect_inner slot id (initial_promises slot) >>= fun () ->
leave_slot slot id >>= fun () -> current slot id
let observe s run = ignore @@ register_watcher s run
let observing s ~observe:run scoped =
let pid = register_watcher s run in
scoped () >>= fun r ->
remove_watcher s pid;
Knowledge.return r
let require (slot : _ slot) obj =
collect slot obj >>= fun x ->
if Domain.is_empty slot.dom x then Knowledge.fail (Empty slot) else !!x
let resolve slot obj = collect slot obj >>| Opinions.choice
let suggest agent slot obj x =
current slot obj >>= fun opinions ->
provide slot obj (Opinions.add agent x opinions)
let wrap_opinion get obj =
with_empty ~missing:None @@ fun () -> get obj >>| Option.some
let propose agent s get =
ignore @@ register_promise s
@@ fun obj ->
wrap_opinion get obj >>= function
| None -> Knowledge.return ()
| Some opinions -> suggest agent s obj opinions
let proposing agent s ~propose:get scoped =
let pid =
register_promise s @@ fun obj ->
wrap_opinion get obj >>= function
| None -> Knowledge.return ()
| Some opinions -> suggest agent s obj opinions
in
scoped () >>= fun r ->
remove_promise s pid;
Knowledge.return r
module Domain = struct
include Domain
let inspect_obj name x =
Sexp.Atom (Format.asprintf "#<%s %a>" name Oid.pp x)
let obj { Class.name } =
let name = Name.to_string name in
total ~inspect:(inspect_obj name) ~empty:Oid.zero ~order:Oid.compare name
end
module Order = Order
module Persistent = Persistent
module Symbol = struct
let intern = Object.intern
let keyword = keyword_package
let in_package package f =
get () >>= function
| { Env.package = old_package } as s ->
put { s with package } >>= fun () ->
f () >>= fun r ->
update (fun s -> { s with package = old_package }) >>| fun () -> r
exception Import of fullname * fullname [@@deriving sexp_of]
let intern_symbol name obj cls =
Knowledge.return Env.{ cls with objs = Map.add_exn cls.objs name obj }
(* imports names inside a class.
All names that [needs_import] will be imported
into the [package]. If the [package] already had
the same name but with different value, then a
[strict] import will raise an error, otherwise it
will be overwritten with the new value.
*)
let import_class ~strict ~package ~needs_import :
Env.objects -> Env.objects knowledge =
fun cls ->
Oid.Tree.to_sequence cls.vals
|> Knowledge.Seq.fold ~init:cls ~f:(fun cls (obj, (info : Env.info)) ->
match info.name with
| None -> Knowledge.return cls
| Some sym ->
if not (needs_import cls sym obj) then Knowledge.return cls
else
let obj' =
match Map.find cls.objs { package; name = sym.name } with
| None -> Oid.zero
| Some obj' -> obj'
in
if (not strict) || Oid.(obj' = zero || obj' = obj) then
intern_symbol sym obj cls
else
let info = Oid.Tree.find_exn cls.vals obj' in
let sym' = Option.value_exn info.name in
Knowledge.fail (Import (sym, sym')))
let package_exists package =
Map.exists ~f:(fun { Env.objs } ->
Map.existsi objs ~f:(fun ~key:name ~data:_ ->
String.equal package name.package))
let name_exists name = Map.exists ~f:(fun { Env.objs } -> Map.mem objs name)
exception Not_a_package of string [@@deriving sexp_of]
exception Not_a_symbol of fullname [@@deriving sexp_of]
let check_name classes = function
| `Pkg pkg ->
if package_exists pkg classes then Knowledge.return ()
else Knowledge.fail (Not_a_package pkg)
| `Sym sym ->
if name_exists sym classes then Knowledge.return ()
else Knowledge.fail (Not_a_symbol sym)
let current = function
| Some p -> Knowledge.return (Name.normalize_package `Literal p)
| None -> gets (fun s -> s.package)
let import ?(strict = false) ?package imports : unit knowledge =
current package >>= fun package ->
get () >>= fun s ->
Knowledge.List.fold ~init:s.classes imports ~f:(fun classes name ->
let name =
match Name.find_separator name with
| None -> `Pkg name
| Some _ -> `Sym (Name.Full.read name)
in
let needs_import { Env.pubs } sym obj =
match name with
| `Sym s -> [%compare.equal: fullname] sym s
| `Pkg p -> (
match Map.find pubs p with
| None -> false
| Some pubs -> Set.mem pubs obj)
in
check_name classes name >>= fun () ->
Map.to_sequence classes
|> Knowledge.Seq.fold ~init:classes
~f:(fun classes (clsid, objects) ->
import_class ~strict ~package ~needs_import objects
>>| fun objects -> Map.set classes clsid objects))
>>= fun classes -> put { s with classes }
let package = get () >>| fun { Env.package } -> package
let set_package name = update @@ fun s -> { s with package = name }
end
module Syntax = struct
include Knowledge.Syntax
include Knowledge.Let
let ( --> ) x p = collect p x
let ( <-- ) p f = promise p f
let ( // ) c s = Object.read c s
let ( -->? ) x p =
collect p x >>= function
| None -> Knowledge.fail (Empty p)
| Some x -> !!x
let ( >>=? ) x f =
{
run =
(fun ~reject ~accept s ->
x.run s ~reject ~accept:(fun x s ->
match x with
| None -> accept None s
| Some x -> (f x).run ~accept ~reject s));
}
[@@inline] [@@specialise]
let ( >>|? ) x f =
{
run =
(fun ~reject ~accept s ->
x.run s ~reject ~accept:(fun x s ->
match x with None -> accept None s | Some x -> accept (f x) s));
}
[@@inline] [@@specialise]
let ( let*? ) = ( >>=? )
let ( let+? ) = ( >>|? )
let ( and+ ) x y =
{
run =
(fun ~reject ~accept s ->
x.run s ~reject ~accept:(fun x s ->
y.run s ~reject ~accept:(fun y s -> accept (x, y) s)));
}
[@@inline] [@@specialise]
let ( and* ) = ( and+ )
let ( .$[] ) v s = Value.get s v
let ( .$[]<- ) v s x = Value.put s v x
let ( .?[] ) v s =
match v.$[s] with Some v -> !!v | None -> Knowledge.fail (Empty s)
let ( .![] ) v s =
let r = v.$[s] in
if Domain.is_empty (Slot.domain s) r then Knowledge.fail (Empty s)
else !!r
end
module type S = sig
include Monad.S with type 'a t = 'a knowledge and module Syntax := Syntax
include
Monad.Fail.S with type 'a t := 'a knowledge and type 'a error = conflict
end
include (Knowledge : S)
let compute_value : type a p. (a, p) cls -> p obj -> unit knowledge =
fun cls obj ->
Slot.enum cls
|> Base.List.filter ~f:(function Slot.Pack { promises } ->
not (Hashtbl.is_empty promises))
|> List.iter ~f:(fun (Slot.Pack s) -> ignore_m @@ collect s obj)
let get_value cls obj =
compute_value cls obj >>= fun () ->
objects cls >>| fun { Env.vals } ->
match Oid.Tree.find_exn vals obj with
| exception Stdlib.Not_found -> Value.empty cls
| { data = x } -> Value.create cls x
let run cls obj s =
(obj >>= get_value cls).run s
~reject:(fun err -> Error err)
~accept:(fun x s -> Ok (x, s))
let pp_fullname ~package ppf { package = p; name } =
if String.equal package p then Format.fprintf ppf "%s" name
else Format.fprintf ppf "%s:%s" p name
let pp_state ppf { Env.classes; package } =
Format.fprintf ppf "@[<v0>(in-package %s)@;" package;
Map.iteri classes ~f:(fun ~key:name ~data:{ vals } ->
if not (Oid.Tree.is_empty vals) then (
Format.fprintf ppf "(in-class %a)@;" (pp_fullname ~package)
(Name.full name);
Format.fprintf ppf "@[<v>";
Oid.Tree.iter vals ~f:(fun oid { data; name } ->
if not (Dict.is_empty data) then
let () =
match name with
| None -> Format.fprintf ppf "@[<hv2>(%a@ " Oid.pp oid
| Some name ->
Format.fprintf ppf "@[<hv2>(%a@ " (pp_fullname ~package)
name
in
Format.fprintf ppf "%a)@]@;" Record.pp_hum (Dict.sexp_of_t data));
Format.fprintf ppf "@]"));
Format.fprintf ppf "@]"
module Io = struct
type version = V1 | V2 [@@deriving bin_io]
module List = Base.List
type data = {
key : Oid.t;
sym : fullname option;
data : (Name.t * string) array;
comp : Name.t list;
}
[@@deriving bin_io]
type v1 = data list [@@deriving bin_io]
type v2 = Oid.t * v1 [@@deriving bin_io]
type 'a objects = 'a [@@deriving bin_io]
type 'a payload = (Name.t * 'a) list [@@deriving bin_io]
type 'a canonical = { version : version; payload : 'a payload }
[@@deriving bin_io]
let magic = "CMU:KB"
let check_magic data =
let len = String.length magic in
if String.(Bigstring.To_string.subo ~len data <> magic) then
invalid_arg "Not a valid knowledge base";
len
let make_value data =
let init = Record.empty in
Array.fold data ~init ~f:(fun record (name, data) ->
match Hashtbl.find Record.io name with
| None -> record
| Some { Record.reader = read } -> read data record)
let expand_comp comp =
List.fold comp
~init:(Map.empty (module Name))
~f:(fun works slot -> Map.add_exn works slot Env.Done)
let add_object ({ Env.vals; objs } as self) { key; sym; data; comp } =
let self =
{
self with
vals =
Oid.Tree.set vals key
{ data = make_value data; comp = expand_comp comp; name = sym };
}
in
match sym with
| None -> self
| Some s -> { self with objs = Map.add_exn objs s key }
let names_in_syms =
Oid.Tree.fold
~init:(Set.empty (module String))
~f:(fun _ { package; name } names ->
Set.add (Set.add names package) name)
(* let names = Map.fold
* ~init:(Set.empty (module String))
* ~f:(fun ~key:_ ~data:{Env.syms} names ->
* Set.union names @@
* names_in_syms syms) *)
let serialize_record record =
let fields =
Dict.foreach record ~init:[]
{
visit =
(fun k _ xs ->
let name = Record.Key.name k in
match Hashtbl.find Record.io name with
| None -> xs
| Some { writer } -> (
match writer record with
| None -> xs
| Some data -> (name, data) :: xs));
}
in
let result = Array.of_list fields in
Array.sort result ~compare:(fun (k1, _) (k2, _) -> Name.compare k1 k2);
result
let collect_comps comp oid =
match Oid.Tree.find comp oid with
| None -> []
| Some works -> Map.keys works
let to_canonical { Env.classes } : v2 canonical =
let payload =
Map.to_alist classes
|> List.map ~f:(fun (cid, { Env.vals; last }) ->
let data =
Oid.Tree.to_list vals
|> List.filter_map ~f:(fun (oid, { Env.data; name; comp }) ->
let data = serialize_record data in
let comp = Map.keys comp in
if Array.is_empty data && Option.is_none name then None
else Some { key = oid; sym = name; data; comp })
in
(cid, (last, data)))
in
{ version = V2; payload }
let init_last : state -> state =
fun state ->
{
state with
classes =
Map.map state.classes ~f:(fun cls ->
{
cls with
last =
(match Oid.Tree.max_elt cls.vals with
| None -> cls.last
| Some (k, _) -> Oid.succ k);
});
}
let of_canonical_v1 { payload } =
let init = Map.empty (module Name) in
let classes =
List.fold payload ~init ~f:(fun state (cid, objs) ->
Map.add_exn state ~key:cid
~data:(List.fold objs ~f:add_object ~init:Env.empty_class))
in
init_last { empty with classes }
let of_canonical_v2 { payload } =
let init = Map.empty (module Name) in
let classes =
List.fold payload ~init ~f:(fun state (cid, (last, objs)) ->
let init = { Env.empty_class with last } in
Map.add_exn state ~key:cid
~data:(List.fold objs ~f:add_object ~init))
in
{ empty with classes }
let of_bigstring data =
let pos_ref = ref (check_magic data) in
let version = bin_read_version data ~pos_ref in
match version with
| V1 ->
of_canonical_v1
{ version; payload = bin_read_payload bin_read_v1 data ~pos_ref }
| V2 ->
of_canonical_v2
{ version; payload = bin_read_payload bin_read_v2 data ~pos_ref }
let load path =
let fd = Unix.openfile path Unix.[ O_RDONLY ] 0o400 in
try
let data =
Bigarray.array1_of_genarray
@@ Unix.map_file fd Bigarray.char Bigarray.c_layout false [| -1 |]
in
let r = of_bigstring data in
Unix.close fd;
r
with exn ->
Unix.close fd;
raise exn
let blit_canonical_to_bigstring repr buf =
Bigstring.From_string.blito ~src:magic ~dst:buf ();
let pos = String.length magic in
let _p = bin_write_canonical bin_write_v2 ~pos buf repr in
()
let to_bigstring state =
let repr = to_canonical state in
let size = String.length magic + bin_size_canonical bin_size_v2 repr in
let data = Bigstring.create size in
blit_canonical_to_bigstring repr data;
data
let save state path =
let repr = to_canonical state in
let size = String.length magic + bin_size_canonical bin_size_v2 repr in
let fd = Unix.openfile path Unix.[ O_RDWR; O_CREAT; O_TRUNC ] 0o660 in
try
let dim = [| size |] in
let buf =
Bigarray.array1_of_genarray
@@ Unix.map_file fd Bigarray.char Bigarray.c_layout true dim
in
blit_canonical_to_bigstring repr buf;
Unix.close fd
with exn ->
Unix.close fd;
raise exn
end
let save = Io.save
and load = Io.load
and to_bigstring = Io.to_bigstring
and of_bigstring = Io.of_bigstring
let objects cls =
objects cls >>| fun { vals } -> Sequence.of_list (Oid.Tree.keys vals)
module Context = struct
type 'a var = { nil : 'a knowledge; key : 'a Dict.Key.t }
let declare ?(inspect = sexp_of_opaque) ?package name init =
let name = Name.create ?package name in
{ nil = init; key = Dict.Key.create ~name inspect }
let set { key } x =
update @@ fun s -> { s with context = Dict.set key x s.context }
let get { key; nil } =
get () >>= fun { context = s } ->
match Dict.find key s with None -> nil | Some x -> !!x
let update v f = get v >>= fun x -> set v (f x)
let with_var v x f =
get v >>= fun x' ->
set v x >>= fun () ->
f () >>= fun r ->
set v x' >>| fun () -> r
end
module Rule = struct
type def = Registry.def
type doc = Registry.doc
let declare = Registry.start_rule
let require { Slot.name } = Registry.rule_require name
let provide { Slot.name } = Registry.rule_provide name
let dynamic = Registry.rule_dynamic
let comment = Registry.rule_comment
end
module Conflict = Conflict
module Agent = Agent
type 'a opinions = 'a Opinions.t
type agent = Agent.t
let sexp_of_conflict = Conflict.sexp_of_t
module Name = Name
type name = Name.t
module Documentation = Documentation
module Enum = struct
module type S = sig
type t
val declare : ?package:string -> string -> t
val read : ?package:string -> string -> t
val name : t -> Name.t
val unknown : t
val is_unknown : t -> bool
val domain : t domain
val persistent : t persistent
val hash : t -> int
val members : unit -> t list
include Base.Comparable.S with type t := t
include Binable.S with type t := t
include Stringable.S with type t := t
include Pretty_printer.S with type t := t
include Sexpable.S with type t := t
end
module Make () = struct
type t = Name.t [@@deriving bin_io, sexp]
let unknown = Name.of_string ":unknown"
let elements = Hash_set.of_list (module Name) [ unknown ]
let declare ?package name =
let name = Name.create ?package name in
if Hash_set.mem elements name then
invalid_argf
"Enum.declare: the element %s is already declared please choose a \
unique name"
(Name.to_string name) ();
Hash_set.add elements name;
name
let read ?package name =
let name = Name.read ?package name in
if not (Hash_set.mem elements name) then
invalid_argf "Enum.read: %s is not a member of the given enumeration."
(Name.to_string name) ();
name
let name x = x
let is_unknown = Name.equal unknown
let hash = Name.hash
let members () = Hash_set.to_list elements
include Base.Comparable.Make (Name)
include (Name : Stringable.S with type t := t)
include (Name : Pretty_printer.S with type t := t)
let domain = Domain.flat "enum" ~inspect:sexp_of_t ~empty:unknown ~equal
let persistent = Persistent.name
end
end
end
type 'a knowledge = 'a Knowledge.t
|