File: ConstantQSpectrograms.cpp

package info (click to toggle)
praat 6.4.27%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 206,060 kB
  • sloc: cpp: 1,409,811; ansic: 286,305; makefile: 946; python: 340; sh: 35
file content (175 lines) | stat: -rw-r--r-- 7,578 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
/* ConstantQLog2FSpectrogram.cpp
 * 
 * Copyright (C) 2021-2022 David Weenink
 * 
 * This code is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or (at
 * your option) any later version.
 * 
 * This code is distributed in the hope that it will be useful, but
 * WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this work. If not, see <http://www.gnu.org/licenses/>.
 */

#include "Formula.h"
#include "ConstantQSpectrograms.h"

Thing_implement (ConstantQLog2FSpectrogram, MultiSampledSpectrogram, 0);

void structConstantQLog2FSpectrogram :: v1_info () {
	ConstantQLog2FSpectrogram_Parent :: v1_info ();
	MelderInfo_writeLine (U"Frequency resolution in bins: ", frequencyResolutionInBins);
	MelderInfo_writeLine (U"Quality factor Q: ", ConstantQLog2FSpectrogram_getQualityFactor (this));
}

double structConstantQLog2FSpectrogram :: v_getValueAtSample (integer ifreq, integer iframe , int unit) const {
	FrequencyBin bin = frequencyBins.at [ifreq];
	const double value = bin -> v_getValueAtSample (iframe, 1, unit);
	return ( isdefined (value) ? our v_convertStandardToSpecialUnit (value, iframe, unit) : undefined );
}

double structConstantQLog2FSpectrogram :: v_myFrequencyUnitToHertz (double log2_f) const {
	return exp2 (log2_f);
}

double structConstantQLog2FSpectrogram :: v_hertzToMyFrequencyUnit (double f_hz) const {
	return ( f_hz > 0.0 ? log2 (f_hz) : undefined );
}

autoConstantQLog2FSpectrogram ConstantQLog2FSpectrogram_create (double tmin, double tmax, double f1, double fmax, integer numberOfBinsPerOctave, double frequencyResolutionInBins) {
	try {
		autoConstantQLog2FSpectrogram me = Thing_new (ConstantQLog2FSpectrogram);
		const double log2_dy = 1.0 / numberOfBinsPerOctave;
		const integer numberOfBins = Melder_iroundDown (log2 (fmax / f1) * numberOfBinsPerOctave);
		Melder_require (numberOfBins > 1,
			U"The number of bins should be larger than 1.");
		const double log2_ymin = log2 (f1);
		const double log2_f1 = log2_ymin + 0.5 * log2_dy, log2_ymax = log2 (fmax);		
		MultiSampledSpectrogram_init (me.get(), tmin, tmax, log2_ymin, log2_ymax, numberOfBins, log2_dy, log2_f1, frequencyResolutionInBins);
		return me;
	} catch (MelderError) {
		Melder_throw (U"Could not create ConstantQLog2FSpectrogram.");
	}
}

double ConstantQLog2FSpectrogram_getQualityFactor (ConstantQLog2FSpectrogram me) {
	const double a = exp2 (my frequencyResolutionInBins * my dx);
	return 1.0 / (a - 1.0 / a);
}

static void MultiSampledSpectrogram_setFrequencyTicks (MultiSampledSpectrogram me, Graphics g, double fmin, double fmax, double df) {
	double f = fmin;
	while (f <= fmax) {
		const double f_hz = my v_myFrequencyUnitToHertz (f);
		conststring32 f_string = Melder_fixed (f_hz, 1);
		Graphics_markLeft (g, f, false, true, false, f_string);
		f += df;
	}
}

void ConstantQLog2FSpectrogram_paint (ConstantQLog2FSpectrogram me, Graphics g, double tmin, double tmax, double fmin_hz, double fmax_hz, double dBRange, bool garnish) {
	Graphics_setInner (g);
	double fmin, fmax;	
	if (fmin_hz == 0.0 && fmax_hz == 0.0) {
		fmin = my xmin;
		fmax = my xmax;
	} else {
		fmin = ( fmin_hz > 0.0 ? my v_hertzToMyFrequencyUnit (fmin_hz) : my xmin );
		fmax = ( fmax_hz > 0.0 ? my v_hertzToMyFrequencyUnit (fmax_hz) : my xmin );
	}
	if (! Function_intersectRangeWithDomain (me, & fmin, & fmax))
		return;
	MultiSampledSpectrogram_paintInside (me, g, tmin, tmax, fmin, fmax, dBRange);
	Graphics_unsetInner (g);
	if (garnish) {
		Graphics_drawInnerBox (g);
		Graphics_textBottom (g, true, U"Time (s)");
		Graphics_marksBottom (g, 2, true, true, false);
		Graphics_inqWindow (g, & tmin, & tmax, & fmin, & fmax);
		MultiSampledSpectrogram_setFrequencyTicks (me, g, fmin, fmax, 1.0);
		Graphics_textLeft (g, true, U"Frequency (log__2_Hz)");
	}
}

autoConstantQLog2FSpectrogram ConstantQLog2FSpectrogram_translateSpectrum (ConstantQLog2FSpectrogram me, double fromTime, double toTime, double fromFrequency, double shiftNumberOfBins) {
	try {
		autoConstantQLog2FSpectrogram thee = Data_copy (me);
		if (shiftNumberOfBins == 0.0)
			return thee;
		Melder_require (fabs (shiftNumberOfBins) < my nx,
			U"The shift should not be larger than the number of frequency bins (", my nx, U").");
		fromFrequency = ( fromFrequency <= 0.0 ? (shiftNumberOfBins > 0.0 ? my x1 : my xmax) : my v_hertzToMyFrequencyUnit (fromFrequency) );
		if (shiftNumberOfBins > 0.0) {
			// start at the highest frequency and work down.
			const integer ifreqFrom = Sampled_xToHighIndex (me, fromFrequency);
			const integer int_shiftNumberofBins = shiftNumberOfBins;
			const integer lowestBin = std::max (1_integer, ifreqFrom - int_shiftNumberofBins);
			for (integer ifreq = my nx; ifreq >= lowestBin; ifreq --) {
				FrequencyBin to_bin = thy frequencyBins.at [ifreq];
				const integer from_index = ifreq - int_shiftNumberofBins;
				integer itmin, itmax;
				if (Sampled_getWindowSamples (to_bin, fromTime, toTime, & itmin, & itmax) > 0 && from_index > 0) {
					FrequencyBin from_bin = my frequencyBins.at [from_index];
					for (integer index = itmin; index <= itmax; index ++) {
						const double time = Sampled_indexToX (to_bin, index);
						const double newValue = FrequencyBin_getValueAtX (from_bin, time, kVector_valueInterpolation::SINC70);
						if (isdefined (newValue))
							to_bin -> z [1] [index] = newValue;
					}
				}
			}
		}
		
		return thee;	
	} catch (MelderError) {
		Melder_throw (me, U": shift not completed.");
	}
}

Thing_implement (GaborSpectrogram, MultiSampledSpectrogram, 0);

void structGaborSpectrogram :: v1_info () {
	MultiSampledSpectrogram_Parent :: v1_info ();
	MelderInfo_writeLine (U"Frequency resolution in bins: ", frequencyResolutionInBins);
}

void GaborSpectrogram_paint (GaborSpectrogram me, Graphics g, double tmin, double tmax, double fmin, double fmax, double dBRange, bool garnish) {
	Function_bidirectionalAutowindow (me, & fmin, & fmax);
	if (! Function_intersectRangeWithDomain (me, & fmin, & fmax))
		return;
	Graphics_setInner (g);
	MultiSampledSpectrogram_paintInside (me, g, tmin, tmax, fmin, fmax, dBRange);
	Graphics_unsetInner (g);
	if (garnish) {
		Graphics_drawInnerBox (g);
		Graphics_textBottom (g, true, U"Time (s)");
		Graphics_marksBottom (g, 2, true, true, false);
		Graphics_inqWindow (g, & tmin, & tmax, & fmin, & fmax);
		Graphics_marksLeft (g, 2, true, true, false);
		Graphics_textLeft (g, true, U"Frequency (Hz)");
	}
}

autoGaborSpectrogram GaborSpectrogram_create (double tmin, double tmax, double fmax, double filterBandwidth, double df) {
	try {
		autoGaborSpectrogram me = Thing_new (GaborSpectrogram);
		Melder_assert (filterBandwidth > 0.0);
		Melder_assert (df > 0.0);
		Melder_require (filterBandwidth <= fmax,
			U"The filter bandwidth should not exceed ", fmax, U".");
		const integer numberOfFrequencyBins = Melder_ifloor ((fmax - filterBandwidth) / df) + 1;
		const double f1 = 0.5 * (fmax - (numberOfFrequencyBins - 1) * df);
		const double frequencyResolutionBins = 0.5 * filterBandwidth / df;
		MultiSampledSpectrogram_init (me.get(), tmin, tmax, 0.0, fmax, numberOfFrequencyBins, df, f1, frequencyResolutionBins);
		return me;
	} catch (MelderError) {
		Melder_throw (U"Could not create GaborSpectrogram.");
	}
}

/* End of file ConstantQSpectrograms.cpp */