1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
|
/* DataModeler.cpp
*
* Copyright (C) 2014-2024 David Weenink, 2017 Paul Boersma
*
* This code is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This code is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* ainteger with this work. If not, see <http://www.gnu.org/licenses/>.
*/
#include "DataModeler.h"
#include "NUM2.h"
#include "NUMmachar.h"
#include "SVD.h"
#include "Strings_extensions.h"
#include "Sound_and_LPC_robust.h"
#include "Table_extensions.h"
#include "oo_DESTROY.h"
#include "DataModeler_def.h"
#include "oo_COPY.h"
#include "DataModeler_def.h"
#include "oo_EQUAL.h"
#include "DataModeler_def.h"
#include "oo_CAN_WRITE_AS_ENCODING.h"
#include "DataModeler_def.h"
#include "oo_WRITE_TEXT.h"
#include "DataModeler_def.h"
#include "oo_WRITE_BINARY.h"
#include "DataModeler_def.h"
#include "oo_READ_TEXT.h"
#include "DataModeler_def.h"
#include "oo_READ_BINARY.h"
#include "DataModeler_def.h"
#include "oo_DESCRIPTION.h"
#include "DataModeler_def.h"
#include "enums_getText.h"
#include "DataModeler_enums.h"
#include "enums_getValue.h"
#include "DataModeler_enums.h"
Thing_implement (DataModeler, Function, 2);
void structDataModeler :: v1_info () {
// skipping parent classes?
MelderInfo_writeLine (U" Time domain:");
MelderInfo_writeLine (U" Start time: ", xmin, U" seconds");
MelderInfo_writeLine (U" End time: ", xmax, U" seconds");
MelderInfo_writeLine (U" Total duration: ", xmax - xmin, U" seconds");
const double rSquared = DataModeler_getCoefficientOfDetermination (this, nullptr, nullptr);
double ndof, probability;
const double chisq = DataModeler_getChiSquaredQ (this, & probability, & ndof);
MelderInfo_writeLine (U" Fit: ", kDataModelerFunction_getText (type));
MelderInfo_writeLine (U" Number of data points: ", numberOfDataPoints);
MelderInfo_writeLine (U" Number of parameters: ", numberOfParameters);
MelderInfo_writeLine (U" Each data point has ",
(weighData == kDataModelerWeights::EQUAL_WEIGHTS ? U"the same weight (estimated)." :
( weighData == kDataModelerWeights::ONE_OVER_SIGMA ? U"a different weight (sigmaY)." :
( weighData == kDataModelerWeights::RELATIVE_ ? U"a different relative weight (Y_value/sigmaY)." :
U"a different weight (SQRT(sigmaY))." ) ) ));
MelderInfo_writeLine (U" Chi squared: ", chisq);
MelderInfo_writeLine (U" Number of degrees of freedom: ", ndof);
MelderInfo_writeLine (U" Probability: ", probability);
MelderInfo_writeLine (U" R-squared: ", rSquared);
for (integer ipar = 1; ipar <= numberOfParameters; ipar ++) {
if (parameters [ipar]. status == kDataModelerParameterStatus::FIXED_)
MelderInfo_writeLine (U" p [", ipar, U"] = ", parameters [ipar]. value, U" (FIXED)");
else {
const double sigma = DataModeler_getParameterStandardDeviation (this, ipar);
MelderInfo_writeLine (U" p [", ipar, U"] = ", parameters [ipar]. value, U"; sigma = ", sigma);
}
}
const double residualStdev = DataModeler_getResidualStandardDeviation (this);
MelderInfo_writeLine (U" Residual standard deviation: ", residualStdev);
}
inline long double scaleX_identity (DataModeler /* me */, double x) {
return x;
}
inline long double scaleX_centralize (DataModeler me, double x) {
/*
from interval [xmin, xmax] to interval [- (xmax + xmin)/2, + (xmax + xmin)/2]
*/
return x - 0.5 * (my xmin + my xmax);
}
static double constant_evaluate (DataModeler /* me */, double /* xin */, vector<structDataModelerParameter> p) {
return p [1]. value;
}
static void constant_evaluateBasisFunctions (DataModeler /* me */, double /* xin */, VEC terms) {
terms <<= 1.0;
}
static double linear_evaluate (DataModeler /* me */, double /* xin */, vector<structDataModelerParameter> /* p */) {
return undefined;
}
static void linear_evaluateBasisFunctions (DataModeler /* me */, double /* xin */, VEC terms) {
terms <<= undefined;
}
static void linear_evaluateDerivative (DataModeler /* me */, double /* xin */, vector<structDataModelerParameter> /* p */, VEC dydp) {
dydp <<= undefined;
}
static void polynome_evaluateBasisFunctions (DataModeler me, double x, VEC term) {
Melder_assert (term.size == my numberOfParameters);
const longdouble xs = my scaleX (me, x);
longdouble termp = term [1] = 1.0;
for (integer ipar = 2; ipar <= my numberOfParameters; ipar ++) {
termp *= xs;
term [ipar] = (double) termp;
}
}
static double polynomial_evaluate (DataModeler me, double x, vector<structDataModelerParameter> p) {
const longdouble xs = my scaleX (me, x);
longdouble xpi = 1.0, result = p [1]. value;
for (integer ipar = 2; ipar <= p.size; ipar ++) {
xpi *= xs;
result += p [ipar]. value * xpi;
}
return (double) result;
}
static void polynomial_evaluateDerivative (DataModeler me, double x, vector<structDataModelerParameter> p, VEC dydp) {
(void) p;
polynome_evaluateBasisFunctions (me, x, dydp);
}
long double legendre_scaleX (DataModeler me, double x) {
/*
Legendre functions are only defined on the domain [-1, 1]
*/
return (2.0 * x - my xmin - my xmax) / (my xmax - my xmin);
}
static double legendre_evaluate (DataModeler me, double x, vector<structDataModelerParameter> p) {
const longdouble xs = my scaleX (me, x);
longdouble result = p [1]. value;
if (p.size > 1) {
const longdouble twox = 2.0 * xs;
longdouble ptim1 = xs, ptim2 = 1.0, f2 = xs, d = 1.0;
result += p [2]. value * ptim1;
for (integer ipar = 3; ipar <= p.size; ipar ++) {
const longdouble f1 = d ++;
f2 += twox;
const longdouble pti = (f2 * ptim1 - f1 * ptim2) / d;
result += p [ipar]. value * pti;
ptim2 = ptim1;
ptim1 = pti;
}
}
return (double) result;
}
static void legendre_evaluateBasisFunctions (DataModeler me, double x, VEC term) {
Melder_assert (term.size == my numberOfParameters);
term [1] = 1.0;
const longdouble xs = my scaleX (me, x);
if (my numberOfParameters > 1) {
const longdouble twox = 2.0 * xs;
longdouble f2 = term [2] = xs, d = 1.0;
for (integer ipar = 3; ipar <= my numberOfParameters; ipar ++) {
const longdouble f1 = d ++;
f2 += twox;
term [ipar] = (double) ((f2 * term [ipar - 1] - f1 * term [ipar - 2]) / d);
}
}
}
static void legendre_evaluateDerivative (DataModeler me, double x, vector<structDataModelerParameter> p, VEC dydp) {
(void) p;
legendre_evaluateBasisFunctions (me, x, dydp);
}
static double sigmoid_plus_constant_evaluate (DataModeler me, double x, vector<structDataModelerParameter> p) {
Melder_assert (p.size == my numberOfParameters);
longdouble result = p [1]. value;
result += p [2]. value / (1.0 + exp (- (x - p [3]. value) / p [4]. value));
return (double) result;
}
static void sigmoid_plus_constant_evaluateDerivative (DataModeler me, double x, vector<structDataModelerParameter> p, VEC dydp) {
Melder_assert (p.size == my numberOfParameters);
/*
y(x;a,b,c,d) = a + b / (1+exp (-(x-c)/d));
Define e(x;c,d) = exp (-(x-c)/d) and n(x;c,d) = 1 + e(x;c,d)
Then y(x;a,b,c,d) = a + b / n(x;c,d)
First order derivatives of n(x;c,d):
dn/dc (x;c,d) = e(x;c,d) / d
dn/dd (x;c,d) = e(x;c,d) (x-c)/d^2
First order derivatives of y(x;a,b, c,d) w.r.t. a,c and d:
dy/da = 1
dy/db (x;a,b,c,d) = 1 / n(x;c,d)
dy/dc (x;a,b,c,d) = -b / n(x;c,d)^2 * dn/dc(x;c,d) = -b / n(x;c,d)^2 * e(x;c,d) / d
dy/dd (x;a,b,c,d) = -b / n(x;c,d)^2 * dn/dd(x;c,d) = -b / n(x;c,d)^2 * e(x;c,d) * (x-c) / d^2
= dy/dc (x;a,b,c,d) * (x-c) / d
*/
const double z = (x - p [3].value) / p [4].value;
const double expz = exp (- z);
const double denom = 1.0 + expz;
const double sigmoid = p [2]. value / denom;
dydp [1] = 1.0;
dydp [2] = 1.0 / denom;
dydp [3] = - sigmoid / denom * expz / p [4].value;
dydp [4] = dydp [3] * z;
}
static double sigmoid_evaluate (DataModeler me, double x, vector<structDataModelerParameter> p) {
Melder_assert (p.size == my numberOfParameters);
const double result = p [1]. value / (1.0 + exp (- (x - p [2]. value) / p [3]. value));
return result;
}
static void sigmoid_evaluateDerivative (DataModeler me, double x, vector<structDataModelerParameter> p, VEC dydp) {
Melder_assert (p.size == my numberOfParameters);
/*
y(x;a,b,c) = a / (1+exp (-(x-b)/c));
Define e(x;b,c) = exp (-(x-b)/c) and n(x;b,c) = 1 + e(x;b,c)
Then y(x;a,b,c) = a / n(x;b,c)
First order derivatives of n(x;b,c):
dn/db (x;b,c) = e(x;b,c) / c
dn/dc (x;b,c) = e(x;b,c) (x-b)/c^2
First order derivatives of y(x;a,b,c) w.r.t. a, b and c:
dy/da (x;a,b,c) = 1 / n(x;b,c)
dy/db (x;a,b,c) = -a / n(x;b,c)^2 * dn/db (x;b,c) = -a / n(x;b,c)^2 * e(x;b,c) / c
dy/dc (x;a,b,c) = -a / n(x;b,c)^2 * dn/dc (x;b,c) = -a / n(x;b,c)^2 * e(x;b,c) * (x-b)/c^2
= dy/db (x;a,b,c) * (x-b)/c
*/
const double z = (x - p [2].value) / p [3].value;
const double expz = exp (-z);
const double denom = 1.0 + expz;
const double sigmoid = p [1].value / denom;
dydp [1] = 1.0 / denom;
dydp [2] = - sigmoid / denom * expz / p [3].value;
dydp [3] = dydp [2] * z;
}
static double exponential_evaluate (DataModeler me, double x, vector<structDataModelerParameter> p) {
Melder_assert (p.size == my numberOfParameters);
const double xs = my scaleX (me, x);
return p [1]. value * exp (p [2]. value * xs);
}
static void exponential_evaluateDerivative (DataModeler me, double x, vector<structDataModelerParameter> p, VEC dydp) {
Melder_assert (p.size == my numberOfParameters && dydp.size == my numberOfParameters);
/*
y(x;a,b) = a*exp (b*x)
dy/da = exp (b*x)
dy/db = a*b*exp(b*x) = b * y
*/
const double xs = my scaleX (me, x);
dydp [1] = exp (p [2]. value * xs);
const double y = p [1]. value * dydp [1];
dydp [2] = p [2]. value * y;
}
static double exponential_plus_constant_evaluate (DataModeler me, double x, vector<structDataModelerParameter> p) {
Melder_assert (p.size >= 3);
const double xscaled = my scaleX (me, x);
return p [1]. value + p [2]. value * exp (p [3]. value * xscaled);
}
static void exponential_plus_constant_evaluateDerivative (DataModeler me, double x, vector<structDataModelerParameter> p, VEC dydp) {
Melder_assert (p.size >= 3 && dydp.size == my numberOfParameters);
/*
y(x;a,b,c) = a + b*exp (c*x)
dy/da = 1
dy/db = exp (c*x)
dy/dc = b*c*exp(c*x)
*/
dydp [1] = 1.0;
const double xs = my scaleX (me, x);
dydp [2] = exp (p [3].value * xs);
const double bexp = p [2]. value * dydp [2];
dydp [3] = p [3].value * bexp;
}
static void dummy_evaluateBasisFunctions (DataModeler /* me */, double /* x */, VEC term) {
term <<= undefined;
}
static autoVEC DataModeler_solveDesign (DataModeler me, constMAT const& design, constVEC const& y, autoMAT *covariance) {
Melder_require (design.nrow == y.size,
U"The design matrix and the estimate should have the same number of rows.");
autoSVD svd = SVD_createFromGeneralMatrix (design);
if (! NUMfpp)
NUMmachar ();
SVD_zeroSmallSingularValues (svd.get(), ( my tolerance > 0.0 ? my tolerance : my numberOfDataPoints * NUMfpp -> eps ));
autoVEC solution = SVD_solve (svd.get(), y);
if (covariance) {
autoMAT covar = SVD_getSquared (svd.get(), true);
*covariance = covar.move();
}
return solution;
}
/*
Model: y [i] = a * exp (b * x [i]), i=1..n, solve for a, b.
z(x) = log(y(x) = log(a) + b * x is linear model
Precondition: y [i] > 0 || y [i] < 0 for all i
*/
static void exponential_fit (DataModeler me) {
if (my parameters [1]. status == kDataModelerParameterStatus::FIXED_ && my parameters [2]. status == kDataModelerParameterStatus::FIXED_)
return;
autoVEC weights = DataModeler_getDataPointsWeights (me, my weighData, true);
double ymin, ymax;
DataModeler_getExtremaY (me, & ymin, & ymax);
Melder_require (ymin * ymax >= 0.0,
U"All function values should have the same sign.");
const double sign = ( ymin < 0.0 ? - 1.0 : 1.0 );
const double xtr = 0.5 * (my xmin + my xmax);
if (my parameters [1]. status == kDataModelerParameterStatus::FIXED_) {
/*
Model: z(x) = b * x, where z(x) = log(y) - log (a)
A minimization of the squared error in the log domain gives greater weight to small values.
To compensate, we weigh with the y value. Weisstein, Eric W. "Least Squares Fitting--Exponential." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/LeastSquaresFittingExponential.html
*/
autoMAT design = zero_MAT (my numberOfDataPoints, 1);
autoVEC yEstimate = raw_VEC (my numberOfDataPoints);
integer index = 0;
for (integer k = 1; k <= my numberOfDataPoints; k ++) {
if (my data [k]. status != kDataModelerData::INVALID) {
design [++ index] [1] = (my data [k]. x - xtr) * weights [k] * my data [k]. y;
yEstimate [index] = (log (my data [k]. y) - log (my parameters [1]. value)) * weights [k] * my data [k]. y;
}
}
Melder_require (index > 0,
U"Invalid data for model: log(y)-log(a) = b * x.");
design.resize (index, 1);
yEstimate.resize (index);
autoVEC solution = DataModeler_solveDesign (me, design.get(), yEstimate.get(), nullptr);
my parameters [2]. value = solution [1];
} else if (my parameters [2]. status == kDataModelerParameterStatus::FIXED_) {
/*
Model: y(x) = a * f(x), where f(x) = exp (b * x)
*/
autoMAT design = zero_MAT (my numberOfDataPoints, 1);
autoVEC yEstimate = raw_VEC (my numberOfDataPoints);
integer index = 0;
for (integer k = 1; k <= my numberOfDataPoints; k ++) {
if (my data [k].status != kDataModelerData::INVALID) {
design [++ index] [1] = exp (my parameters [2]. value * (my data [k].x - xtr)) * weights [k];
yEstimate [index] = my data [k].y * weights [k];
}
}
Melder_require (index > 0,
U"Invalid data for model: y(x) = a * f(x).");
design.resize (index, 1);
yEstimate.resize (index);
autoVEC solution = DataModeler_solveDesign (me, design.get(), yEstimate.get(), nullptr);
my parameters [1]. value = solution [1];
} else {
/*
Model z(x)= a' + b * x, where z(x) = log(y(x)) and a' = log(a)
A minimization of the squared error in the log domain gives greater weight to small values.
To compensate we weigh with the y value.
*/
autoMAT design = zero_MAT (my numberOfDataPoints, 2);
autoVEC yEstimate = raw_VEC (my numberOfDataPoints);
integer index = 0;
for (integer k = 1; k <= my numberOfDataPoints; k ++) {
if (my data [k].status != kDataModelerData::INVALID) {
const double sizeWeight = fabs (my data [k].y) * weights [k];
design [++ index] [1] = /* 1.0 * */ sizeWeight;
design [index] [2] = (my data [k].x - xtr) * sizeWeight;
yEstimate [index] = log (sign * my data [k].y) * sizeWeight;
}
}
Melder_require (index > 0,
U"Invalid data for model: log(y(x)) = a + b * x");
design.resize (index, 2);
yEstimate.resize (index);
autoVEC solution = DataModeler_solveDesign (me, design.get(), yEstimate.get(), nullptr);
const double a = exp (solution [1]);
my parameters [1]. value = sign * a;
my parameters [2]. value = solution [2];
}
DataModeler_setParameterCovariances (me);
}
/*
Model: y [i] = a + b * exp (c * x [i]), i=1..n, solve for a, b & c.
Solution according to Jean Jacquelin (2009), Régressions et équations intégrales, https://fr.scribd.com/doc/14674814/Regressions-et-equations-integrales,
pages 16-17.
Precondition: x [i] must be increasing.
*/
static void linear_exponent_evaluateBasisFunctions (DataModeler me, double xin, VEC term) {
Melder_assert (term.size >= 2); // our model is a two parameter one!
/*
From domain [xmin, xmax] to domain [-(xmax -xmin)/2, (xmax-xmin)/2]
*/
const double x = xin - 0.5 * (my xmin + my xmax);
term [1] = 1.0;
term [2] = exp (my parameters [3]. value * x);
}
static void exponential_plus_constant_fit (DataModeler me) {
Melder_assert (my numberOfParameters == 3);
if (my parameters [1].status == kDataModelerParameterStatus::FIXED_ && my parameters [2].status == kDataModelerParameterStatus::FIXED_ &&
my parameters [3].status == kDataModelerParameterStatus::FIXED_)
return;
if (my parameters [1].status == kDataModelerParameterStatus::FIXED_) {
/*
With fixed 'a', the model y(x) = a + b*exp(c*x) reduces to the exponential model:
z(x) = b * exp (c * x), where z(x) = y(x) - a, which has only 2 parameters to fit.
Create the new model and let it do all the checks.
*/
autoDataModeler thee = DataModeler_create (my xmin, my xmax, my numberOfDataPoints, my numberOfParameters - 1,
kDataModelerFunction::EXPONENTIAL);
for (integer k = 1; k <= my numberOfDataPoints; k ++) {
thy data [k] = my data [k];
if (thy data [k]. status != kDataModelerData::INVALID)
thy data [k]. y -= my parameters [1]. value; // yes, do it for valid and invalid data
}
DataModeler_fit (thee.get());
my parameters [2]. value = thy parameters [1]. value;
my parameters [3]. value = thy parameters [2]. value;
} else if (my parameters [3]. status == kDataModelerParameterStatus::FIXED_) {
if (my parameters [2]. status == kDataModelerParameterStatus::FIXED_) {
/*
With b & c fixed, the model reduces to a one parameter fit:
z(x) = a, where z(x) = y(x) - b * exp(c * x)
*/
autoDataModeler thee = DataModeler_create (my xmin, my xmax, my numberOfDataPoints, my numberOfParameters - 2,
kDataModelerFunction::LINEAR);
thy f_evaluate = constant_evaluate;
thy f_evaluateBasisFunctions = constant_evaluateBasisFunctions;
my parameters [1]. value = 0.0;
for (integer k = 1; k <= my numberOfDataPoints; k ++) {
thy data [k] = my data [k];
if (thy data [k]. status != kDataModelerData::INVALID)
thy data [k]. y -= my f_evaluate (me, thy data [k]. x, my parameters.get()); // z(x) = y(x) - b * exp(c * x)
}
DataModeler_fit (thee.get());
my parameters [1]. value = thy parameters [1]. value;
} else {
/*
Model: z(x) = a + b * f(x), where f(x) = exp (c * x).
TRICK: fit as linear model with the third parameter 'c' fixed!
We need the value of the third parameter to calculate f(x) in 'linear_exponent_evaluateBasisFunctions'.
We therefore extend only the parameters struct with one element without increasing the
numberofParameters value which stays at 2!
*/
autoDataModeler thee = DataModeler_create (my xmin, my xmax, my numberOfDataPoints, 2, kDataModelerFunction::LINEAR);
for (integer k = 1; k <= my numberOfDataPoints; k ++)
thy data [k] = my data [k];
thy parameters.resize (thy numberOfParameters + 1);
thy parameters [thy numberOfParameters + 1]. value = my parameters [3]. value;
thy parameters [thy numberOfParameters + 1]. status = kDataModelerParameterStatus::FIXED_EXTRA;
thy f_evaluate = exponential_plus_constant_evaluate;
thy f_evaluateBasisFunctions = linear_exponent_evaluateBasisFunctions;
DataModeler_fit (thee.get());
my parameters [1]. value = thy parameters [1]. value;
my parameters [2]. value = thy parameters [2]. value;
}
} else {
/*
Parameter 1 'a' and 3 'c' are not FIXED_.
First we determine c.
Model: z(x) = A * f1(x) + B * f2(x), where z(x) = y(x) - y [1], f1(x) = x - x [1], f2(x) = integral (x1, x, y(x)dx)
A = - a * c, B = c
It can be written as y[k]-y[1] = A(x[k]-x[1]) + B*S[k], where
S[k] = S[k-1] + 0.5(y[k]+y[k-1])*(x[k]-x[k-1]) with S[1] = 0;
The approximation S[k] = integral (x[1], x[k], y(x)dx) works best if the differences between
y[k] and y[k-1] are not too big!
*/
autoMAT design = zero_MAT (my numberOfDataPoints, 2);
autoVEC yEstimate = raw_VEC (my numberOfDataPoints);
autoVEC weights = DataModeler_getDataPointsWeights (me, my weighData, true);
/*
First row of design has only zero's, we skip it.
No need to scale the x[k]'s (as x[k]-(xmax+xmin)/2) because they always occur as a difference in the calculations below.
*/
integer kstart = 0;
while (++ kstart <= my numberOfDataPoints && my data [kstart].status == kDataModelerData::INVALID);
const longdouble x1 = my data [kstart].x, y1 = my data [kstart].y;
longdouble xkm1 = x1, ykm1 = y1, sk = 0.0;
integer index = 0;
for (integer k = kstart; k <= my numberOfDataPoints; k ++) {
if (my data [k].status != kDataModelerData::INVALID) {
const longdouble xk = my data [k].x;
const longdouble yk = my data [k].y;
const longdouble wk = weights [k];
sk += 0.5 * (yk + ykm1) * (xk - xkm1); // Jacquelin, Eq. (7)
design [++ index] [1] = double ((xk - x1) * wk); // Jacquelin, Eq. (9)
design [index] [2] = double (sk * wk);
yEstimate [index] = double ((yk - y1) * wk);
xkm1 = xk;
ykm1 = yk;
}
}
Melder_require (index > 0,
U"Not enough valid data points to fit y=a+b*exp(c*x).");
design.resize (index, 2);
yEstimate.resize (index);
autoVEC solution = DataModeler_solveDesign (me, design.get(), yEstimate.get(), nullptr);
const double c = solution [2];
const double a = -solution [1] / solution [2];
my parameters [3]. value = c;
/*
We now have only one parameter 'b' to determine.
According to Jacquelet it works better if we optimise a model with two parameters 'a' and 'b', with only 'c' fixed:
This results a linear model with two terms:
y(x) = a + b * f(x), where f(x) = exp(c*x)
*/
if (my parameters [2].status == kDataModelerParameterStatus::FIXED_) {
/*
Model: z(x)= a, where z(x) = y(x) - b * exp(c * x)
*/
autoDataModeler thee = DataModeler_create (my xmin, my xmax, my numberOfDataPoints, 1, kDataModelerFunction::LINEAR);
thy f_evaluate = constant_evaluate;
thy f_evaluateBasisFunctions = constant_evaluateBasisFunctions;
my parameters [1]. value = 0.0; // set a = 0 for the function evaluation
for (integer k = 1; k <= my numberOfDataPoints; k ++) {
thy data [k] = my data [k];
if (thy data [k].status != kDataModelerData::INVALID)
thy data [k].y -= my f_evaluate (me, thy data [k].x, my parameters.get()); // z(x) = y(x) - b * exp(c * x)
}
DataModeler_fit (thee.get());
my parameters [1]. value = thy parameters [1]. value;
} else {
/*
Model: y(x) = a + b * f(x), where f(x) = exp (c * x) and c is fixed
*/
autoDataModeler thee = DataModeler_create (my xmin, my xmax, my numberOfDataPoints, 2, kDataModelerFunction::LINEAR);
for (integer k = 1; k <= my numberOfDataPoints; k ++)
thy data [k] = my data [k];
thy parameters.resize (thy numberOfParameters + 1);
thy parameters [thy numberOfParameters + 1]. value = c;
thy parameters [thy numberOfParameters + 1]. status = kDataModelerParameterStatus::FIXED_EXTRA;
thy f_evaluate = exponential_plus_constant_evaluate;
thy f_evaluateBasisFunctions = linear_exponent_evaluateBasisFunctions;
DataModeler_fit (thee.get());
my parameters [1]. value = thy parameters [1]. value;
my parameters [2]. value = thy parameters [2]. value;
my parameters [3]. value = c;
}
}
DataModeler_setParameterCovariances (me);
}
static void modelLinearTrendWithSigmoid (DataModeler me, double *out_lambda, double *out_sigma) {
/*
Set mu in the middle of the interval and make lambda = 2 * ymean.
Calculate sigma such that the model goes through (xmin,model(xmin)) and (xmax, model(xmax))
deltaY = y(xmax) - y(xmin) = lambda / (1 + exp (- (xmax - mu) / sigma)) - lambda / (1 + exp (- (xmin - mu) / sigma))
Then sigma = 0.5 *(xmax - xmin) / ln ((lambda + deltaY) / (lambda - deltaY)))
*/
autoDataModeler thee = DataModeler_createFromDataModeler(me, 2, kDataModelerFunction::POLYNOME);
DataModeler_fit (thee.get());
const double lambda = 2.0 * thy parameters [1]. value;
const double yAtXmin = DataModeler_getModelValueAtX (thee.get(), thy xmin);
const double yAtXmax = DataModeler_getModelValueAtX (thee.get(), thy xmax);
const double deltaY = yAtXmax - yAtXmin, deltaX = my xmax - my xmin;
const double sigma = 0.5 * deltaX / log ((lambda + deltaY) / (lambda - deltaY));
if (out_lambda)
*out_lambda = lambda;
if (out_sigma)
*out_sigma = sigma;
}
/*
Function: y(x) = b / (1 + exp (- (x - mu) / sigma))
Model: z(x) = A * f1(x) + b * f2(x) + C * f3(x), where
z (x) = y (x) * ln (y (x)), f1 (x) = integral (0, x, y(x)dx), f2 (x) = x * y (x), f3 = y (x),
A = -1 / (lambda * sigma), B = 1 / sigma, C = ln (lambda) - ln (1 + exp ((mu - x1) / sigma))
Non-iterative solution according to Jean Jacquelin (2009), Régressions et équations intégrales, https://fr.scribd.com/doc/14674814/Regressions-et-equations-integrales,
pages 16-17.
Precondition: x [i] must be increasing.
*/
static void sigmoid_fit (DataModeler me) {
autoVEC yEstimate = raw_VEC (my numberOfDataPoints);
autoVEC weights = DataModeler_getDataPointsWeights (me, my weighData, true);
double lambda = my parameters [1]. value;
double mu = my parameters [2]. value;
double sigma = my parameters [3]. value;
if (my parameters [1]. status == kDataModelerParameterStatus::FIXED_) {
Melder_require (my parameters [1]. value != 0.0,
U"The first parameter should not be zero.");
if (my parameters [2]. status == kDataModelerParameterStatus::FIXED_) {
if (my parameters [3]. status == kDataModelerParameterStatus::FIXED_)
return;
/*
Model: z(X)*ln(z(X) = A * f5 (X) + B * f6 (X), where f5 (X) = z (X) * X - z (X) * integral (x [1], X, z(x)dx)),
f6 (X) = y (X), z(X) = y (X) / lambda and X [k] = x [k] - mu - x1
A = 1 / sigma, B = ln (y (x1))
*/
autoMAT design = zero_MAT (my numberOfDataPoints, 2);
longdouble sk = 0.0, x1 = my data [1].x ; // no need to subtract mu!
longdouble xkm1 = 0.0, ykm1 = 0.0;
integer index = 0;
for (integer k = 1; k <= my numberOfDataPoints; k ++) {
if (my data [k]. status != kDataModelerData::INVALID) {
const longdouble xk = my data [k].x, yk = my data [k].y / lambda;
sk += 0.5 * (yk + ykm1) * (xk - xkm1); // invariant under translations in x
const double f1x = double (yk * sk);
const double f2x = double ((xk - mu - x1) * yk); // X [k]
design [++ index] [1] = (f2x - f1x) * weights [k];
design [index] [2] = double (yk) * weights [k];
yEstimate [index] = double (yk) * log (double (yk)) * weights [k];
xkm1 = xk;
ykm1 = yk;
}
}
design.resize (index, 2);
yEstimate.resize (index);
autoVEC solution = DataModeler_solveDesign (me, design.get(), yEstimate.get(), nullptr);
sigma = 1.0 /solution [1];
} else if (my parameters [3]. status == kDataModelerParameterStatus::FIXED_) {
Melder_require (my parameters [3]. value != 0.0,
U"The third parameter should not be zero.");
/*
Model: z(X)*ln(z(X) = C * f3 (X), where z(X)= y(X)/lambda + f1 (X) / sigma - f2 (X) / sigma, X [l] = x [k] - x1
*/
autoMAT design = zero_MAT (my numberOfDataPoints, 1);
longdouble sk = 0.0, x1 = my data [1].x;
longdouble xkm1 = 0.0, ykm1 = 0.0;
integer index = 0;
for (integer k = 1; k <= my numberOfDataPoints; k ++) {
if (my data [k]. status != kDataModelerData::INVALID) {
const longdouble xk = my data [k].x, yk = my data [k].y / lambda;
sk += 0.5 * (yk + ykm1) * (xk - xkm1); // xk - xkm1 == X [k] - X [k-1]
const double f1x = double (yk * sk);
const double f2x = double ((xk - x1) * yk);
design [++ index] [1] = double (yk) * weights [k];
yEstimate [index] = (double (yk) * log (double (yk)) + f1x / sigma - f2x / sigma) * weights [k];
xkm1 = xk;
ykm1 = yk;
}
}
design.resize (index, 1);
yEstimate.resize (index);
autoVEC solution = DataModeler_solveDesign (me, design.get(), yEstimate.get(), nullptr);
const double lnarg = exp (-solution [1]) - 1.0;
if (lnarg > 0.0)
mu = double (x1) + sigma * log (lnarg);
else
mu = undefined;
} else {
/*
Model: z*ln(z) = A * f4(X) + B * f3 (X), where z(X) = y(X) / lambda, f4(X)= -f1(X) + f2(X), f3 (X) = z(X), A = 1/sigma, B = - ln (1+exp(-(mu - x1)/sigma)) and X [k] = x [k] - x [1].
*/
autoMAT design = zero_MAT (my numberOfDataPoints, 2);
longdouble sk = 0.0, x1 = my data [1].x;
longdouble xkm1 = 0.0, ykm1 = 0.0;
integer index = 0;
for (integer k = 1; k <= my numberOfDataPoints; k ++) {
if (my data [k]. status != kDataModelerData::INVALID) {
const longdouble xk = my data [k].x, yk = my data [k].y / lambda;
sk += 0.5 * (yk + ykm1) * (xk - xkm1);
const double f1x = double (yk * sk);
const double f2x = double ((xk - x1) * yk);
design [++ index] [1] = (f2x - f1x) * weights [k];
design [index] [2] = double (yk) * weights [k]; // f3
yEstimate [index] = double (yk) * log (double (yk)) * weights [k];
xkm1 = xk;
ykm1 = yk;
}
}
design.resize (index, 2);
yEstimate.resize (index);
autoVEC solution = DataModeler_solveDesign (me, design.get(), yEstimate.get(), nullptr);
sigma = 1.0 / solution [1];
const double lnarg = exp (-solution [2]) - 1.0;
if (lnarg > 0.0)
mu = double (x1) + sigma * log (lnarg);
else
mu = undefined;
}
} else if (my parameters [2]. status == kDataModelerParameterStatus::FIXED_ &&
my parameters [3]. status == kDataModelerParameterStatus::FIXED_) {
Melder_require (my parameters [3]. value != 0.0,
U"The third parameter should not be zero.");
/*
Model: y(x) = E * f4 (x), where f4(x) = 1 /(1 + exp (- (x - mu) / sigma))
*/
autoMAT design = zero_MAT (my numberOfDataPoints, 1);
integer index = 0;
for (integer k = 1; k <= my numberOfDataPoints; k ++) {
if (my data [k]. status != kDataModelerData::INVALID) {
const double yk = my data [k].y, xk = my data [k].x;
const double f4x = 1.0 / (1.0 + exp (- (xk - mu) / sigma));
design [++ index] [1] = f4x * weights [k];
yEstimate [index] = yk * weights [k];
}
}
design.resize (index, 1);
yEstimate.resize (index);
autoVEC solution = DataModeler_solveDesign (me, design.get(), yEstimate.get(), nullptr);
lambda = solution [1];
} else if (my parameters [3]. status == kDataModelerParameterStatus::FIXED_) {
Melder_require (my parameters [3]. value != 0.0,
U"The third parameter should not be zero.");
/*
Model: z(x) = A * f1 (x) + C * f3(x), where z(x) = y(x)*ln(y(x)) - f2 (x) / sigma
*/
autoMAT design = zero_MAT (my numberOfDataPoints, 2);
longdouble sk = 0.0, x1 = my data [1].x;
longdouble xkm1 = 0.0, ykm1 = 0.0;
integer index = 0;
for (integer k = 1; k <= my numberOfDataPoints; k ++) {
if (my data [k]. status != kDataModelerData::INVALID) {
const longdouble xk = my data [k].x - x1, yk = my data [k].y;
const double f2x = double (xk * yk);
sk += 0.5 * (yk + ykm1) * (xk - xkm1);
const double f1x = double (yk * sk);
design [++ index] [1] = f1x * weights [k];
design [index] [2] = double (yk) * weights [k];
yEstimate [index] = (double (yk) * log (double (yk)) - f2x / sigma) * weights [k];
xkm1 = xk;
ykm1 = yk;
}
}
design.resize (index, 2);
yEstimate.resize (index);
autoVEC solution = DataModeler_solveDesign (me, design.get(), yEstimate.get(), nullptr);
sigma = my parameters [3]. value;
lambda = -1.0 / (solution [1] * sigma);
const double lnarg = lambda * exp (-solution [2]) - 1.0;
if (lnarg > 0.0)
mu = double (x1) + sigma * log (lnarg);
else
mu = undefined;
} else {
/*
Model: z(x) = A * f1 (x) + B * f2(x) + C * f3(x), where z(x) = y(x)*ln(y(x))
*/
autoMAT design = zero_MAT (my numberOfDataPoints, 3);
longdouble sk = 0.0, x1 = my data [1].x;
longdouble xkm1 = 0.0, ykm1 = 0.0;
integer index = 0;
for (integer k = 1; k <= my numberOfDataPoints; k ++) {
if (my data [k]. status != kDataModelerData::INVALID) {
const longdouble xk = my data [k].x, yk = my data [k].y;
sk += 0.5 * (yk + ykm1) * (xk - xkm1);
const double f1x = double (yk * sk);
const double f2x = double ((xk - x1) * yk);
design [++ index] [1] = f1x * weights [k];
design [index] [2] = f2x * weights [k];
design [index] [3] = double (yk) * weights [k];
yEstimate [index] = double (yk) * log (double (yk)) * weights [k];
xkm1 = xk;
ykm1 = yk;
}
}
design.resize (index, 3);
yEstimate.resize (index);
autoVEC solution = DataModeler_solveDesign (me, design.get(), yEstimate.get(), nullptr);
sigma = 1.0 / solution [2];
lambda = - solution [2] / solution [1];
if (my parameters [2]. status != kDataModelerParameterStatus::FIXED_) {
my parameters [1]. value = lambda;
const double lnarg = lambda * exp (-solution [3]) - 1.0;
if (lnarg > 0.0)
mu = double (x1) + sigma * log (lnarg);
else {
modelLinearTrendWithSigmoid (me, & lambda, & sigma);
mu = 0.5 * (my xmin + my xmax);
}
}
}
my parameters [1]. value = lambda;
my parameters [2]. value = mu;
my parameters [3]. value = sigma;
DataModeler_setParameterCovariances (me);
}
/*
Model: y(x) = gamma + lambda / (1 + exp (- (x - mu) / sigma))
Solution according to Jean Jacquelin (2009), Régressions et équations intégrales, https://fr.scribd.com/doc/14674814/Regressions-et-equations-integrales,
pages 38 and following.
The author makes a mistake in the derivation of the relation between the a,b,c,d and
gamma, lambda, mu and sigma of the model.
lambda = ± 1/s * sqrt (b^2-4ac) (the article wrongly shows "sqrt (b^2+4ac)")
gamma = (−b ∓ sqrt (b^2 − 4ac))/ (2*a)
sigma = ∓ 1 / sqrt (b^2 − 4ac)
mu = x [1]+ sigma * ln (lambda/(d-gamma) - 1)
Two models are indistinguishable if:
gamma' = gamma + lambda
sigma' = -sigma
lambda' = - lambda
Precondition: x [i] are increasing order.
*/
static void sigmoid_plus_constant_fit (DataModeler me) {
double gamma = my parameters [1]. value, lambda = my parameters [2]. value;
double mu = my parameters [3]. value, sigma = my parameters [4]. value;
if (my parameters [1]. status == kDataModelerParameterStatus::FIXED_) {
/*
Model z(x) = lambda / (1 + exp (- (x - mu) / sigma)) where z(x) = y(x) - gamma.
*/
autoDataModeler thee = DataModeler_createFromDataModeler (me, 3, kDataModelerFunction::SIGMOID);
for (integer ipar = 1; ipar <= 3; ipar ++)
thy parameters [ipar] = my parameters [ipar + 1];
for (integer k = 1; k <= my numberOfDataPoints; k ++)
thy data [k]. y -= gamma;
if (my parameters [2]. status == kDataModelerParameterStatus::FIXED_)
thy parameters [1]. status = kDataModelerParameterStatus::FIXED_;
if (my parameters [3]. status == kDataModelerParameterStatus::FIXED_)
thy parameters [2]. status = kDataModelerParameterStatus::FIXED_;
if (my parameters [4]. status == kDataModelerParameterStatus::FIXED_)
thy parameters [3]. status = kDataModelerParameterStatus::FIXED_;
DataModeler_fit (thee.get());
lambda = thy parameters [1]. value;
mu = thy parameters [2]. value;
sigma = thy parameters [3]. value;
} else if (my parameters [3]. status == kDataModelerParameterStatus::FIXED_ &&
my parameters [4]. status == kDataModelerParameterStatus::FIXED_) {
if (my parameters [2]. status == kDataModelerParameterStatus::FIXED_) {
/*
Model: z(x) = gamma, where z(x) = y(x) - lambda / (1 + exp (- (x - mu)/ sigma))
*/
autoMAT design = raw_MAT (my numberOfDataPoints, 1);
autoVEC yEstimate = raw_VEC (my numberOfDataPoints);
autoVEC weights = DataModeler_getDataPointsWeights (me, my weighData, true);
integer index = 0;
for (integer k = 1; k <= my numberOfDataPoints; k ++) {
if (my data [k]. status != kDataModelerData::INVALID) {
const longdouble xk = my data [k].x, yk = my data [k].y;
const double fx = lambda / (1.0 + exp (- (double (xk) - mu) / sigma));
design [++ index] [1] = 1.0 * weights [k];
yEstimate [index] = (double (yk) - fx) * weights [k];
}
}
design.resize (index, 1);
yEstimate.resize (index);
autoVEC solution = DataModeler_solveDesign (me, design.get(), yEstimate.get(), nullptr);
gamma = solution [1];
} else {
/*
Model: y(x) = gamma + lambda * f(x), where f(x) = 1 / (1 + exp (-(x -mu)/sigma))
*/
autoMAT design = raw_MAT (my numberOfDataPoints, 2);
autoVEC yEstimate = raw_VEC (my numberOfDataPoints);
autoVEC weights = DataModeler_getDataPointsWeights (me, my weighData, true);
integer index = 0;
for (integer k = 1; k <= my numberOfDataPoints; k ++) {
if (my data [k]. status != kDataModelerData::INVALID) {
const longdouble xk = my data [k]. x, yk = my data [k]. y;
const double fx = 1.0 / (1.0 + exp (- (double (xk) - mu) / sigma));
design [++ index] [1] = 1.0 * weights [k];
design [index] [2] = fx * weights [k];
yEstimate [index] = double (yk) * weights [k];
}
}
design.resize (index, 2);
yEstimate.resize (index);
autoVEC solution = DataModeler_solveDesign (me, design.get(), yEstimate.get(), nullptr);
gamma = solution [1];
lambda = solution [2];
}
} else {
autoMAT design = raw_MAT (my numberOfDataPoints, 4);
autoVEC yEstimate = raw_VEC (my numberOfDataPoints);
autoVEC weights = DataModeler_getDataPointsWeights (me, my weighData, true);
longdouble s1k = 0.0, s2k = 0.0, x1 = my data [1].x, xkm1 = x1, ykm1 = 0.0;
integer index = 0;
for (integer k = 1; k <= my numberOfDataPoints; k ++) {
if (my data [k]. status != kDataModelerData::INVALID) {
const longdouble xk = my data [k].x, yk = my data [k].y;
s1k += 0.5 * (yk + ykm1) * (xk - xkm1);
s2k += 0.5 * (yk * yk + ykm1 * ykm1) * (xk - xkm1);
design [++ index] [1] = double (s2k) * weights [k];
design [index] [2] = double (s1k) * weights [k];
design [index] [3] = double (xk - x1) * weights [k];
design [index] [4] = 1.0 * weights [k];
yEstimate [index] = double (yk) * weights [k];
xkm1 = xk;
ykm1 = yk;
}
}
design.resize (index, 4);
yEstimate.resize (index);
autoVEC solution = DataModeler_solveDesign (me, design.get(), yEstimate.get(), nullptr);
const double a = solution [1], b = solution [2];
const double c = solution [3], d = solution [4];
auto setMu = [&, d, x1] () -> double {
mu = undefined;
const double lnarg = lambda / (d - gamma) - 1.0;
if (lnarg > 0.0)
mu = double (x1) + sigma * log (lnarg);
return mu;
};
if (my parameters [2]. status == kDataModelerParameterStatus::FIXED_) {
sigma = - 1.0 / (a * lambda);
gamma = 0.5 * lambda * (sigma * b - 1.0);
if (my parameters [3]. status != kDataModelerParameterStatus::FIXED_)
setMu ();
} if (my parameters [4]. status == kDataModelerParameterStatus::FIXED_) {
lambda = - 1.0 / (a * sigma);
gamma = 0.5 * lambda * (sigma * b - 1.0);
setMu ();
} else {
const double dissq = b * b - 4.0 * a * c;
bool modelFitIsBad = true;
Melder_require (dissq > 0.0,
U"Discriminant is less than or equal to zero. Bad fit.");
const double dis = sqrt (dissq);
modelFitIsBad = false;
lambda = dis / a;
gamma = (-b - dis) / (2.0 * a);
sigma = - 1.0 / dis;
if (my parameters [3]. status != kDataModelerParameterStatus::FIXED_) {
if (! isdefined (setMu ())) {
lambda = -dis / a;
gamma = (-b + dis) / (2.0 * a);
sigma = 1.0 / dis;
if (! isdefined (setMu ()))
modelFitIsBad = true;
}
my parameters [1]. value = gamma;
my parameters [2]. value = lambda;
my parameters [3]. value = mu;
my parameters [4]. value = sigma;
if (DataModeler_getCoefficientOfDetermination (me, nullptr, nullptr) < 0.0) // model fit is bad!
modelFitIsBad = true;
}
if (modelFitIsBad) {
modelLinearTrendWithSigmoid (me, & lambda, & sigma);
gamma = 0.0;
mu = 0.5 * (my xmin + my xmax);
my parameters [3]. value = mu;
}
}
}
my parameters [1]. value = gamma;
my parameters [2]. value = lambda;
my parameters [3]. value = mu;
my parameters [4]. value = sigma;
DataModeler_setParameterCovariances (me);
}
static void series_fit (DataModeler me) {
try {
/*
Count the number of free parameters to be fitted
*/
const integer numberOfFreeParameters = DataModeler_getNumberOfFreeParameters (me);
if (numberOfFreeParameters == 0)
return;
const integer numberOfValidDataPoints = DataModeler_getNumberOfValidDataPoints (me);
if (numberOfValidDataPoints - numberOfFreeParameters < 0)
return;
autoVEC yEstimate = zero_VEC (numberOfValidDataPoints);
autoVEC term = zero_VEC (my numberOfParameters);
autovector<structDataModelerParameter> fixedParameters = newvectorcopy (my parameters.all());
autoMAT design = zero_MAT (numberOfValidDataPoints, numberOfFreeParameters);
autoVEC weights = DataModeler_getDataPointsWeights (me, my weighData, true);
/*
For function evaluation with only the FIXED parameters we set the value of the
parameters that are not fixed to 0.0
*/
for (integer ipar = 1; ipar <= my parameters.size; ipar ++)
if (my parameters [ipar]. status != kDataModelerParameterStatus::FIXED_)
fixedParameters [ipar]. value = 0.0;
/*
We solve for the parameters p by minimizing the chi-squared function:
chiSquared = sum (i=1...n, (y [i] - sum (k=1..m, p [k] X [k] (x [i])) / sigma [i] )^2,
where n is the 'numberOfValidDataPoints', m is the 'numberOfFreeParameters',
- x [i] and y [i] are the i-th datapoint x and y values, respectively,
- sum (k=1..m, p [k] X [k] (x [i]) is the model estimation at x [i],
- X [k] (x [i]) is the k-th function term evaluated at x [i],
- and y [i] has been measured with some uncertainty sigma [i].
If we define the design matrix matrix A [i] [j] = X [j] (x [i]) / sigma [i] and
the vector b [i] = y [i] / sigma [i], the problem can be stated as:
minimize the norm ||A.p - b|| for p.
This problem can be solved by SVD.
*/
integer kdata = 0;
for (integer ipoint = 1; ipoint <= my numberOfDataPoints; ipoint ++) {
if (my data [ipoint]. status != kDataModelerData::INVALID) {
++ kdata;
const double x = my data [ipoint].x;
const double y = my data [ipoint].y;
const double yFixed = my f_evaluate (me, x, fixedParameters.get());
// individual terms of the function
my f_evaluateBasisFunctions (me, x, term.get());
integer kcol = 0;
for (integer ipar = 1; ipar <= my numberOfParameters; ipar ++)
if (my parameters [ipar]. status == kDataModelerParameterStatus::FREE)
design [kdata] [++ kcol] = term [ipar] * weights [ipoint];
/*
Only the variance that is due to the free parameters has to be explained by the model
*/
yEstimate [kdata] = (y - yFixed) * weights [ipoint];
}
}
Melder_assert (kdata == numberOfValidDataPoints);
autoMAT parameterCovariances;
autoVEC solution = DataModeler_solveDesign (me, design.get(), yEstimate.get(), & parameterCovariances);
/*
Put the calculated parameters at the correct position in 'my parameters'
*/
Covariance cov = my parameterCovariances.get();
integer kpar = 0;
for (integer ipar = 1; ipar <= my numberOfParameters; ipar ++) {
if (my parameters [ipar]. status != kDataModelerParameterStatus::FIXED_)
my parameters [ipar]. value = solution [++ kpar];
cov -> centroid [ipar] = my parameters [ipar]. value;
}
cov -> numberOfObservations = numberOfValidDataPoints;
/*
Get the covariances between the parameters
*/
if (numberOfFreeParameters < my numberOfParameters) {
cov -> data.all() <<= 0.0; // set fixed parameters variances and covariances to zero
integer krow = 0;
for (integer ipar = 1, irow = 1; ipar <= my numberOfParameters; ipar ++) {
if (my parameters [ipar]. status != kDataModelerParameterStatus::FIXED_) {
++ krow;
integer kcol = 0;
for (integer jpar = 1; jpar <= my numberOfParameters; jpar ++)
if (my parameters [jpar]. status != kDataModelerParameterStatus::FIXED_)
cov -> data [ipar] [jpar] = parameterCovariances [krow] [++ kcol];
}
}
} else {
my parameterCovariances -> data = parameterCovariances.move();
}
if (my weighData == kDataModelerWeights::EQUAL_WEIGHTS && ! isdefined (my data [1].sigmaY)) {
/*
After the fit we can get an estimate of a constant sigmaY from the residual standard deviation.
*/
const double residualStdev = DataModeler_getResidualStandardDeviation (me);
my parameterCovariances -> data.get() *= residualStdev * residualStdev;
}
} catch (MelderError) {
Melder_throw (U"DataModeler no fit.");
}
}
static void chisqFromZScores (VEC zscores, double *out_chisq, integer *out_numberOfValidZScores) {
double chisq = 0.0;
integer numberOfValidZScores = 0;
for (integer ipoint = 1; ipoint <= zscores.size; ipoint ++) {
if (isdefined (zscores [ipoint])) {
chisq += zscores [ipoint] * zscores [ipoint];
numberOfValidZScores ++;
}
}
if (out_chisq)
*out_chisq = chisq;
if (out_numberOfValidZScores)
*out_numberOfValidZScores = numberOfValidZScores;
}
double DataModeler_getModelValueAtX (DataModeler me, double x) {
double f = undefined;
if (x >= my xmin && x <= my xmax)
f = my f_evaluate (me, x, my parameters.get());
return f;
}
double DataModeler_getModelValueAtIndex (DataModeler me, integer index) {
double f = undefined;
if (index > 0 && index <= my numberOfDataPoints)
f = my f_evaluate (me, my data [index]. x, my parameters.get());
return f;
}
void DataModeler_getExtremaY (DataModeler me, double *out_ymin, double *out_ymax) {
MelderExtremaWithInit extrema;
for (integer i = 1; i <= my numberOfDataPoints; i++)
if (my data [i]. status != kDataModelerData::INVALID)
extrema.update (my data [i]. y);
if (out_ymin)
*out_ymin = extrema.min;
if (out_ymax)
*out_ymax = extrema.max;
}
double DataModeler_getDataPointYValue (DataModeler me, integer index) {
double value = undefined;
if (index > 0 && index <= my numberOfDataPoints && my data [index]. status != kDataModelerData::INVALID)
value = my data [index]. y;
return value;
}
double DataModeler_getDataPointXValue (DataModeler me, integer index) {
double value = undefined;
if (index > 0 && index <= my numberOfDataPoints && my data [index]. status != kDataModelerData::INVALID)
value = my data [index]. x;
return value;
}
void DataModeler_setDataPointYValue (DataModeler me, integer index, double value) {
if (index > 0 && index <= my numberOfDataPoints)
my data [index]. y = value;
}
void DataModeler_setDataPointXValue (DataModeler me, integer index, double value) {
if (index > 0 && index <= my numberOfDataPoints)
my data [index]. x = value;
}
void DataModeler_setDataPointValues (DataModeler me, integer index, double xvalue, double yvalue) {
if (index > 0 && index <= my numberOfDataPoints) {
my data [index]. x = xvalue;
my data [index]. y = yvalue;
}
}
void DataModeler_setDataPointYSigma (DataModeler me, integer index, double sigma) {
if (index > 0 && index <= my numberOfDataPoints)
my data [index]. sigmaY = sigma;
}
double DataModeler_getDataPointYSigma (DataModeler me, integer index) {
double sigma = undefined;
if (index > 0 && index <= my numberOfDataPoints)
sigma = my data [index]. sigmaY;
return sigma;
}
kDataModelerData DataModeler_getDataPointStatus (DataModeler me, integer index) {
kDataModelerData value = kDataModelerData::INVALID;
if (index > 0 && index <= my numberOfDataPoints)
value = my data [index]. status;
return value;
}
void DataModeler_setDataPointStatus (DataModeler me, integer index, kDataModelerData status) {
if (index > 0 && index <= my numberOfDataPoints) {
if (status == kDataModelerData::VALID && isundef (my data [index] .y))
Melder_throw (U"Your data value is undefined. First set the value and then its status.");
my data [index]. status = status;
}
}
void DataModeler_setDataPointValueAndStatus (DataModeler me, integer index, double value, kDataModelerData dataStatus) {
if (index > 0 && index <= my numberOfDataPoints) {
my data [index]. y = value;
my data [index]. status = dataStatus;
}
}
void DataModeler_setParameterName (DataModeler me, integer number, conststring32 name) {
Melder_require (number > 0 && number <= my numberOfParameters, U"The parameter number should be a number between 1 and ",
my numberOfParameters, U".");
my parameterNames [number] = Melder_dup (name);
}
void DataModeler_setParameterValue (DataModeler me, integer index, double value, kDataModelerParameterStatus status) {
if (index > 0 && index <= my numberOfParameters) {
my parameters [index]. value = value;
my parameters [index]. status = status;
}
}
void DataModeler_setParameterValueFixed (DataModeler me, integer index, double value) {
Melder_require (my type == kDataModelerFunction::POLYNOME || my type == kDataModelerFunction::LEGENDRE,
U"This would change the model type, which is not possible yet.");
DataModeler_setParameterValue (me, index, value, kDataModelerParameterStatus::FIXED_);
}
double DataModeler_getParameterValue (DataModeler me, integer index) {
double value = undefined;
if (index > 0 && index <= my numberOfParameters)
value = my parameters [index]. value;
return value;
}
autoVEC DataModeler_listParameterValues (DataModeler me) {
autoVEC result = raw_VEC (my numberOfParameters);
for (integer k = 1; k <= my numberOfParameters; k ++)
result [k] = my parameters [k]. value;
return result;
}
kDataModelerParameterStatus DataModeler_getParameterStatus (DataModeler me, integer index) {
kDataModelerParameterStatus status = kDataModelerParameterStatus::UNDEFINED;
if (index > 0 && index <= my numberOfParameters)
status = my parameters [index]. status;
return status;
}
double DataModeler_getParameterStandardDeviation (DataModeler me, integer index) {
double stdev = undefined;
if (index > 0 && index <= my numberOfParameters)
stdev = sqrt (my parameterCovariances -> data [index] [index]);
return stdev;
}
double DataModeler_getVarianceOfParameters (DataModeler me, integer fromIndex, integer toIndex, integer *out_numberOfFreeParameters) {
double variance = undefined;
getAutoNaturalNumbersWithinRange (& fromIndex, & toIndex, my numberOfParameters, U"parameter");
integer numberOfFreeParameters = 0;
variance = 0;
for (integer ipar = fromIndex; ipar <= toIndex; ipar ++) {
if (my parameters [ipar]. status != kDataModelerParameterStatus::FIXED_) {
variance += my parameterCovariances -> data [ipar] [ipar];
numberOfFreeParameters ++;
}
}
if (out_numberOfFreeParameters)
*out_numberOfFreeParameters = numberOfFreeParameters;
return variance;
}
void DataModeler_setParametersFree (DataModeler me, integer fromIndex, integer toIndex) {
getAutoNaturalNumbersWithinRange (& fromIndex, & toIndex, my numberOfParameters, U"parameter");
for (integer ipar = fromIndex; ipar <= toIndex; ipar ++)
my parameters [ipar]. status = kDataModelerParameterStatus::FREE;
}
void DataModeler_setParameterValuesToZero (DataModeler me, double numberOfSigmas) {
integer numberOfChangedParameters = 0;
for (integer ipar = my numberOfParameters; ipar > 0; ipar --) {
if (my parameters [ipar]. status != kDataModelerParameterStatus::FIXED_) {
const double value = my parameters [ipar]. value;
double sigmas = numberOfSigmas * DataModeler_getParameterStandardDeviation (me, ipar);
if ((value - sigmas) * (value + sigmas) < 0) {
DataModeler_setParameterValueFixed (me, ipar, 0.0);
numberOfChangedParameters ++;
}
}
}
}
integer DataModeler_getNumberOfFreeParameters (DataModeler me) {
integer numberOfFreeParameters = 0;
for (integer ipar = 1; ipar <= my numberOfParameters; ipar ++)
if (my parameters [ipar]. status == kDataModelerParameterStatus::FREE)
numberOfFreeParameters ++;
return numberOfFreeParameters;
}
integer DataModeler_getNumberOfFixedParameters (DataModeler me) {
return my numberOfParameters - DataModeler_getNumberOfFreeParameters (me);
}
integer DataModeler_getNumberOfValidDataPoints (DataModeler me) {
integer numberOfValidDataPoints = 0;
for (integer ipoint = 1; ipoint <= my numberOfDataPoints; ipoint ++)
if (my data [ipoint]. status != kDataModelerData::INVALID)
numberOfValidDataPoints ++;
return numberOfValidDataPoints;
}
integer DataModeler_getNumberOfInvalidDataPoints (DataModeler me) {
return my numberOfDataPoints - DataModeler_getNumberOfValidDataPoints (me);
}
void DataModeler_setTolerance (DataModeler me, double tolerance) {
my tolerance = ( tolerance > 0.0 ? tolerance : my numberOfDataPoints * NUMfpp -> eps );
}
double DataModeler_getDegreesOfFreedom (DataModeler me) {
integer numberOfDataPoints = 0;
for (integer ipoint = 1; ipoint <= my numberOfDataPoints; ipoint ++)
if (my data [ipoint]. status != kDataModelerData::INVALID)
numberOfDataPoints ++;
const double ndf = numberOfDataPoints - DataModeler_getNumberOfFreeParameters (me);
return ndf;
}
autoVEC DataModeler_getDataPointsWeights (DataModeler me, kDataModelerWeights weighData, bool beforeFit) {
autoVEC weights = zero_VEC (my numberOfDataPoints);
const integer numberOfValidDataPoints = DataModeler_getNumberOfValidDataPoints (me);
integer sigmaDefinedCount = 0;
for (integer ipoint = 1; ipoint <= my numberOfDataPoints; ipoint ++)
if (my data [ipoint]. status == kDataModelerData::VALID && isdefined (my data [ipoint]. sigmaY))
++ sigmaDefinedCount;
Melder_require (sigmaDefinedCount == 0 || (sigmaDefinedCount == numberOfValidDataPoints),
U"Error: some of the sigmas of the valid data points are undefined.");
if (weighData == kDataModelerWeights::EQUAL_WEIGHTS) {
if (beforeFit) {
/*
We set all weights equal to one because we do not yet know the sigmaY from the fit.
The parameter variances then have to be estimated from the differences
between the data and the model.
*/
weights.all() <<= 1.0;
} else {
/*
After the fit we can get an estimate of sigmaY from the redidual standard deviation.
*/
const double residualStdev = DataModeler_getResidualStandardDeviation (me);
/*
For a perfect fit the residualStdev might equal zero.
We then set the weights equal to 1.0
*/
if (residualStdev > 0)
weights.get() <<= 1.0 / residualStdev;
else
weights.get() <<= 1.0;
}
} else if (weighData == kDataModelerWeights::RELATIVE_) {
for (integer ipoint = 1; ipoint <= my numberOfDataPoints; ipoint ++)
if (my data [ipoint]. status == kDataModelerData::VALID) {
const double sigma = my data [ipoint]. sigmaY;
weights [ipoint] = fabs (my data [ipoint].y) * ( isdefined (sigma) ? 1.0 / sigma : 1.0 );
}
} else {
for (integer ipoint = 1; ipoint <= my numberOfDataPoints; ipoint ++) {
if (my data [ipoint]. status == kDataModelerData::INVALID)
continue; // invalid points get weight 0.
const double sigma = my data [ipoint]. sigmaY;
double weight = 1.0;
if (isdefined (sigma) && sigma > 0.0) {
if (weighData == kDataModelerWeights::ONE_OVER_SIGMA)
weight = 1.0 / sigma;
else if (weighData == kDataModelerWeights::ONE_OVER_SQRTSIGMA) {
weight = 1.0 / sqrt (sigma);
}
}
weights [ipoint] = weight;
}
}
return weights;
}
autoVEC DataModeler_getZScores (DataModeler me) {
try {
autoVEC zscores = raw_VEC (my numberOfDataPoints);
autoVEC weights = DataModeler_getDataPointsWeights (me, my weighData, false);
for (integer ipoint = 1; ipoint <= my numberOfDataPoints; ipoint ++) {
double z = undefined;
if (my data [ipoint]. status != kDataModelerData::INVALID) {
const double estimate = my f_evaluate (me, my data [ipoint] .x, my parameters.get());
z = (my data [ipoint]. y - estimate) * weights [ipoint]; // 1/sigma
}
zscores [ipoint] = z;
}
return zscores;
} catch (MelderError) {
Melder_throw (U"No z-scores calculated.");
}
}
autoVEC DataModeler_getChisqScoresFromZScores (DataModeler me, constVEC zscores, bool substituteAverage) {
Melder_assert (zscores.size == my numberOfDataPoints);
autoVEC chisq = raw_VEC (zscores.size);
integer numberOfDefined = 0;
double sumchisq = 0.0;
for (integer ipoint = 1; ipoint <= my numberOfDataPoints; ipoint ++) {
chisq [ipoint] = undefined;
if (isdefined (zscores [ipoint])) {
chisq [ipoint] = zscores [ipoint] * zscores [ipoint];
sumchisq += chisq [ipoint];
numberOfDefined ++;
}
}
if (substituteAverage && numberOfDefined != my numberOfDataPoints && numberOfDefined > 0) {
for (integer ipoint = 1; ipoint <= my numberOfDataPoints; ipoint ++) {
if (isundef (chisq [ipoint]))
chisq [ipoint] = sumchisq / numberOfDefined;
}
}
return chisq;
}
double DataModeler_getChiSquaredQ (DataModeler me, double *out_prob, double *out_df) {
double chisq;
integer numberOfValidZScores;
autoVEC zscores = DataModeler_getZScores (me);
chisqFromZScores (zscores.get(), & chisq, & numberOfValidZScores);
const double ndf = DataModeler_getDegreesOfFreedom (me);
if (out_prob)
*out_prob = NUMchiSquareQ (chisq, ndf);
if (out_df)
*out_df = ndf;
return chisq;
}
double DataModeler_getWeightedMean (DataModeler me) {
double ysum = 0.0, wsum = 0.0;
autoVEC weights = DataModeler_getDataPointsWeights (me, my weighData,true);
for (integer ipoint = 1; ipoint <= my numberOfDataPoints; ipoint ++)
if (my data [ipoint]. status != kDataModelerData::INVALID) {
ysum += my data [ipoint] .y * weights [ipoint];
wsum += weights [ipoint];
}
return ysum / wsum;
}
double DataModeler_getCoefficientOfDetermination (DataModeler me, double *out_ssreg, double *out_sstot) {
/*
We cannot use the standard expressions for ss_tot, and ss_reg because our data are weighted by 1 / sigma [i].
We need the weighted mean and we need to weigh all sums-of-squares accordingly;
if all sigma [i] terms are equal, the formulas reduce to the standard ones.
Ref: A. Buse (1973): Goodness of Fit in Generalized Least Squares Estimation, The American Statician, vol 27, 106-108
*/
const double ymean = DataModeler_getWeightedMean (me);
autoVEC weights = DataModeler_getDataPointsWeights (me, my weighData, false);
longdouble sstot = 0.0, ssreg = 0.0;
for (integer ipoint = 1; ipoint <= my numberOfDataPoints; ipoint ++) {
if (my data [ipoint]. status != kDataModelerData::INVALID) {
double diff = (my data [ipoint]. y - ymean) * weights [ipoint];
sstot += diff * diff; // total sum of squares
const double estimate = my f_evaluate (me, my data [ipoint] .x, my parameters.get());
diff = (estimate - my data [ipoint]. y) * weights [ipoint];
ssreg += diff * diff; // regression sum of squares
}
}
const double rSquared = ( sstot > 0.0 ? 1.0 - double (ssreg / sstot) : 1.0 );
if (out_ssreg)
*out_ssreg = double (sstot - ssreg);
if (out_sstot)
*out_sstot = double (sstot);
return rSquared;
}
void DataModeler_drawBasisFunction_inside (DataModeler me, Graphics g, double xmin, double xmax, double ymin, double ymax,
integer iterm, bool scale, integer numberOfPoints)
{
if (iterm > my numberOfParameters)
return;
Function_unidirectionalAutowindow (me, & xmin, & xmax);
autoVEC x = raw_VEC (numberOfPoints);
autoVEC y = raw_VEC (numberOfPoints);
autoVEC term = raw_VEC (my numberOfParameters);
for (integer i = 1; i <= numberOfPoints; i ++) {
x [i] = xmin + (i - 0.5) * (xmax - xmin) / numberOfPoints;
my f_evaluateBasisFunctions (me, x [i], term.get());
y [i] = term [iterm];
y [i] = ( scale ? y [i] * my parameters [iterm]. value : y [i] );
}
if (ymax <= ymin) {
MelderExtremaWithInit extrema;
for (integer i = 1; i <= numberOfPoints; i ++)
extrema.update (y [i]);
ymax = extrema.max;
ymin = extrema.min;
}
Graphics_setWindow (g, xmin, xmax, ymin, ymax);
for (integer i = 2; i <= numberOfPoints; i ++)
Graphics_line (g, x [i-1], y [i-1], x [i], y [i]);
}
integer DataModeler_getDrawingSpecifiers_x (DataModeler me, double *xmin, double *xmax, integer *out_ixmin, integer *out_ixmax) {
if (*xmax <= *xmin) {
*xmin = my xmin;
*xmax = my xmax;
}
integer ixmin = 1, ixmax = my numberOfDataPoints;
if (out_ixmin) {
while (my data [ixmin] .x < *xmin && ixmin < my numberOfDataPoints)
ixmin ++;
*out_ixmin = ixmin;
}
if (out_ixmax) {
while (my data [ixmax] .x > *xmax && ixmax > 1)
ixmax --;
*out_ixmax = ixmax;
}
return ixmax - ixmin + 1;
}
void DataModeler_drawOutliersMarked_inside (DataModeler me, Graphics g, double xmin, double xmax, double ymin, double ymax, double numberOfSigmas, conststring32 mark, double marksFontSize)
{
integer ixmin, ixmax;
if (DataModeler_getDrawingSpecifiers_x (me, & xmin, & xmax, & ixmin, & ixmax) < 1)
return;
autoVEC zscores = DataModeler_getZScores (me);
Graphics_setWindow (g, xmin, xmax, ymin, ymax);
Graphics_setFontSize (g, marksFontSize);
Graphics_setTextAlignment (g, kGraphics_horizontalAlignment::CENTRE, Graphics_HALF);
const double currentFontSize = Graphics_inqFontSize (g);
for (integer ipoint = ixmin; ipoint <= ixmax; ipoint ++) {
const double y = my data [ipoint]. y;
if (my data [ipoint]. status != kDataModelerData::INVALID) {
if (y >= ymin && y <= ymax && fabs (zscores [ipoint]) > numberOfSigmas)
Graphics_text (g, my data [ipoint]. x, y, mark);
}
}
Graphics_setFontSize (g, currentFontSize);
}
void DataModeler_drawResiduals (DataModeler me, Graphics g, double xmin, double xmax, double ymin, double ymax, bool garnish) {
integer ixmin = 1, ixmax = my numberOfDataPoints;
const integer numberOfPointsToDraw = DataModeler_getDrawingSpecifiers_x (me, & xmin, & xmax, & ixmin, & ixmax);
if (numberOfPointsToDraw < 1)
return; // nothing to draw
autoVEC residuals = raw_VEC (numberOfPointsToDraw);
for (integer ipoint = ixmin, ires = 1; ipoint <= ixmax; ipoint ++, ires ++) {
const double estimate = my f_evaluate (me, my data [ipoint].x, my parameters.get());
residuals [ires] = estimate - my data [ipoint].y;
}
if (ymax == ymin) {
ymin = NUMmin_u (residuals.get());
ymax = NUMmax_u (residuals.get());
}
Graphics_setInner (g);
Graphics_setWindow (g, xmin, xmax, ymin, ymax);
for (integer ipoint = ixmin, ires = 1; ipoint <= ixmax; ipoint ++, ires ++) {
const double x = my data [ipoint].x, residual = residuals [ires];
if (residual >= ymin && residual <= ymax)
Graphics_speckle (g, x, residual);
}
Graphics_unsetInner (g);
if (garnish) {
Graphics_drawInnerBox (g);
Graphics_marksBottom (g, 2, true, true, false);
Graphics_marksLeft (g, 2, true, true, false);
if (ymin * ymax < 0)
Graphics_markLeft (g, 0.0, true, true, true, U"");
Graphics_textLeft (g, true, U"Residuals");
Graphics_textBottom (g, true, my xVariableName.get());
}
}
void DataModeler_draw_inside (DataModeler me, Graphics g, double xmin, double xmax, double ymin, double ymax, bool estimated, bool errorbars, bool connectPoints, double barWidth_wc, bool drawDots)
{
Function_unidirectionalAutowindow (me, & xmin, & xmax);
integer ixmin = 1;
while (ixmin <= my numberOfDataPoints && my data [ixmin]. x < xmin)
ixmin ++;
integer ixmax = my numberOfDataPoints;
while (ixmax > 0 && my data [ixmax]. x > xmax)
ixmax --;
if (ixmin > ixmax)
return; // nothing to draw
Graphics_setWindow (g, xmin, xmax, ymin, ymax);
double x1, y1, x2, y2;
bool x1defined = false, x2defined = false;
for (integer ipoint = ixmin; ipoint <= ixmax; ipoint ++) {
if (my data [ipoint]. status != kDataModelerData::INVALID) {
const double x = my data [ipoint]. x, y = my data [ipoint]. y;
if (! x1defined) {
x1 = x;
y1 = ( estimated ? my f_evaluate (me, x, my parameters.get()) : y );
x1defined = true;
} else {
x2 = x;
y2 = ( estimated ? my f_evaluate (me, x, my parameters.get()) : y );
x2defined = true;
}
if (x1defined && drawDots) {
if (y >= ymin && y <= ymax)
Graphics_speckle (g, x, y);
}
if (x2defined) { // if (x1defined && x2defined)
if (connectPoints) {
double xo1, yo1, xo2, yo2;
if (NUMclipLineWithinRectangle (x1, y1, x2, y2,
xmin, ymin, xmax, ymax, & xo1, & yo1, & xo2, & yo2)) {
Graphics_line (g, xo1, yo1, xo2, yo2);
}
}
x1 = x;
y1 = y2;
}
const double sigma = my data [ipoint] .sigmaY;
if (errorbars && isdefined (sigma) && sigma > 0 && x1defined) {
const double ym = y1;
double yt = ym + 0.5 * sigma, yb = ym - 0.5 * sigma;
if (estimated) {
yt = ( (y - y1) > 0.0 ? y : y1 );
yb = ( (y - y1) > 0.0 ? y1 : y );
}
bool topOutside = yt > ymax, bottomOutside = yb < ymin;
yt = ( topOutside ? ymax : yt );
yb = ( bottomOutside ? ymin : yb );
Graphics_line (g, x1, yb, x1, yt);
if (barWidth_wc > 0.0 && ! estimated) {
double xl = x1 - 0.5 * barWidth_wc;
double xr = xl + barWidth_wc;
if (! topOutside)
Graphics_line (g, xl, yt, xr, yt);
if (! bottomOutside)
Graphics_line (g, xl, yb, xr, yb);
}
}
}
}
}
void DataModeler_drawModel_inside (DataModeler me, Graphics g, double xmin, double xmax, double ymin, double ymax, integer numberOfPoints) {
Function_bidirectionalAutowindow (me, & xmin, & xmax);
autoVEC x = raw_VEC (numberOfPoints), y = raw_VEC (numberOfPoints);
const double dx = (xmax - xmin) / numberOfPoints;
for (integer ipoint = 1; ipoint <= numberOfPoints; ipoint ++) {
x [ipoint] = xmin + (ipoint - 1) * dx;
y [ipoint] = my f_evaluate (me, x [ipoint], my parameters.get());
}
if (ymin == 0.0 && ymax == 0.0) {
ymin = NUMmin_u (y.get());
ymax = NUMmax_u (y.get());
}
if (isundef (ymin) || isundef (ymax))
return;
Graphics_setWindow (g, xmin, xmax, ymin, ymax);
for (integer ipoint = 2; ipoint <= numberOfPoints; ipoint ++) {
double segment_x1, segment_y1, segment_x2, segment_y2;
if (NUMclipLineWithinRectangle (x [ipoint - 1], y [ipoint - 1], x [ipoint], y [ipoint],
xmin, ymin, xmax, ymax, & segment_x1, & segment_y1, & segment_x2, & segment_y2))
Graphics_line (g, segment_x1, segment_y1, segment_x2, segment_y2);
}
}
void DataModeler_drawModel (DataModeler me, Graphics g, double xmin, double xmax, double ymin, double ymax, integer numberOfPoints, bool garnish) {
Function_bidirectionalAutowindow (me, & xmin, & xmax);
Graphics_setInner (g);
DataModeler_drawModel_inside (me, g, xmin, xmax, ymin, ymax, numberOfPoints);
Graphics_unsetInner (g);
if (garnish) {
Graphics_drawInnerBox (g);
Graphics_marksBottom (g, 2, true, true, false);
Graphics_marksLeft (g, 2, true, true, false);
Graphics_textLeft (g, true, my yVariableName.get());
Graphics_textBottom (g, true, my xVariableName.get());
}
}
void DataModeler_drawTrack_inside (DataModeler me, Graphics g, double xmin, double xmax, double ymin, double ymax, bool estimated) {
const bool errorbars = false, connectPoints = true;
const double barWidth_mm = 0;
DataModeler_draw_inside (me, g, xmin, xmax, ymin, ymax, estimated, errorbars, connectPoints, barWidth_mm, 0);
}
void DataModeler_drawTrack (DataModeler me, Graphics g, double xmin, double xmax, double ymin, double ymax,
bool estimated, bool garnish) {
if (ymax <= ymin)
DataModeler_getExtremaY (me, & ymin, & ymax);
Graphics_setInner (g);
DataModeler_drawTrack_inside (me, g, xmin, xmax, ymin, ymax, estimated);
Graphics_unsetInner (g);
if (garnish) {
Graphics_drawInnerBox (g);
Graphics_marksBottom (g, 2, true, true, false);
Graphics_marksLeft (g, 2, true, true, false);
Graphics_textLeft (g, true, my yVariableName.get());
Graphics_textBottom (g, true, my xVariableName.get());
}
}
void DataModeler_speckle_inside (DataModeler me, Graphics g, double xmin, double xmax, double ymin, double ymax, bool estimated,
bool errorbars, double barWidth_wc)
{
bool connectPoints = false;
DataModeler_draw_inside (me, g, xmin, xmax, ymin, ymax, estimated, errorbars, connectPoints, barWidth_wc, 1);
}
void DataModeler_speckle (DataModeler me, Graphics g, double xmin, double xmax, double ymin, double ymax,
bool estimated, bool errorbars, double barWidth_mm, bool garnish)
{
if (ymax <= ymin)
DataModeler_getExtremaY (me, & ymin, & ymax);
Graphics_setInner (g);
DataModeler_speckle_inside (me, g, xmin, xmax, ymin, ymax, estimated, errorbars, barWidth_mm);
Graphics_unsetInner (g);
if (garnish) {
Graphics_drawInnerBox (g);
Graphics_marksBottom (g, 2, true, true, false);
Graphics_marksLeft (g, 2, true, true, false);
Graphics_textLeft (g, true, my yVariableName.get());
Graphics_textBottom (g, true, my xVariableName.get());
}
}
autoTable DataModeler_to_Table_zscores (DataModeler me) {
try {
const conststring32 columnNames [] = { U"x", U"z" };
autoTable ztable = Table_createWithColumnNames (my numberOfDataPoints, ARRAY_TO_STRVEC (columnNames));
autoVEC zscores = DataModeler_getZScores (me);
for (integer ipoint = 1; ipoint <= my numberOfDataPoints; ipoint ++) {
Table_setNumericValue (ztable.get(), ipoint, 1, my data [ipoint] .x);
Table_setNumericValue (ztable.get(), ipoint, 2, zscores [ipoint]);
}
return ztable;
} catch (MelderError) {
Melder_throw (U"Table not created.");
}
}
void DataModeler_normalProbabilityPlot (DataModeler me, Graphics g, integer numberOfQuantiles, double numberOfSigmas, double labelSize, conststring32 label, bool garnish) {
try {
autoTable thee = DataModeler_to_Table_zscores (me);
Table_normalProbabilityPlot (thee.get(), g, 2, numberOfQuantiles, numberOfSigmas, labelSize, label, garnish);
} catch (MelderError) {
Melder_clearError ();
}
}
void DataModeler_setBasisFunctions (DataModeler me, kDataModelerFunction type) {
my scaleX = scaleX_centralize;
if (type == kDataModelerFunction::LINEAR) {
my f_evaluate = linear_evaluate;
my f_evaluateBasisFunctions = linear_evaluateBasisFunctions;
my fit = series_fit;
my evaluateDerivative = linear_evaluateDerivative;
} else if (type == kDataModelerFunction::LEGENDRE) {
my scaleX = legendre_scaleX;
my f_evaluate = legendre_evaluate;
my f_evaluateBasisFunctions = legendre_evaluateBasisFunctions;
my fit = series_fit;
my evaluateDerivative = legendre_evaluateDerivative;
} else if (type == kDataModelerFunction::POLYNOME) {
my scaleX = scaleX_identity;
my f_evaluate = polynomial_evaluate;
my f_evaluateBasisFunctions = polynome_evaluateBasisFunctions;
my fit = series_fit;
my evaluateDerivative = polynomial_evaluateDerivative;
} else if (type == kDataModelerFunction::SIGMOID) {
my f_evaluate = sigmoid_evaluate;
my f_evaluateBasisFunctions = dummy_evaluateBasisFunctions;
my fit = sigmoid_fit;
my evaluateDerivative = sigmoid_evaluateDerivative;
} else if (type == kDataModelerFunction::SIGMOID_PLUS_CONSTANT) {
my f_evaluate = sigmoid_plus_constant_evaluate;
my f_evaluateBasisFunctions = dummy_evaluateBasisFunctions;
my fit = sigmoid_plus_constant_fit;
my evaluateDerivative = sigmoid_plus_constant_evaluateDerivative;
} else if (type == kDataModelerFunction::EXPONENTIAL) {
my f_evaluate = exponential_evaluate;
my f_evaluateBasisFunctions = dummy_evaluateBasisFunctions;
my fit = exponential_fit;
my evaluateDerivative = exponential_evaluateDerivative;
} else if (type == kDataModelerFunction::EXPONENTIAL_PLUS_CONSTANT) {
my f_evaluate = exponential_plus_constant_evaluate;
my f_evaluateBasisFunctions = dummy_evaluateBasisFunctions;
my fit = exponential_plus_constant_fit;
my evaluateDerivative = exponential_plus_constant_evaluateDerivative;
}
my type = type;
}
void DataModeler_init (DataModeler me, double xmin, double xmax, integer numberOfDataPoints, integer numberOfParameters, kDataModelerFunction type) {
my xmin = xmin;
my xmax = xmax;
DataModeler_setBasisFunctions (me, type);
my numberOfDataPoints = numberOfDataPoints;
my data = newvectorzero<structDataModelerData> (numberOfDataPoints);
my numberOfParameters = ( (type == kDataModelerFunction::EXPONENTIAL) ? 2 :
(type == kDataModelerFunction::EXPONENTIAL_PLUS_CONSTANT || type == kDataModelerFunction::SIGMOID) ? 3 :
(type == kDataModelerFunction::SIGMOID_PLUS_CONSTANT ? 4 : numberOfParameters) );
Melder_require (my numberOfParameters > 0,
U"The number of parameters should be greater than zero.");
my parameters = newvectorzero<structDataModelerParameter> (my numberOfParameters);
for (integer ipar = 1; ipar <= my numberOfParameters; ipar ++)
my parameters [ipar]. status = kDataModelerParameterStatus::FREE;
my parameterNames = autoSTRVEC (my numberOfParameters);
my parameterCovariances = Covariance_create (my numberOfParameters);
my type = type;
my tolerance = 1e-32;
}
autoDataModeler DataModeler_create (double xmin, double xmax, integer numberOfDataPoints, integer numberOfParameters, kDataModelerFunction type) {
try {
autoDataModeler me = Thing_new (DataModeler);
DataModeler_init (me.get(), xmin, xmax, numberOfDataPoints, numberOfParameters, type);
return me;
} catch (MelderError) {
Melder_throw (U"DataModeler not created.");
}
}
autoDataModeler DataModeler_createSimple (double xmin, double xmax,
integer numberOfDataPoints, constVECVU const& parameterValues, double gaussianNoiseStd, kDataModelerFunction type)
{
try {
Melder_require (xmin < xmax,
U"The domain should be defined properly.");
autoDataModeler me = DataModeler_create (xmin, xmax, numberOfDataPoints, parameterValues.size, type);
for (integer ipar = 1; ipar <= parameterValues.size; ipar ++)
my parameters [ipar]. value = parameterValues [ipar]; // parameters status ok
// generate the data that beinteger to the parameter values
for (integer ipoint = 1; ipoint <= numberOfDataPoints; ipoint ++) {
my data [ipoint]. x = xmin + (ipoint - 0.5) * (xmax - xmin) / numberOfDataPoints;
const double modelY = my f_evaluate (me.get(), my data [ipoint]. x, my parameters.get());
my data [ipoint]. y = modelY + NUMrandomGauss (0.0, gaussianNoiseStd);
my data [ipoint]. sigmaY = undefined;
}
my weighData = kDataModelerWeights::EQUAL_WEIGHTS;
return me;
} catch (MelderError) {
Melder_throw (U"No simple DataModeler created.");
}
}
autoDataModeler DataModeler_createFromDataModeler (DataModeler thee, integer numberOfParameters, kDataModelerFunction type) {
try {
autoDataModeler me = DataModeler_create (thy xmin, thy xmax, thy numberOfDataPoints, numberOfParameters, type);
for (integer k = 1; k <= my numberOfDataPoints; k ++)
my data [k] = thy data [k];
return me;
} catch (MelderError) {
Melder_throw (U"No DataModeler could be created from DataModeler:", thee);
}
}
void DataModeler_fit (DataModeler me) {
try {
my fit (me);
} catch (MelderError) {
Melder_throw (U"DataModeler no fit.");
}
}
static autoMAT getParameterCovariancesOrHessian (DataModeler me, bool covariance) {
bool hasSigmaY = isdefined (my data [1].sigmaY);
autoMAT jmat = raw_MAT (my numberOfDataPoints, my numberOfParameters);
autoVEC dydp = raw_VEC (my numberOfParameters);
for (integer i = 1; i <= my numberOfDataPoints; i ++) {
const double sigma = ( hasSigmaY ? my data [i].sigmaY : 1.0 );
my evaluateDerivative (me, my data [i].x, my parameters.get(), dydp.get());
dydp.get() /= sigma;
jmat.row (i) <<= dydp.get();
}
/*
The Hessian is J'J
Covariance is (J'J)^-1
*/
autoSVD thee = SVD_createFromGeneralMatrix (jmat.get());
integer numberOfZeroed = SVD_zeroSmallSingularValues (thee.get(), 0.0);
autoMAT mat = SVD_getSquared (thee.get(), covariance);
return mat;
}
conststring32 DataModeler_getParameterName (DataModeler me, integer index) {
Melder_require (index > 0 && index <= my numberOfParameters,
U"The parameter number should be a number from 1 to ", my numberOfParameters, U".");
return my parameterNames [index].get();
}
void DataModeler_setParameterCovariances (DataModeler me) {
try {
autoMAT covar = getParameterCovariancesOrHessian (me, true);
my parameterCovariances -> data.get() <<= covar.get();
for (integer ipar = 1; ipar <= my numberOfParameters; ipar ++)
my parameterCovariances ->centroid [ipar] = my parameters [ipar].value;
my parameterCovariances -> numberOfObservations = DataModeler_getNumberOfValidDataPoints (me);
if (my weighData == kDataModelerWeights::EQUAL_WEIGHTS && ! isdefined (my data [1].sigmaY)) {
/*
Our data has no sigmaY defined. We have to estimate the sigmaY from the model error
and scale the parameter covariances with its square.
*/
const double residualStdev = DataModeler_getResidualStandardDeviation (me);
my parameterCovariances -> data.get() *= residualStdev * residualStdev;
}
} catch (MelderError) {
Melder_throw (U"DataModeler: Parameter covariances could not be evaluated.");
}
}
autoMAT DataModeler_getHessian (DataModeler me) {
try {
return getParameterCovariancesOrHessian (me, false);
} catch (MelderError) {
Melder_throw (U"DataModeler: Hessian could not be evaluated.");
}
}
void DataModeler_setDataWeighing (DataModeler me, kDataModelerWeights weighData) {
my weighData = weighData;
}
autoCovariance DataModeler_to_Covariance_parameters (DataModeler me) {
try {
autoCovariance cov = Data_copy (my parameterCovariances.get());
return cov;
} catch (MelderError) {
Melder_throw (U"Covariance not created.");
}
}
autoDataModeler Table_to_DataModeler (Table me, double xmin, double xmax, integer xcolumn, integer ycolumn, integer sigmacolumn, integer numberOfParameters, kDataModelerFunction type) {
try {
Table_checkSpecifiedColumnNumberWithinRange (me, xcolumn);
Table_checkSpecifiedColumnNumberWithinRange (me, ycolumn);
const bool hasSigmaColumn = ( sigmacolumn > 0 );
if (hasSigmaColumn)
Table_checkSpecifiedColumnNumberWithinRange (me, sigmacolumn);
const integer numberOfRows = my rows.size;
integer numberOfData = 0;
autoVEC x = raw_VEC (numberOfRows);
autoVEC y = raw_VEC (numberOfRows);
autoVEC sy = raw_VEC (numberOfRows);
for (integer i = 1; i <= numberOfRows; i ++) {
const double val = Table_getNumericValue_a (me, i, xcolumn);
if (isdefined (val)) {
x [++ numberOfData] = val;
if (numberOfData > 1) {
if (val < x [numberOfData - 1]) {
Melder_throw (U"Data with x-values should be sorted.");
//} else if (val == x [numberOfData - 1]) {
// Melder_throw (U"All x-values should be different.");
}
}
y [numberOfData] = Table_getNumericValue_a (me, i, ycolumn);
sy [numberOfData] = ( hasSigmaColumn ? Table_getNumericValue_a (me, i, sigmacolumn) : undefined );
}
}
if (xmax <= xmin)
NUMextrema_e (x.part (1, numberOfData), & xmin, & xmax);
Melder_require (xmin < xmax,
U"The range of the x-values is too small.");
integer numberOfDataPoints = 0, validData = 0;
for (integer i = 1; i <= numberOfData; i ++) {
if (x [i] >= xmin && x [i] <= xmax)
numberOfDataPoints ++;
}
/*
Some models have a fixed number of parameters
*/
autoDataModeler thee = DataModeler_create (xmin, xmax, numberOfDataPoints, numberOfParameters, type);
numberOfDataPoints = 0;
for (integer i = 1; i <= numberOfData; i ++) {
if (x [i] >= xmin && x [i] <= xmax) {
thy data [++ numberOfDataPoints]. x = x [i];
thy data [numberOfDataPoints]. status = kDataModelerData::INVALID;
if (isdefined (y [i])) {
thy data [numberOfDataPoints]. y = y [i];
thy data [numberOfDataPoints]. sigmaY = sy [i];
thy data [numberOfDataPoints]. status = kDataModelerData::VALID;
validData ++;
}
}
}
thy numberOfDataPoints = numberOfDataPoints;
Melder_require (validData >= thy numberOfParameters,
U"The number of parameters should not exceed the number of data points.");
thy weighData = ( hasSigmaColumn ? kDataModelerWeights::ONE_OVER_SIGMA : kDataModelerWeights::EQUAL_WEIGHTS);
thy xVariableName = Melder_dup (my columnHeaders [xcolumn].label.get());
thy yVariableName = Melder_dup (my columnHeaders [ycolumn].label.get());
DataModeler_fit (thee.get());
return thee;
} catch (MelderError) {
Melder_throw (U"DataModeler not created from Table.");
}
}
double DataModeler_getResidualSumOfSquares (DataModeler me, integer *out_numberOfValidDataPoints) {
integer numberOfValidDataPoints = 0;
longdouble residualSS = 0.0;
for (integer i = 1; i <= my numberOfDataPoints; i ++) {
if (my data [i]. status != kDataModelerData::INVALID) {
++ numberOfValidDataPoints;
residualSS += sqr (my data [i]. y - my f_evaluate (me, my data [i]. x, my parameters.get()));
}
}
if (out_numberOfValidDataPoints)
*out_numberOfValidDataPoints = numberOfValidDataPoints;
return ( numberOfValidDataPoints > 0 ? (double) residualSS : undefined );
}
double DataModeler_getResidualStandardDeviation (DataModeler me) {
double residualStdev = undefined;
const double ndof = DataModeler_getDegreesOfFreedom (me);
if (ndof > 0) {
double ssResidual = DataModeler_getResidualSumOfSquares (me, nullptr);
residualStdev = sqrt (ssResidual / ndof);
}
return residualStdev;
}
void DataModeler_reportChiSquared (DataModeler me) {
MelderInfo_writeLine (U"Chi squared test:");
MelderInfo_writeLine (( my weighData == kDataModelerWeights::EQUAL_WEIGHTS ? U"Standard deviation is estimated from the data." :
( my weighData == kDataModelerWeights::ONE_OVER_SIGMA ? U"Sigmas are used as estimate for local standard deviations." :
( my weighData == kDataModelerWeights::RELATIVE_ ? U"1/Q's are used as estimate for local standard deviations." :
U"Sqrt sigmas are used as estimate for local standard deviations." ) ) ));
double ndf, probability;
const double chisq = DataModeler_getChiSquaredQ (me, & probability, & ndf);
MelderInfo_writeLine (U"Chi squared = ", chisq);
MelderInfo_writeLine (U"Probability = ", probability);
MelderInfo_writeLine (U"Number of degrees of freedom = ", ndf);
}
double DataModeler_getDataStandardDeviation (DataModeler me) {
try {
integer numberOfDataPoints = 0;
autoVEC y = raw_VEC (my numberOfDataPoints);
for (integer i = 1; i <= my numberOfDataPoints; i ++)
if (my data [i]. status != kDataModelerData::INVALID)
y [++ numberOfDataPoints] = my data [i]. y;
y. resize (numberOfDataPoints); // fake shrink
return NUMstdev (y.get());
} catch (MelderError) {
Melder_throw (U"Cannot estimate sigma.");
}
}
/* End of file DataModeler.cpp */
|