1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620
|
/* Matrix_extensions.cpp
*
* Copyright (C) 1993-2023 David Weenink
*
* This code is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This code is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this work. If not, see <http://www.gnu.org/licenses/>.
*/
/*
djmw 20020813 GPL header
djmw 20040226 Matrix_drawAsSquares: respect the colour environment (fill with current colour).
djmw 20041110 Matrix_drawDistribution did't draw lowest bin correctly.
djmw 20050221 Matrix_drawDistribution would draw outside window.
djmw 20050405 Matrix_drawDistribution crashed if minimum > data minimum5
djmw 20080122 float -> double
*/
#include "Matrix_extensions.h"
#include "Eigen.h"
#include "NUM2.h"
#include "Permutation.h"
void Matrix_scatterPlot (Matrix me, Graphics g, integer icx, integer icy,
double xmin, double xmax, double ymin, double ymax,
double size_mm, conststring32 mark, bool garnish)
{
const integer ix = integer_abs (icx), iy = integer_abs (icy);
if (ix < 1 || ix > my nx || iy < 1 || iy > my nx)
return;
if (xmax <= xmin) {
(void) Matrix_getWindowExtrema (me, ix, ix, 1, my ny, & xmin, & xmax);
if (xmax <= xmin) {
xmin -= 0.5;
xmax += 0.5;
}
}
if (ymax <= ymin) {
(void) Matrix_getWindowExtrema (me, iy, iy, 1, my ny, & ymin, & ymax);
if (ymax <= ymin) {
ymin -= 0.5;
ymax += 0.5;
}
}
Graphics_setInner (g);
if (icx < 0)
std::swap (xmin, xmax);
if (icy < 0)
std::swap (ymin, ymax);
Graphics_setWindow (g, xmin, xmax, ymin, ymax);
for (integer i = 1; i <= my ny; i ++)
if (my z [i] [ix] >= xmin && my z [i] [ix] <= xmax && my z [i] [iy] >= ymin && my z [i] [iy] <= ymax)
Graphics_mark (g, my z [i] [ix], my z [i] [iy], size_mm, mark);
Graphics_unsetInner (g);
if (garnish) {
Graphics_drawInnerBox (g);
Graphics_marksLeft (g, 2, true, true, false);
if (ymin * ymax < 0.0)
Graphics_markLeft (g, 0.0, true, true, true, nullptr);
Graphics_marksBottom (g, 2, true, true, false);
if (xmin * xmax < 0.0)
Graphics_markBottom (g, 0.0, true, true, true, nullptr);
}
}
static autoVEC nummat_vectorize (constMATVU const& m, integer rowmin, integer rowmax, integer colmin, integer colmax) {
const integer numberOfElements = (rowmax - rowmin + 1) * (colmax - colmin + 1);
autoVEC result = raw_VEC (numberOfElements);
for (integer irow = rowmin, index = 1; irow <= rowmax; irow ++)
for (integer icol = colmin; icol <= colmax; icol ++)
result [index ++] = m [irow] [icol];
return result;
}
void Matrix_drawAsSquares_inside (Matrix me, Graphics g, double xmin, double xmax, double ymin, double ymax, kGraphicsMatrixOrigin origin, double cellAreaScaleFactor, kGraphicsMatrixCellDrawingOrder drawingOrder) {
integer colmin, colmax, rowmin, rowmax;
const integer numberOfColumns = Matrix_getWindowSamplesX (me, xmin, xmax, & colmin, & colmax);
const integer numberOfRows = Matrix_getWindowSamplesY (me, ymin, ymax, & rowmin, & rowmax);
const integer numberOfCells = numberOfRows * numberOfColumns;
autoPermutation p = Permutation_create (numberOfCells, true);
if (drawingOrder == kGraphicsMatrixCellDrawingOrder::ROWS) {
// identity permutation
} else if (drawingOrder == kGraphicsMatrixCellDrawingOrder::RANDOM) {
Permutation_permuteRandomly_inplace (p.get(), 1, numberOfCells);
} else if (drawingOrder == kGraphicsMatrixCellDrawingOrder::INCREASING_VALUES || drawingOrder == kGraphicsMatrixCellDrawingOrder::DECREASING_VALUES) {
autoVEC v = nummat_vectorize (my z.get(), rowmin, rowmax, colmin, colmax);
NUMsortTogether (v.get(), p -> p.get());
if (drawingOrder == kGraphicsMatrixCellDrawingOrder::DECREASING_VALUES)
Permutation_reverse_inline (p.get(), 1, numberOfCells);
} else if (drawingOrder == kGraphicsMatrixCellDrawingOrder::COLUMNS) {
Permutation_tableJump_inline (p.get(), numberOfColumns, 1);
}
const double extremum = NUMextremum_u (my z.get());
if (isundef (extremum))
return;
const MelderColour colour = Graphics_inqColour (g);
const double scaleFactor = sqrt (cellAreaScaleFactor);
for (integer i = 1; i <= numberOfCells; i++) {
const integer index = Permutation_getValueAtIndex (p.get(), i);
const integer irow = rowmin + (index - 1) / numberOfColumns;
const integer icol = colmin + (index - 1) % numberOfColumns;
const double z = my z [irow] [icol];
const double xfraction = sqrt (fabs (z) / extremum), yfraction = xfraction;
const double halfCellWidth = xfraction * 0.5 * my dx * scaleFactor;
const double halfCellHeight = yfraction * 0.5 * my dy * scaleFactor;
double cellLeft, cellTop;
if (origin == kGraphicsMatrixOrigin::TOP_LEFT) {
cellLeft = Matrix_columnToX (me, icol) - halfCellWidth;
cellTop = Matrix_rowToY (me, rowmax - irow + rowmin) + halfCellHeight;
} else if (origin == kGraphicsMatrixOrigin::TOP_RIGHT) {
cellLeft = Matrix_columnToX (me, colmax - icol + colmin) - halfCellWidth;
cellTop = Matrix_rowToY (me, rowmax - irow + rowmin) + halfCellHeight;
} else if (origin == kGraphicsMatrixOrigin::BOTTOM_LEFT) {
cellLeft = Matrix_columnToX (me, icol) - halfCellWidth;
cellTop = Matrix_rowToY (me, irow) + halfCellHeight;
} else { // origin == kGraphicsMatrixOrigin::BottomRight
cellLeft = Matrix_columnToX (me, colmax - icol + colmin) - halfCellWidth;
cellTop = Matrix_rowToY (me, irow) + halfCellHeight;
}
double cellRight = cellLeft + 2.0 * halfCellWidth;
double cellBottom = cellTop - 2.0 * halfCellHeight;
cellLeft = std::max (cellLeft, xmin);
cellRight = std::min (cellRight, xmax);
cellTop = std::min (cellTop, ymax);
cellBottom = std::max (cellBottom, ymin);
if (z > 0.0)
Graphics_setColour (g, Melder_WHITE);
Graphics_fillRectangle (g, cellRight, cellLeft, cellBottom, cellTop);
Graphics_setColour (g, colour);
Graphics_rectangle (g, cellRight, cellLeft, cellBottom, cellTop);
}
}
void Matrix_drawAsSquares (Matrix me, Graphics g, double xmin, double xmax, double ymin, double ymax, bool garnish) {
Function_unidirectionalAutowindow (me, & xmin, & xmax);
SampledXY_unidirectionalAutowindowY (me, & ymin, & ymax);
if (xmin >= xmax || ymin >= ymax)
return;
Graphics_setInner (g);
Graphics_setWindow (g, xmin, xmax, ymin, ymax);
Matrix_drawAsSquares_inside (me, g, xmin, xmax, ymin, ymax, kGraphicsMatrixOrigin::BOTTOM_LEFT, 0.95 * 0.95, kGraphicsMatrixCellDrawingOrder::ROWS);
Graphics_setGrey (g, 0.0);
Graphics_unsetInner (g);
if (garnish) {
Graphics_drawInnerBox (g);
Graphics_marksLeft (g, 2, true, true, false);
if (ymin * ymax < 0.0)
Graphics_markLeft (g, 0.0, true, true, true, nullptr);
Graphics_marksBottom (g, 2, true, true, false);
if (xmin * xmax < 0.0)
Graphics_markBottom (g, 0.0, true, true, true, nullptr);
}
}
void Matrix_scale (Matrix me, int choice) {
double min, max, extremum;
integer nZero = 0;
Melder_require (choice > 0 && choice < 4,
U"Matrix_scale: choice should be > 0 && <= 3.");
if (choice == 2) { // by row
for (integer irow = 1; irow <= my ny; irow ++) {
Matrix_getWindowExtrema (me, 1, my nx, irow, irow, & min, & max);
extremum = std::max (fabs (max), fabs (min));
if (extremum == 0.0)
nZero ++;
else
my z.row (irow) /= extremum;
}
} else if (choice == 3) { // by col
for (integer icol = 1; icol <= my nx; icol ++) {
Matrix_getWindowExtrema (me, icol, icol, 1, my ny, & min, & max);
extremum = std::max (fabs (max), fabs (min));
if (extremum == 0.0)
nZero ++;
else
my z.column (icol) /= extremum;
}
} else if (choice == 1) { // overall
Matrix_getWindowExtrema (me, 1, my nx, 1, my ny, & min, & max);
extremum = std::max (fabs (max), fabs (min));
if (extremum == 0.0)
nZero ++;
else
my z.get() /= extremum;
}
if (nZero)
Melder_warning (U"Matrix_scale: extremum == 0, (part of) matrix unscaled.");
}
autoMatrix Matrix_transpose (Matrix me) {
try {
autoMatrix thee = Matrix_create (my ymin, my ymax, my ny, my dy, my y1, my xmin, my xmax, my nx, my dx, my x1);
thy z.all() <<= my z.transpose();
return thee;
} catch (MelderError) {
Melder_throw (me, U": not transposed.");
}
}
void Matrix_drawDistribution (Matrix me, Graphics g, double xmin, double xmax, double ymin, double ymax, double minimum, double maximum,
integer nBins, double freqMin, double freqMax, bool cumulative, bool garnish)
{
if (nBins <= 0)
return;
Function_unidirectionalAutowindow (me, & xmin, & xmax);
SampledXY_unidirectionalAutowindowY (me, & ymin, & ymax);
integer ixmin, ixmax, iymin, iymax;
if ((Matrix_getWindowSamplesX (me, xmin, xmax, & ixmin, & ixmax) == 0) ||
(Matrix_getWindowSamplesY (me, ymin, ymax, & iymin, & iymax) == 0))
return;
if (maximum <= minimum)
Matrix_getWindowExtrema (me, ixmin, ixmax, iymin, iymax, & minimum, & maximum);
if (maximum <= minimum) {
minimum -= 1.0;
maximum += 1.0;
}
/*
Count the numbers per bin and the total
*/
if (nBins < 1)
nBins = 10;
autoVEC freq = zero_VEC (nBins);
const double binWidth = (maximum - minimum) / nBins;
integer nxy = 0;
for (integer i = iymin; i <= iymax; i ++) {
for (integer j = ixmin; j <= ixmax; j ++) {
const integer bin = 1 + Melder_ifloor ((my z [i] [j] - minimum) / binWidth);
if (bin <= nBins && bin > 0) {
freq [bin] ++;
nxy ++;
}
}
}
if (freqMax <= freqMin) {
if (cumulative) {
freqMin = 0.0;
freqMax = 1.0;
} else {
NUMextrema_u (freq.get(), & freqMin, & freqMax);
if (isundef (freqMin) || isundef (freqMax))
return;
if (freqMax <= freqMin) {
freqMin = ( freqMin > 1.0 ? freqMin - 1.0 : 0.0 );
freqMax += 1.0;
}
}
}
Graphics_setInner (g);
Graphics_setWindow (g, minimum, maximum, freqMin, freqMax);
double fi = 0.0;
for (integer i = 1; i <= nBins; i ++) {
fi = ( cumulative ? fi + freq [i] / nxy : freq [i] );
const double ftmp = std::min (fi, freqMax);
if (ftmp > freqMin)
Graphics_rectangle (g, minimum + (i - 1) * binWidth, minimum + i * binWidth, freqMin, ftmp);
}
Graphics_unsetInner (g);
if (garnish) {
Graphics_drawInnerBox (g);
Graphics_marksBottom (g, 2, true, true, false);
Graphics_marksLeft (g, 2, true, true, false);
if (! cumulative)
Graphics_textLeft (g, true, U"Number/bin");
}
}
void Matrix_drawSliceY (Matrix me, Graphics g, double x, double ymin, double ymax, double min, double max) {
if (x < my xmin || x > my xmax)
return;
const integer ix = Matrix_xToNearestColumn (me, x);
if (ymax <= ymin) {
ymin = my ymin;
ymax = my ymax;
}
integer iymin, iymax;
const integer ny = Matrix_getWindowSamplesY (me, ymin, ymax, & iymin, & iymax);
if (ny < 1)
return;
if (max <= min)
Matrix_getWindowExtrema (me, ix, ix, iymin, iymax, & min, & max);
if (max <= min) {
min -= 0.5;
max += 0.5;
}
const integer ysize = iymax - iymin + 1;
autoVEC y = raw_VEC (ysize);
Graphics_setWindow (g, ymin, ymax, min, max);
Graphics_setInner (g);
for (integer i = iymin; i <= iymax; i ++)
y [i - iymin + 1] = my z [i] [ix];
Graphics_function (g, y.asArgumentToFunctionThatExpectsOneBasedArray(), 1, ysize, Matrix_rowToY (me, iymin), Matrix_rowToY (me, iymax));
Graphics_unsetInner (g);
}
autoMatrix Matrix_solveEquation (Matrix me, double tolerance) {
try {
const integer nr = my ny, nc = my nx - 1;
Melder_require (nc > 0,
U"There should be at least 2 columns in the matrix.");
if (nr < nc)
Melder_warning (U"Solution is not unique (there are fewer equations than unknowns).");
autoMAT u = raw_MAT (nr, nc);
autoVEC b = raw_VEC (nr);
autoMatrix thee = Matrix_create (0.5, 0.5 + nc, nc, 1, 1, 0.5, 1.5, 1, 1, 1);
u.all() <<= my z.part (1, nr, 1, nc);
b.all() <<= my z.column (my nx);
autoVEC x = solve_VEC (u.get(), b.get(), tolerance);
thy z.row (1) <<= x.all();
return thee;
} catch (MelderError) {
Melder_throw (me, U": matrix equation not solved.");
}
}
autoMatrix Matrix_solveEquation (Matrix me, Matrix thee, double tolerance) {
try {
Melder_require (my ny == thy ny,
U"The number of rows must be equal.");
if (my ny < my nx)
Melder_warning (U"Solution is not unique (there are fewer equations than unknowns).");
autoMatrix him = Matrix_create (0.5, 0.5 + thy nx, thy nx, 1, 1, 0.5, 0.5 + my nx, my nx, 1, 1);
autoSVD svd = SVD_createFromGeneralMatrix (my z.get());
SVD_zeroSmallSingularValues (svd.get(), tolerance);
SVD_solve_preallocated (svd.get(), thy z.get(), his z.get());
return him;
} catch (MelderError) {
Melder_throw (me, U": matrix equation not solved.");
}
}
double Matrix_getMean (Matrix me, double xmin, double xmax, double ymin, double ymax) {
Function_unidirectionalAutowindow (me, & xmin, & xmax);
SampledXY_unidirectionalAutowindowY (me, & ymin, & ymax);
integer ixmin, ixmax, iymin, iymax;
if ((Matrix_getWindowSamplesX (me, xmin, xmax, & ixmin, & ixmax) == 0) ||
(Matrix_getWindowSamplesY (me, ymin, ymax, & iymin, & iymax) == 0)) {
return undefined;
}
double mean = NUMmean (my z.part (iymin, iymax, ixmin, ixmax));
return mean;
}
double Matrix_getStandardDeviation (Matrix me, double xmin, double xmax, double ymin, double ymax) {
Function_unidirectionalAutowindow (me, & xmin, & xmax);
SampledXY_unidirectionalAutowindowY (me, & ymin, & ymax);
integer ixmin, ixmax, iymin, iymax;
if ((Matrix_getWindowSamplesX (me, xmin, xmax, & ixmin, & ixmax) == 0) ||
(Matrix_getWindowSamplesY (me, ymin, ymax, & iymin, & iymax) == 0))
return undefined;
integer nx = ixmax - ixmin + 1, ny = iymax - iymin + 1;
if (nx == 1 && ny == 1)
return undefined;
MelderGaussianStats stats = NUMmeanStdev (my z.part (iymin, iymax, ixmin, ixmax));
return stats.stdev;
}
autoDaata IDXFormattedMatrixFileRecognizer (integer numberOfBytesRead, const char *header, MelderFile file) {
unsigned int numberOfDimensions, type, pos = 4;
/*
9: minimum size is 4 bytes (magic number) + 4 bytes for 1 dimension + 1 value of 1 byte
*/
if (numberOfBytesRead < 9 || header [0] != 0 || header [1] != 0 || (type = header [2]) < 8 ||
numberOfBytesRead < 4 + (numberOfDimensions = header [3]) * 4) // each dimension occupies 4 bytes
return autoDaata ();
trace (U"dimensions = ", numberOfDimensions, U" type = ", type);
/*
Check if the file size (bytes) equals the number of data cells in the matrix times the size of each cell (bytes) plus three
offset of the data (4 + numberOfDimensions * 4)
*/
double numberOfCells = 1.0; // double because sizes of the dimensions could turn out to be very large if not an IDX format file
for (integer i = 1; i <= numberOfDimensions; i ++, pos += 4) {
const unsigned char b1 = header [pos], b2 = header [pos + 1], b3 = header [pos + 2], b4 = header [pos + 3];
const integer size = ((uint32) b1 << 24) + ((uint32) b2 << 16) + ((uint32) b3 << 8) + (uint32) b4;
trace (U"size = ", size, U" ", b1, U" ", b2, U" ", b3, U" ", b4);
numberOfCells *= size;
}
trace (U"Number of cells =", numberOfCells);
/*
Check how many bytes each cell needs
*/
const integer cellSizeBytes = ( (type == 0x08 || type == 0x09) ? 1 : ( type == 0x0B ? 2 : ( (type == 0x0C || type == 0x0D) ? 4 : ( type == 0x0E ? 8 : 0 ) ) ) );
if (cellSizeBytes == 0)
return autoDaata ();
trace (U"Cell size =", cellSizeBytes);
const double numberOfBytes = numberOfCells * cellSizeBytes + 4 + numberOfDimensions * 4;
trace (U"Number of bytes =", numberOfBytes);
const integer numberOfBytesInFile = MelderFile_length (file);
trace (U"File size = ", numberOfBytesInFile);
if (numberOfBytes > numberOfBytesInFile || (integer) numberOfBytes < numberOfBytesInFile) // may occur if it is not an IDX file
return autoDaata ();
autoMatrix thee = Matrix_readFromIDXFormatFile (file);
return thee.move();
}
autoMatrix Matrix_readFromIDXFormatFile (MelderFile file) {
/*
From: http://yann.lecun.com/exdb/mnist/
The IDX file format is a simple format for multidimensional arrays of various numerical types.
The basic format is
magic number
size in dimension 0
size in dimension 1
size in dimension 2
....
size in dimension N
data
The magic number is a four-byte integer (most significant byte first). The first 2 bytes are always 0.
The third byte encodes the type of the data:
0x08: unsigned byte
0x09: signed byte
0x0B: short (2 bytes)
0x0C: int (4 bytes)
0x0D: float (4 bytes)
0x0E: double (8 bytes)
The 4-th byte encodes the number of dimensions (indices) of the array: 1 for vectors, 2 for matrices....
The numbers of elements in each dimension (for a matrix: number of rows and number of columns)
are 4-byte integers (MSB first, big endian, as in most non-Intel processors).
The data is stored like in a C array, i.e. the index in the last dimension changes the fastest.
*/
try {
autofile f = Melder_fopen (file, "r");
const unsigned int b1 = bingetu8 (f); // 0
const unsigned int b2 = bingetu8 (f); // 0
Melder_require (b1 == 0 && b2 == 0,
U"Starting two bytes should be zero.");
const unsigned int b3 = bingetu8 (f); // data type
unsigned int b4 = bingetu8 (f); // number of dimensions
integer ncols = bingeti32 (f), nrows = 1; // ok if vector
if (b4 > 1) {
nrows = ncols;
ncols = bingeti32 (f);
}
while (b4 > 2) { // accumulate all other dimensions in the columns
const integer n2 = bingeti32 (f);
ncols *= n2; // put the matrix in one row
-- b4;
}
autoMatrix me = Matrix_create (0.0, ncols, ncols, 1, 0.5, 0, nrows, nrows, 1.0, 0.5);
if (b3 == 0x08) { // 8 bits unsigned
for (integer irow = 1; irow <= nrows; irow ++) {
for (integer icol = 1; icol <= ncols; icol ++) {
my z [irow] [icol] = bingetu8 (f);
}
}
} else if (b3 == 0x09) { // 8 bits signed
for (integer irow = 1; irow <= nrows; irow ++) {
for (integer icol = 1; icol <= ncols; icol ++) {
my z [irow] [icol] = bingeti8 (f);
}
}
} else if (b3 == 0x0B) { // 16 bits signed
for (integer irow = 1; irow <= nrows; irow ++) {
for (integer icol = 1; icol <= ncols; icol ++) {
my z [irow] [icol] = bingeti16 (f);
}
}
} else if (b3 == 0x0C) { // 32 bits signed
for (integer irow = 1; irow <= nrows; irow ++) {
for (integer icol = 1; icol <= ncols; icol ++) {
my z [irow] [icol] = bingeti32 (f);
}
}
} else if (b3 == 0x0D) { // 32-bits IEEE floating point
for (integer irow = 1; irow <= nrows; irow ++) {
for (integer icol = 1; icol <= ncols; icol ++) {
my z [irow] [icol] = bingetr32 (f);
}
}
} else if (b3 == 0x0E) { // 64-bits IEEE floating point
for (integer irow = 1; irow <= nrows; irow ++) {
for (integer icol = 1; icol <= ncols; icol ++) {
my z [irow] [icol] = bingetr64 (f);
}
}
} else {
Melder_throw (U"Not a valid data type.");
}
f.close (file);
return me;
} catch (MelderError) {
Melder_throw (U"Cannot read from IDX format file ", MelderFile_messageName (file), U".");
}
}
autoEigen Matrix_to_Eigen (Matrix me) {
try {
Melder_require (my nx == my ny,
U"The Matrix should be square.");
Melder_require (NUMisSymmetric (my z.get()),
U"The Matrix should be symmetric.");
autoEigen thee = Eigen_create (my nx, my nx);
Eigen_initFromSymmetricMatrix (thee.get(), my z.get());
return thee;
} catch (MelderError) {
Melder_throw (U"Cannot create Eigen from Matrix.");
}
}
void Matrix_Eigen_complex (Matrix me, autoMatrix *out_eigenvectors, autoMatrix *out_eigenvalues) {
try {
Melder_require (my nx == my ny,
U"The Matrix should be square.");
Melder_require ((out_eigenvectors || out_eigenvalues),
U"You should want either eigenvalues or eigenvectors or both to be calculated.");
autoCOMPVEC eigenvalues;
autoCOMPVEC *p_eigenvalues = ( out_eigenvalues ? & eigenvalues : nullptr );
automatrix<dcomplex> eigenvectors;
automatrix<dcomplex> *p_eigenvectors = ( out_eigenvectors ? & eigenvectors : nullptr );
MAT_getEigenSystemFromGeneralSquareMatrix (my z.get(), p_eigenvalues, p_eigenvectors);
if (out_eigenvectors) {
autoMatrix eigenvectorsM = Matrix_createSimple (my ny, 2 * my ny);
for (integer ivec = 1; ivec <= eigenvectors.ncol; ivec ++)
for (long irow = 1; irow <= my ny; irow ++) {
eigenvectorsM -> z [irow] [2 * ivec - 1] = eigenvectors [irow] [ivec] .real();
eigenvectorsM -> z [irow] [2 * ivec ] = eigenvectors [irow] [ivec] .imag();
}
*out_eigenvectors = eigenvectorsM.move();
}
if (out_eigenvalues) {
autoMatrix eigenvaluesM = Matrix_createSimple (my ny, 2);
for (long i = 1; i <= my ny; i ++) {
eigenvaluesM -> z [i] [1] = eigenvalues [i] .real();
eigenvaluesM -> z [i] [2] = eigenvalues [i] .imag();
}
*out_eigenvalues = eigenvaluesM.move();
}
} catch (MelderError) {
Melder_throw (U"Cannot create Eigenvalues from Matrix.");
}
}
autoCOMPVEC Matrix_listEigenvalues (Matrix me) {
Melder_require (my nx == my ny,
U"The Matrix should be square.");
autoCOMPVEC eigenvalues;
MAT_getEigenSystemFromGeneralSquareMatrix (my z.get(), & eigenvalues, nullptr);
return eigenvalues;
}
automatrix<dcomplex> Matrix_listEigenvectors (Matrix me) {
Melder_require (my nx == my ny,
U"The Matrix should be square.");
automatrix<dcomplex> eigenvectors;
MAT_getEigenSystemFromGeneralSquareMatrix (my z.get(), nullptr,& eigenvectors);
integer numberOfEigenvectors = eigenvectors.nrow;
automatrix<dcomplex> result = newmatrixraw<dcomplex> (eigenvectors.ncol, eigenvectors.nrow);
/*
vec's vertical
*/
for (integer ivec = 1; ivec <= numberOfEigenvectors; ivec ++)
for (long irow = 1; irow <= result.nrow; irow ++)
result [irow] [ivec] = eigenvectors [ivec] [irow];
return result;
}
autoMatrix SVD_to_Matrix (SVD me, integer from, integer to) {
try {
autoMAT synthesis = SVD_synthesize (me, from, to);
autoMatrix thee = Matrix_create (0.5, 0.5 + synthesis.ncol, synthesis.ncol, 1.0, 1.0,
0.5, 0.5 + synthesis.nrow, synthesis.nrow, 1.0, 1.0);
thy z.all() <<= synthesis.all();
return thee;
} catch (MelderError) {
Melder_throw (me, U": no Matrix synthesized.");
}
}
/* End of file Matrix_extensions.cpp */
|