1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375
|
/* Sound_and_Spectrogram_extensions.cpp
*
* Copyright (C) 1993-2024 David Weenink
*
* This code is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This code is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this work. If not, see <http://www.gnu.org/licenses/>.
*/
/*
djmw 20010718
djmw 20020813 GPL header.
djmw 20041124 Changed call to Sound_to_Spectrum.
djmw 20070103 Sound interface changes
djmw 20071107 Errors/warnings text changes
djmw 20071202 Melder_warning<n>
*/
#include "Sound_and_Spectrogram_extensions.h"
#include "Sound_extensions.h"
#include "Sound_and_Spectrum.h"
#include "Sound_to_Pitch.h"
#include "Vector.h"
#include "NUM2.h"
autoSound BandFilterSpectrogram_as_Sound (BandFilterSpectrogram me, int to_dB);
/*
The gaussian(x) = (exp(-48*((i-(n+1)/2)/(n+1))^2)-exp(-12))/(1-exp(-12));
For power we need the area under the square of this window:
Integrate (gaussian(i)^2,i=1..n) =
(sqrt(Pi)*sqrt(3)*sqrt(2)*erf(2*(n-1)*sqrt(3)*sqrt(2)/(n+1))*(n+1) + 24*exp(-24)*(n-1)+
-4*sqrt(Pi)*sqrt(3)*exp(-12)*erf(2*(n-1)*sqrt(3)/(n+1))*(n+1))/ (24 * (-1+exp(-12))^2),
where erf(x) = 1 - erfc(x) and n is the windowLength in samples.
To compare with the rectangular window we need to divide this by the window width (n -1) x 1^2.
*/
static void _Spectrogram_windowCorrection (Spectrogram me, integer numberOfSamples_window) {
double windowFactor = 1.0;
if (numberOfSamples_window > 1) {
const double e12 = exp (-12);
const double denum = (e12 - 1) * (e12 - 1.0) * 24 * (numberOfSamples_window - 1);
const double arg1 = 2.0 * NUMsqrt3 * (numberOfSamples_window - 1) / (numberOfSamples_window + 1);
const double arg2 = arg1 * NUMsqrt2;
const double p2 = NUMsqrtpi * NUMsqrt3 * NUMsqrt2 * (1 - NUMerfcc (arg2)) * (numberOfSamples_window + 1);
const double p1 = 4 * NUMsqrtpi * NUMsqrt3 * e12 * (1 - NUMerfcc (arg1)) * (numberOfSamples_window + 1);
windowFactor = (p2 - p1 + 24 * (numberOfSamples_window - 1) * e12 * e12) / denum;
}
my z.get() /= windowFactor;
}
static autoSpectrum Sound_to_Spectrum_power (Sound me) {
try {
autoSpectrum thee = Sound_to_Spectrum (me, true);
double scale = 2.0 * thy dx / (my xmax - my xmin);
/*
factor '2' because we combine positive and negative frequencies
thy dx : width of frequency bin
my xmax - my xmin : duration of sound
*/
VEC re = thy z.row (1), im = thy z.row (2);
for (integer i = 1; i <= thy nx; i ++) {
const double power = scale * (re [i] * re [i] + im [i] * im [i]);
re [i] = power;
im [i] = 0.0;
}
/*
Correction of frequency bins at 0 Hz and nyquist: don't count for two.
*/
re [1] *= 0.5;
re [thy nx] *= 0.5;
return thee;
} catch (MelderError) {
Melder_throw (me, U": no Spectrum with spectral power created.");
}
}
static void Sound_into_BarkSpectrogram_frame (Sound me, BarkSpectrogram thee, integer frame) {
autoSpectrum him = Sound_to_Spectrum_power (me);
integer numberOfFrequencies = his nx;
autoVEC z = raw_VEC (numberOfFrequencies);
for (integer ifreq = 1; ifreq <= numberOfFrequencies; ifreq ++) {
const double frequency_Hz = his x1 + (ifreq - 1) * his dx;
z [ifreq] = thy v_hertzToFrequency (frequency_Hz);
}
for (integer i = 1; i <= thy ny; i ++) {
const double z0 = thy y1 + (i - 1) * thy dy;
constVEC pow = his z.row (1); // TODO ??
longdouble p = 0.0;
for (integer ifreq = 1; ifreq <= numberOfFrequencies; ifreq ++) {
/*
Sekey & Hanson filter is defined in the power domain.
We therefore multiply the power with a (and not a^2).
integral (F(z),z=0..25) = 1.58/9
*/
const double a = NUMsekeyhansonfilter_amplitude (z0, z [ifreq]);
p += a * pow [ifreq] ;
}
thy z [i] [frame] = double (p);
}
}
autoBarkSpectrogram Sound_to_BarkSpectrogram (Sound me, double analysisWidth, double dt, double f1_bark, double fmax_bark, double df_bark) {
try {
const double samplingFrequency = 1.0 / my dx, nyquist = 0.5 * samplingFrequency;
const double windowDuration = 2.0 * analysisWidth; /* gaussian window */
const double zmax = NUMhertzToBark (nyquist);
double fmin_bark = 0.0;
// Check defaults.
if (f1_bark <= 0.0)
f1_bark = 1.0;
if (fmax_bark <= 0.0)
fmax_bark = zmax;
if (df_bark <= 0.0)
df_bark = 1.0;
fmax_bark = std::min (fmax_bark, zmax);
const integer numberOfFilters = Melder_iround ( (fmax_bark - f1_bark) / df_bark);
Melder_require (numberOfFilters > 0,
U"The combination of filter parameters is not valid.");
integer numberOfFrames;
double t1;
Sampled_shortTermAnalysis (me, windowDuration, dt, & numberOfFrames, & t1);
autoSound sframe = Sound_createSimple (1, windowDuration, samplingFrequency);
autoSound window = Sound_createGaussian (windowDuration, samplingFrequency);
autoBarkSpectrogram thee = BarkSpectrogram_create (my xmin, my xmax, numberOfFrames, dt, t1, fmin_bark, fmax_bark, numberOfFilters, df_bark, f1_bark);
autoMelderProgress progess (U"BarkSpectrogram analysis");
for (integer iframe = 1; iframe <= numberOfFrames; iframe ++) {
const double t = Sampled_indexToX (thee.get(), iframe);
Sound_into_Sound (me, sframe.get(), t - windowDuration / 2.0);
Sounds_multiply (sframe.get(), window.get());
Sound_into_BarkSpectrogram_frame (sframe.get(), thee.get(), iframe);
if (iframe % 10 == 1)
Melder_progress ( (double) iframe / numberOfFrames, U"BarkSpectrogram analysis: frame ",
iframe, U" from ", numberOfFrames, U".");
}
_Spectrogram_windowCorrection ((Spectrogram) thee.get(), window -> nx);
return thee;
} catch (MelderError) {
Melder_throw (me, U": no BarkSpectrogram created.");
}
}
static void Sound_into_MelSpectrogram_frame (Sound me, MelSpectrogram thee, integer frame) {
autoSpectrum him = Sound_to_Spectrum_power (me);
for (integer ifilter = 1; ifilter <= thy ny; ifilter ++) {
longdouble power = 0.0;
const double fc_mel = thy y1 + (ifilter - 1) * thy dy;
const double fc_hz = thy v_frequencyToHertz (fc_mel);
const double fl_hz = thy v_frequencyToHertz (std::max (fc_mel - thy dy, 0.0));
const double fh_hz = thy v_frequencyToHertz (std::min (fc_mel + thy dy, his xmax));
integer ifrom, ito;
Sampled_getWindowSamples (him.get(), fl_hz, fh_hz, & ifrom, & ito);
for (integer i = ifrom; i <= ito; i ++) {
/*
Bin with a triangular filter the power (= amplitude-squared)
*/
const double f = his x1 + (i - 1) * his dx;
const double a = NUMtriangularfilter_amplitude (fl_hz, fc_hz, fh_hz, f);
power += a * his z [1] [i];
}
thy z [ifilter] [frame] = double (power);
}
}
autoMelSpectrogram Sound_to_MelSpectrogram (Sound me, double analysisWidth, double dt, double f1_mel, double fmax_mel, double df_mel) {
try {
const double samplingFrequency = 1.0 / my dx, nyquist = 0.5 * samplingFrequency;
const double windowDuration = 2.0 * analysisWidth; // Gaussian window
double fmin_mel = 0.0;
const double fbottom = NUMhertzToMel2 (100.0), fceiling = NUMhertzToMel2 (nyquist);
// Check defaults.
if (fmax_mel <= 0.0 || fmax_mel > fceiling)
fmax_mel = fceiling;
if (fmax_mel <= f1_mel) {
f1_mel = fbottom;
fmax_mel = fceiling;
}
if (f1_mel <= 0.0)
f1_mel = fbottom;
if (df_mel <= 0.0)
df_mel = 100.0;
// Determine the number of filters.
const integer numberOfFilters = Melder_iround ((fmax_mel - f1_mel) / df_mel);
integer numberOfFrames;
double t1;
Sampled_shortTermAnalysis (me, windowDuration, dt, & numberOfFrames, & t1);
autoSound sframe = Sound_createSimple (1, windowDuration, samplingFrequency);
autoSound window = Sound_createGaussian (windowDuration, samplingFrequency);
autoMelSpectrogram thee = MelSpectrogram_create (my xmin, my xmax, numberOfFrames, dt, t1, fmin_mel, fmax_mel, numberOfFilters, df_mel, f1_mel);
autoMelderProgress progress (U"MelSpectrogram analysis");
for (integer iframe = 1; iframe <= numberOfFrames; iframe ++) {
const double t = Sampled_indexToX (thee.get(), iframe);
Sound_into_Sound (me, sframe.get(), t - windowDuration / 2.0);
Sounds_multiply (sframe.get(), window.get());
Sound_into_MelSpectrogram_frame (sframe.get(), thee.get(), iframe);
if (iframe % 10 == 1)
Melder_progress ((double) iframe / numberOfFrames, U"Frame ", iframe, U" out of ", numberOfFrames, U".");
}
_Spectrogram_windowCorrection ((Spectrogram) thee.get(), window -> nx);
return thee;
} catch (MelderError) {
Melder_throw (me, U": No MelSpectrogram created.");
}
}
/*
Analog formant filter response :
H(f) = i f B / (f1^2 - f^2 + i f B)
*/
static int Sound_into_Spectrogram_frame (Sound me, Spectrogram thee, integer frame, double bw) {
Melder_assert (bw > 0.0);
autoSpectrum him = Sound_to_Spectrum_power (me);
for (integer ifilter = 1; ifilter <= thy ny; ifilter ++) {
const double fc = thy y1 + (ifilter - 1) * thy dy;
constVEC pow = his z.row (1);
double p = 0.0;
for (integer ifreq = 1; ifreq <= his nx; ifreq ++) {
/*
H(f) = ifB / (fc^2 - f^2 + ifB)
H(f)| = fB / sqrt ((fc^2 - f^2)^2 + f^2B^2)
|H(f)|^2 = f^2B^2 / ((fc^2 - f^2)^2 + f^2B^2)
= 1 / (((fc^2 - f^2) /fB)^2 + 1)
*/
const double f = his x1 + (ifreq - 1) * his dx;
const double a = NUMformantfilter_amplitude (fc, bw, f);
p += a * pow [ifreq];
}
thy z [ifilter] [frame] = p;
}
return 1;
}
autoSpectrogram Sound_to_Spectrogram_pitchDependent (Sound me, double analysisWidth, double dt, double f1_hz, double fmax_hz, double df_hz, double relative_bw,
double pitchFloor, double pitchCeiling)
{
try {
autoPitch thee = Sound_to_Pitch (me, dt, pitchFloor, pitchCeiling);
return Sound_Pitch_to_Spectrogram (me, thee.get(), analysisWidth, dt, f1_hz, fmax_hz, df_hz, relative_bw);
} catch (MelderError) {
Melder_throw (me, U": no Spectrogram created.");
}
}
autoSpectrogram Sound_Pitch_to_Spectrogram (Sound me, Pitch thee, double analysisWidth, double dt, double f1_hz, double fmax_hz, double df_hz, double relative_bw) {
try {
const double windowDuration = 2.0 * analysisWidth; /* gaussian window */
const double nyquist = 0.5 / my dx, samplingFrequency = 1.0 / my dx, fmin_hz = 0.0;
Melder_require (my xmin >= thy xmin && my xmax <= thy xmax,
U"The domain of the Sound should be included in the domain of the Pitch.");
double f0_median = Pitch_getQuantile (thee, thy xmin, thy xmax, 0.5, kPitch_unit::HERTZ);
if (isundef (f0_median) || f0_median == 0.0) {
f0_median = 100.0;
Melder_warning (U"Pitch values undefined. Bandwidth fixed to 100 Hz. ");
}
if (f1_hz <= 0.0)
f1_hz = 100.0;
if (fmax_hz <= 0.0)
fmax_hz = nyquist;
if (df_hz <= 0.0)
df_hz = f0_median / 2.0;
if (relative_bw <= 0.0)
relative_bw = 1.1;
fmax_hz = std::min (fmax_hz, nyquist);
const integer numberOfFilters = Melder_iround ( (fmax_hz - f1_hz) / df_hz);
double t1;
integer numberOfFrames, numberOfUndefinedPitchFrames = 0;
Sampled_shortTermAnalysis (me, windowDuration, dt, & numberOfFrames, & t1);
autoSpectrogram him = Spectrogram_create (my xmin, my xmax, numberOfFrames, dt, t1, fmin_hz, fmax_hz, numberOfFilters, df_hz, f1_hz);
// Temporary objects
autoSound sframe = Sound_createSimple (1, windowDuration, samplingFrequency);
autoSound window = Sound_createGaussian (windowDuration, samplingFrequency);
autoMelderProgress progress (U"Sound & Pitch: To FormantFilter");
for (integer iframe = 1; iframe <= numberOfFrames; iframe ++) {
const double t = Sampled_indexToX (him.get(), iframe);
double f0 = Pitch_getValueAtTime (thee, t, kPitch_unit::HERTZ, 0);
if (isundef (f0) || f0 == 0.0) {
numberOfUndefinedPitchFrames ++;
f0 = f0_median;
}
const double b = relative_bw * f0;
Sound_into_Sound (me, sframe.get(), t - windowDuration / 2.0);
Sounds_multiply (sframe.get(), window.get());
Sound_into_Spectrogram_frame (sframe.get(), him.get(), iframe, b);
if (iframe % 10 == 1)
Melder_progress ((double) iframe / numberOfFrames, U"Frame ", iframe, U" out of ",
numberOfFrames, U".");
}
_Spectrogram_windowCorrection (him.get(), window -> nx);
return him;
} catch (MelderError) {
Melder_throw (U"FormantFilter not created from Pitch & FormantFilter.");
}
}
autoSound BandFilterSpectrogram_as_Sound (BandFilterSpectrogram me, int unit) {
try {
autoSound thee = Sound_create (my ny, my xmin, my xmax, my nx, my dx, my x1);
for (integer i = 1; i <= my ny; i ++)
for (integer j = 1; j <= my nx; j ++)
thy z [i] [j] = my v_getValueAtSample (j, i, unit);
return thee;
} catch (MelderError) {
Melder_throw (me, U": no Sound created.");
}
}
autoSound BandFilterSpectrograms_crossCorrelate (BandFilterSpectrogram me, BandFilterSpectrogram thee, enum kSounds_convolve_scaling scaling, enum kSounds_convolve_signalOutsideTimeDomain signalOutsideTimeDomain) {
try {
autoSound sme = BandFilterSpectrogram_as_Sound (me, 1); // to dB
autoSound sthee = BandFilterSpectrogram_as_Sound (thee, 1);
autoSound cc = Sounds_crossCorrelate (sme.get(), sthee.get(), scaling, signalOutsideTimeDomain);
return cc;
} catch (MelderError) {
Melder_throw (me, U" and ", thee, U" not cross-correlated.");
}
}
autoSound BandFilterSpectrograms_convolve (BandFilterSpectrogram me, BandFilterSpectrogram thee, enum kSounds_convolve_scaling scaling, enum kSounds_convolve_signalOutsideTimeDomain signalOutsideTimeDomain) {
try {
autoSound sme = BandFilterSpectrogram_as_Sound (me, 1); // to dB
autoSound sthee = BandFilterSpectrogram_as_Sound (thee, 1);
autoSound cc = Sounds_convolve (sme.get(), sthee.get(), scaling, signalOutsideTimeDomain);
return cc;
} catch (MelderError) {
Melder_throw (me, U" and ", thee, U" not convolved.");
}
}
/* End of file Sound_and_Spectrogram_extensions.cpp */
|