1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
|
/* Spectrum_extensions.cpp
*
* Copyright (C) 1993-2021 David Weenink
*
* This code is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This code is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this work. If not, see <http://www.gnu.org/licenses/>.
*/
/*
djmw 20010718
djmw 20020813 GPL header
djmw 20030929 Added a warning in Spectrum_drawPhases.
djmw 20031023 New: Spectra_multiply, Spectrum_conjugate
djmw 20040506 Changed warning message in Spectrum_drawPhases.
djmw 20041124 Changed call to Sound_to_Spectrum.
djmw 20061218 Introduction of Melder_information<12...9>
djmw 20071022 phase_unwrap initialize phase = 0.
djmw 20080122 float -> double
djmw 20080202 Warning in Spectrum_drawPhases to wchar
djmw 20080411 Removed define NUM2pi
*/
#include "Ltas.h"
#include "Spectrum_extensions.h"
#include "Sound_and_Spectrum.h"
#include "Sound_and_Spectrum_dft.h"
#include "NUM2.h"
#define SIGN(x,s) ((s) < 0 ? -fabs (x) : fabs(x))
#define THLCON 0.5
#define THLINC 1.5
#define EXP2 12
#define PPVPHA(x,y,test) ((test) ? atan2 (-(y),-(x)) : atan2 ((y),(x)))
#define PHADVT(xr,xi,yr,yi,xa) ((xa) > 0 ? ((xr)*(yr)+(xi)*(yi))/ (xa) : 0)
struct tribolet_struct {
double thlinc, thlcon;
double ddf, dvtmn2;
double *x;
integer nx, l, count;
bool reverse_sign;
};
/*
Perform modified Goertzel algorithm to calculate, at frequency 'freq_rad',
the real and imaginary part of the spectrum and the d/df of the
spectrum of x.
Reference: Bonzanigo (1978), IEEE Trans. ASSP, Vol. 26.
*/
static void getSpectralValues (struct tribolet_struct *tbs, double freq_rad, double *xr, double *xi, double *nxr, double *nxi) {
const double cosf = cos (freq_rad), sinf = sin (freq_rad);
double a = 2 * cosf;
double b, u1 = 0, u2 = u1, w1 = u1, w2 = u1;
const double *x = tbs -> x;
const integer nx = tbs -> nx;
for (integer j = 1; j <= nx; j ++) {
double xj = x [j];
double u0 = xj + a * u1 - u2;
double w0 = (j - 1) * xj + a * w1 - w2;
u2 = u1;
u1 = u0;
w2 = w1;
w1 = w0;
}
// Bonzanigo's phase correction
a = freq_rad * (nx - 1);
u1 = cos (a);
u2 = - sin (a);
a = u1 - u2 * cosf;
b = u2 * sinf;
*xr = u1 * a - u2 * b;
*xi = u2 * a + u1 * b;
a = w1 - w2 * cosf;
b = w2 * sinf;
*nxr = u1 * a - u2 * b;
*nxi = u2 * a + u1 * b;
tbs -> count ++;
}
// Find the closest unwrapped phase estimate from the two admissible phase values (a1 & a2).
static int phase_check (double pv, double *inout_phase, double thlcon) {
const double a0 = (*inout_phase - pv) / NUM2pi;
const integer k = Melder_ifloor (a0); // ppgb: instead of truncation toward zero
const double a1 = pv + k * NUM2pi;
const double a2 = a1 + SIGN (NUM2pi, a0);
const double a3 = fabs (a1 - *inout_phase);
const double a4 = fabs (a2 - *inout_phase);
if (a3 > thlcon && a4 > thlcon)
return 0;
*inout_phase = a3 > a4 ? a2 : a1;
return 1;
}
/*
Phase unwrapping based on Tribolet's adaptive integration method.
the unwrapped phase estimate is returned.
*/
static double phase_unwrap (struct tribolet_struct *tbs, double pfreq, double ppv, double pdvt, double *pphase, double *ppdvt) {
double sdvt [25], sppv [25];
double freq, phase = 0.0;
double xr, xi, xmsq, nxr, nxi;
integer k, sindex [25], pindex = 1, sp = 1;
sppv [sp] = ppv;
sdvt [sp] = pdvt;
sindex [sp] = tbs -> l + 1;
goto p40;
p20:
/*
When the routine runs out of stack space, there probably is
a zero very near the unit circle that results in a jump of
pi in the phase.
*/
if ((sindex [sp] - pindex) <= 1)
return phase;
/*
p30:
Get the intermediate frequency value and compute its phase
derivative and principal value.
*/
k = (sindex [sp] + pindex) / 2;
freq = pfreq + (k - 1) * tbs -> ddf;
getSpectralValues (tbs, freq, & xr, & xi, & nxr, & nxi);
sindex [ ++sp] = k;
sppv [sp] = PPVPHA (xr, xi, tbs -> reverse_sign);
xmsq = xr * xr + xi * xi;
sdvt [sp] = PHADVT (xr, xi, nxr, nxi, xmsq);
p40:
/*
Evaluate the phase increment.
If the phase increment, reduced by the expected linear phase
increment, is greater than the specified threshold, adapt step size.
*/
double delta = 0.5 * tbs -> ddf * (sindex [sp] - pindex);
double phase_inc = delta * (*ppdvt + sdvt [sp]);
if (fabs (phase_inc - delta * tbs -> dvtmn2) > tbs -> thlinc)
goto p20;
phase = *pphase + phase_inc;
if (! phase_check (sppv [sp], &phase, tbs -> thlcon))
goto p20;
if (fabs (phase - *pphase) > NUMpi)
goto p20;
if (sp == 1)
return phase;
/*
p10: Update previous estimate.
*/
pindex = sindex [sp];
*pphase = phase;
*ppdvt = sdvt [sp--];
goto p40;
}
autoMatrix Spectrum_unwrap (Spectrum me) {
try {
struct tribolet_struct tbs;
int remove_linear_part = 1;
const integer nfft = 2 * Melder_clippedLeft (2_integer, Melder_iroundUpToPowerOfTwo (my nx - 1)); // TODO: explain edge case
Melder_require (nfft / 2 == my nx - 1,
U"Dimension of Spectrum should be a power of 2 - 1.");
autoSound x = Spectrum_to_Sound (me);
autoSound nx = Data_copy (x.get());
for (integer i = 1; i <= x -> nx; i ++)
nx -> z [1] [i] *= (i - 1);
autoSpectrum snx = Sound_to_Spectrum (nx.get(), true);
autoMatrix thee = Matrix_create (my xmin, my xmax, my nx, my dx, my x1, 1, 2, 2, 1, 1);
tbs.thlinc = THLINC;
tbs.thlcon = THLCON;
tbs.x = & x -> z [1] [0];
tbs.nx = x -> nx;
tbs.l = Melder_ifloor (pow (2, EXP2) + 0.1);
tbs.ddf = NUM2pi / ( (tbs.l) * nfft);
tbs.reverse_sign = my z [1] [1] < 0;
tbs.count = 0;
/*
Reuse snx : put phase derivative (d/df) in imaginary part.
*/
tbs.dvtmn2 = 0.0;
for (integer i = 1; i <= my nx; i ++) {
const double xr = my z [1] [i], xi = my z [2] [i];
const double nxr = snx -> z [1] [i], nxi = snx -> z [2] [i];
const double xmsq = xr * xr + xi * xi;
const double pdvt = PHADVT (xr, xi, nxr, nxi, xmsq);
thy z [1] [i] = xmsq;
snx -> z [2] [i] = pdvt;
tbs.dvtmn2 += pdvt;
}
tbs.dvtmn2 = (2.0 * tbs.dvtmn2 - snx -> z [2] [1] - snx -> z [2] [my nx]) / (my nx - 1);
autoMelderProgress progress (U"Phase unwrapping");
double pphase = 0.0, phase = 0.0;
double ppdvt = snx -> z [2] [1];
thy z [2] [1] = PPVPHA (my z [1] [1], my z [2] [1], tbs.reverse_sign);
for (integer i = 2; i <= my nx; i ++) {
const double pfreq = NUM2pi * (i - 1) / nfft;
const double pdvt = snx -> z [2] [i];
const double ppv = PPVPHA (my z [1] [i], my z [2] [i], tbs.reverse_sign);
phase = phase_unwrap (&tbs, pfreq, ppv, pdvt, &pphase, &ppdvt);
ppdvt = pdvt;
thy z [2] [i] = pphase = phase;
Melder_progress ( (double) i / my nx, i,
U" unwrapped phases from ", my nx, U".");
}
const integer iphase = Melder_ifloor (phase / NUMpi + 0.1);
if (remove_linear_part) {
phase /= my nx - 1;
for (integer i = 2; i <= my nx; i ++)
thy z [2] [i] -= phase * (i - 1);
}
Melder_information (U"Number of spectral values: ", tbs.count);
Melder_information (U" iphase = ", iphase);
return thee;
} catch (MelderError) {
Melder_throw (me, U": not unwrapped.");
}
}
void Spectrum_drawPhases (Spectrum me, Graphics g, double fmin, double fmax, double phase_min, double phase_max, int unwrap, bool /* garnish */) {
autoMatrix thee;
bool reverse_sign = my z [1] [1] < 0;
if (unwrap)
thee = Spectrum_unwrap (me);
else {
thee = Matrix_create (my xmin, my xmax, my nx, my dx, my x1, 1.0, 2.0, 2, 1.0, 1.0);
for (integer i = 1; i <= my nx; i ++) {
thy z [2] [i] = PPVPHA (my z [1] [i], my z [2] [i], reverse_sign);
}
}
Matrix_drawRows (thee.get(), g, fmin, fmax, 1.9, 2.1, phase_min, phase_max);
}
autoSpectrum Spectra_multiply (Spectrum me, Spectrum thee) {
try {
Melder_require (my nx == thy nx && my x1 == thy x1 && my xmax == thy xmax && my dx == thy dx,
U"Dimensions of both spectra should be the same.");
autoSpectrum him = Data_copy (me);
for (integer i = 1; i <= his nx; i ++) {
his z [1] [i] = my z [1] [i] * thy z [1] [i] - my z [2] [i] * thy z [2] [i];
his z [2] [i] = my z [1] [i] * thy z [2] [i] + my z [2] [i] * thy z [1] [i];
}
return him;
} catch (MelderError) {
Melder_throw (me, U": not multiplied.");
}
}
void Spectrum_shiftPhaseBy90Degrees (Spectrum me) {
// shifting +pi/2 by a multiplication with i
for (integer i = 2; i <= my nx - 1; i ++) {
std::swap (my z [1] [i], my z [2] [i]);
my z [1] [i] = - my z [1] [i];
}
}
void Spectrum_unshiftPhaseBy90Degrees (Spectrum me) {
// shifting -pi/2 by a multiplication with -i
for (integer i = 2; i <= my nx - 1; i ++) {
my z [1] [i] = - my z [1] [i];
std::swap (my z [1] [i], my z [2] [i]);
}
}
void Spectrum_conjugate (Spectrum me) {
for (integer i = 1; i <= my nx; i ++)
my z [2] [i] = - my z [2] [i];
}
autoSpectrum Spectrum_resample (Spectrum me, integer numberOfFrequencies) {
try {
const double newSamplingFrequency = (1 / my dx) * numberOfFrequencies / my nx;
// resample real and imaginary part !
autoSound thee = Sound_resample ((Sound) me, newSamplingFrequency, 50);
autoSpectrum him = Spectrum_create (my xmax, numberOfFrequencies);
his z.all() <<= thy z.all();
return him;
} catch (MelderError) {
Melder_throw (me, U": not resampled.");
}
}
/*
autoSpectrum Spectrum_resample2 (Spectrum me, integer numberOfFrequencies) {
try {
autoSound sound = Spectrum_to_Sound (me);
const double newSamplingFrequency = (1.0 / my dx) * numberOfFrequencies / my nx;
const double resampleFactor = (my nx - 1.0) / numberOfFrequencies;
autoSound resampled = Sound_resample (sound.get(), resampleFactor / sound -> dx, 50);
autoSpectrum extendedSpectrum = Sound_to_Spectrum_resampled (resampled.get(), 50);
autoSpectrum him = Spectrum_create (my xmax, numberOfFrequencies);
his z.all() <<= extendedSpectrum -> z.all();
return him;
} catch (MelderError) {
Melder_throw (me, U": not resampled.");
}
}
*/
#if 0
static autoSpectrum Spectrum_shiftFrequencies2 (Spectrum me, double shiftBy, bool changeMaximumFrequency) {
try {
double xmax = my xmax;
integer numberOfFrequencies = my nx, interpolationDepth = 50;
if (changeMaximumFrequency) {
xmax += shiftBy;
numberOfFrequencies += (xmax - my xmax) / my dx;
}
autoSpectrum thee = Spectrum_create (xmax, numberOfFrequencies);
// shiftBy >= 0
for (integer i = 1; i <= thy nx; i ++) {
const double thyf = thy x1 + (i - 1) * thy dx;
const double myf = thyf - shiftBy;
if (myf >= my xmin && myf <= my xmax) {
const double index = Sampled_xToIndex (me, myf);
thy z [1] [i] = NUM_interpolate_sinc (my z.row (1), index, interpolationDepth);
thy z [2] [i] = NUM_interpolate_sinc (my z.row (2), index, interpolationDepth);
}
}
return thee;
} catch (MelderError) {
Melder_throw (me, U": not shifted.");
}
}
#endif
autoSpectrum Spectrum_shiftFrequencies (Spectrum me, double shiftBy, double newMaximumFrequency, integer interpolationDepth) {
try {
double xmax = my xmax;
integer numberOfFrequencies = my nx;
if (newMaximumFrequency != 0.0) {
numberOfFrequencies = Melder_ifloor (newMaximumFrequency / my dx) + 1;
xmax = newMaximumFrequency;
}
autoSpectrum thee = Spectrum_create (xmax, numberOfFrequencies);
for (integer i = 1; i <= thy nx; i ++) {
const double thyf = thy x1 + (i - 1) * thy dx;
const double myf = thyf - shiftBy;
if (myf >= my xmin && myf <= my xmax) {
const double index = Sampled_xToIndex (me, myf);
thy z [1] [i] = NUM_interpolate_sinc (my z.row (1), index, interpolationDepth);
thy z [2] [i] = NUM_interpolate_sinc (my z.row (2), index, interpolationDepth);
}
}
/*
Make imaginary part of first and last sample zero
so Spectrum_to_Sound uses FFT if numberOfSamples was power of 2!
*/
thy z [1] [1] = hypot (thy z [1] [1], thy z [2] [1]);
thy z [2] [1] = 0.0;
thy z [1] [thy nx] = hypot (thy z [1] [thy nx], thy z [2] [thy nx]);
thy z [2] [thy nx] = 0.0;
return thee;
} catch (MelderError) {
Melder_throw (me, U": not shifted.");
}
}
autoSpectrum Spectrum_compressFrequencyDomain (Spectrum me, double fmax, integer interpolationDepth, int freqscale, int method) {
try {
const double fdomain = my xmax - my xmin, factor = fdomain / fmax ;
//integer numberOfFrequencies = 1.0 + fmax / my dx; // keep dx the same, otherwise the "duration" changes
const double xmax = my xmax / factor;
const integer numberOfFrequencies = Melder_ifloor (my nx / factor); // keep dx the same, otherwise the "duration" changes
autoSpectrum thee = Spectrum_create (xmax, numberOfFrequencies);
thy z [1] [1] = my z [1] [1];
thy z [2] [1] = my z [2] [1];
const double df = freqscale == 1 ? factor * my dx : log10 (fdomain) / (numberOfFrequencies - 1);
for (integer i = 2; i <= numberOfFrequencies; i ++) {
const double f = my xmin + (freqscale == 1 ? (i - 1) * df : pow (10.0, (i - 1) * df));
const double index = (f - my x1) / my dx + 1;
double x, y;
if (index > my nx)
break;
if (method == 1) {
x = NUM_interpolate_sinc (my z.row (1), index, interpolationDepth);
y = NUM_interpolate_sinc (my z.row (2), index, interpolationDepth);
} else {
x = undefined; // ppgb: better than data from random memory
y = undefined;
}
thy z [1] [i] = x;
thy z [2] [i] = y;
}
return thee;
} catch (MelderError) {
Melder_throw (me, U": not compressed.");
}
}
/* End of file Spectrum_extensions.cpp */
|