1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
|
#!/usr/bin/env python3
"""
Cluster sequences by group
"""
# Info
__author__ = 'Christopher Bolen, Jason Anthony Vander Heiden, Ruoyi Jiang'
from presto import __version__, __date__
# Imports
import os
import shutil
import sys
from argparse import ArgumentParser
from collections import OrderedDict
from textwrap import dedent
from time import time
from Bio import SeqIO
from Bio.Seq import Seq
from Bio.SeqRecord import SeqRecord
# Presto imports
from presto.Defaults import default_delimiter, default_barcode_field, \
default_cluster_field, default_out_args, \
default_usearch_exec, default_vsearch_exec, default_cdhit_exec
from presto.Commandline import CommonHelpFormatter, checkArgs, getCommonArgParser, parseCommonArgs
from presto.Annotation import parseAnnotation, flattenAnnotation, mergeAnnotation
from presto.Applications import runCDHit, runUClust, default_max_memory
from presto.IO import countSeqFile, getFileType, getOutputHandle, printLog, printMessage, \
printProgress, readSeqFile, printError, printWarning
from presto.Sequence import indexSeqSets
from presto.Multiprocessing import SeqResult, manageProcesses, feedSeqQueue, \
collectSeqQueue
# Defaults
choices_cluster_tool = ['usearch', 'vsearch', 'cd-hit-est']
default_cluster_tool = 'usearch'
default_cluster_exec = default_usearch_exec
default_cluster_ident = 0.9
default_length_ratio = 0.0
default_cluster_prefix=''
map_cluster_tool = {'cd-hit-est': runCDHit,
'usearch': runUClust,
'vsearch': runUClust}
min_cluster_ident = {'cd-hit-est': 0.80,
'usearch': 0.0,
'vsearch': 0.0}
def processQueue(alive, data_queue, result_queue,
cluster_func, cluster_args={},
cluster_field=default_cluster_field,
cluster_prefix=default_cluster_prefix,
delimiter=default_delimiter):
"""
Pulls from data queue, performs calculations, and feeds results queue
Arguments:
alive : a multiprocessing.Value boolean controlling whether processing
continues; when False function returns.
data_queue : a multiprocessing.Queue holding data to process.
result_queue : a multiprocessing.Queue to hold processed results.
cluster_func : the function to use for clustering.
cluster_args : a dictionary of optional arguments for the clustering function.
cluster_field : string defining the output cluster field name.
cluster_prefix : string defining a prefix for the cluster identifier.
delimiter : a tuple of delimiters for (annotations, field/values, value lists).
Returns:
None
"""
try:
# Iterator over data queue until sentinel object reached
while alive.value:
# Get data from queue
if data_queue.empty(): continue
else: data = data_queue.get()
# Exit upon reaching sentinel
if data is None: break
# Define result object
result = SeqResult(data.id, data.data)
result.log['BARCODE'] = data.id
result.log['SEQCOUNT'] = len(data)
# Perform clustering
cluster_dict = cluster_func(data.data, **cluster_args)
# Process failed result
if cluster_dict is None:
# Update log
result.log['CLUSTERS'] = 0
for i, seq in enumerate(data.data, start=1):
result.log['CLUST0-%i' % i] = str(seq.seq)
# Feed results queue and continue
result_queue.put(result)
continue
# Get number of clusters
result.log['CLUSTERS'] = len(cluster_dict)
# Update sequence annotations with cluster assignments
results = list()
seq_dict = {s.id: s for s in data.data}
for cluster, id_list in cluster_dict.items():
for i, seq_id in enumerate(id_list, start=1):
# Add cluster annotation
seq = seq_dict[seq_id]
label = '%s%i' % (cluster_prefix, cluster)
header = parseAnnotation(seq.description, delimiter=delimiter)
header = mergeAnnotation(header, {cluster_field: label}, delimiter=delimiter)
seq.id = seq.name = flattenAnnotation(header, delimiter=delimiter)
seq.description = ''
# Update log and results
result.log['CLUST%i-%i' % (cluster, i)] = str(seq.seq)
results.append(seq)
# Check results
result.results = results
result.valid = (len(results) == len(seq_dict))
# Feed results to result queue
result_queue.put(result)
else:
sys.stderr.write('PID %s> Error in sibling process detected. Cleaning up.\n' \
% os.getpid())
return None
except:
alive.value = False
printError('Error processing sequence set with ID: %s.' % data.id, exit=False)
raise
return None
def clusterSets(seq_file, ident=default_cluster_ident, length_ratio=default_length_ratio,
seq_start=0, seq_end=None, set_field=default_barcode_field, cluster_field=default_cluster_field,
cluster_prefix=default_cluster_prefix, cluster_memory=default_max_memory,
cluster_tool=default_cluster_tool, cluster_exec=default_cluster_exec,
out_file=None, out_args=default_out_args, nproc=None, queue_size=None):
"""
Performs clustering on sets of sequences
Arguments:
seq_file : the sample sequence file name.
ident : the identity threshold for clustering sequences.
length_ratio : minimum short/long length ratio allowed within a cluster.
seq_start : the start position to trim sequences at before clustering.
seq_end : the end position to trim sequences at before clustering.
set_field : the annotation containing set IDs.
cluster_field : the name of the output cluster field.
cluster_prefix : string defining a prefix for the cluster identifier.
cluster_memory : cd-hit-est max memory limit (Mb)
cluster_exec : the path to the clustering executable.
cluster_tool : the clustering tool to use; one of cd-hit or usearch.
out_file : output file name. Automatically generated from the input file if None.
out_file : output file name. Automatically generated from the input file if None.
out_args : common output argument dictionary from parseCommonArgs.
nproc : the number of processQueue processes;
if None defaults to the number of CPUs.
queue_size : maximum size of the argument queue;
if None defaults to 2*nproc.
Returns:
str: the clustered output file name.
"""
# Print parameter info
log = OrderedDict()
log['START'] = 'ClusterSets'
log['COMMAND'] = 'set'
log['FILE'] = os.path.basename(seq_file)
log['IDENTITY'] = ident
log['SEQUENCE_START'] = seq_start
log['SEQUENCE_END'] = seq_end
log['SET_FIELD'] = set_field
log['CLUSTER_FIELD'] = cluster_field
log['CLUSTER_PREFIX'] = cluster_prefix
log['CLUSTER_TOOL'] = cluster_tool
log['NPROC'] = nproc
printLog(log)
# Set cluster tool
try:
cluster_func = map_cluster_tool.get(cluster_tool)
except:
printError('Invalid clustering tool %s.' % cluster_tool)
# Check the minimum identity
if ident < min_cluster_ident[cluster_tool]:
printError('Minimum identity %s too low for clustering tool %s.' % (str(ident), cluster_tool))
# Define cluster function parameters
cluster_args = {'cluster_exec': cluster_exec,
'ident': ident,
'length_ratio': length_ratio,
'seq_start': seq_start,
'seq_end': seq_end,
'max_memory': cluster_memory}
# Define feeder function and arguments
index_args = {'field': set_field, 'delimiter': out_args['delimiter']}
feed_func = feedSeqQueue
feed_args = {'seq_file': seq_file,
'index_func': indexSeqSets,
'index_args': index_args}
# Define worker function and arguments
work_func = processQueue
work_args = {'cluster_func': cluster_func,
'cluster_args': cluster_args,
'cluster_field': cluster_field,
'cluster_prefix': cluster_prefix,
'delimiter': out_args['delimiter']}
# Define collector function and arguments
collect_func = collectSeqQueue
collect_args = {'seq_file': seq_file,
'label': 'cluster',
'out_file': out_file,
'out_args': out_args,
'index_field': set_field}
# Call process manager
result = manageProcesses(feed_func, work_func, collect_func,
feed_args, work_args, collect_args,
nproc, queue_size)
# Print log
log = OrderedDict()
log['OUTPUT'] = result['log'].pop('OUTPUT')
for k, v in result['log'].items(): log[k] = v
log['END'] = 'ClusterSets'
printLog(log)
return result['out_files']
def clusterAll(seq_file, ident=default_cluster_ident, length_ratio=default_length_ratio,
seq_start=0, seq_end=None, cluster_field=default_cluster_field,
cluster_prefix=default_cluster_prefix, cluster_memory=default_max_memory,
cluster_tool=default_cluster_tool, cluster_exec=default_cluster_exec,
out_file=None, out_args=default_out_args, nproc=None):
"""
Performs clustering on all sequences
Arguments:
seq_file : the sample sequence file name.
ident : the identity threshold for clustering sequences.
length_ratio : minimum short/long length ratio allowed within a cluster.
seq_start : the start position to trim sequences at before clustering.
seq_end : the end position to trim sequences at before clustering.
cluster_field : the name of the output cluster field.
cluster_prefix : string defining a prefix for the cluster identifier.
cluster_memory : cd-hit-est max memory limit (Mb)
cluster_tool : the clustering tool to use; one of cd-hit or usearch.
cluster_exec : the path to the executable for usearch.
out_file : output file name. Automatically generated from the input file if None.
out_args : output arguments.
nproc : the number of processQueue processes;
if None defaults to the number of CPUs
Returns:
str : the clustered output file name
"""
# Function to modify SeqRecord header with cluster identifier
def _header(seq, cluster, field=cluster_field, prefix=cluster_prefix,
delimiter=out_args['delimiter']):
label = '%s%i' % (prefix, cluster)
header = parseAnnotation(seq.description, delimiter=delimiter)
header = mergeAnnotation(header, {field: label}, delimiter=delimiter)
seq.id = seq.name = flattenAnnotation(header, delimiter=delimiter)
seq.description = ''
return seq
# Print parameter info
log = OrderedDict()
log['START'] = 'ClusterSets'
log['COMMAND'] = 'all'
log['FILE'] = os.path.basename(seq_file)
log['IDENTITY'] = ident
log['SEQUENCE_START'] = seq_start
log['SEQUENCE_END'] = seq_end
log['CLUSTER_FIELD'] = cluster_field
log['CLUSTER_PREFIX'] = cluster_prefix
log['CLUSTER_TOOL'] = cluster_tool
log['NPROC'] = nproc
printLog(log)
# Set cluster tool
try:
cluster_func = map_cluster_tool.get(cluster_tool)
except:
printError('Invalid clustering tool %s.' % cluster_tool)
# Check the minimum identity
if ident < min_cluster_ident[cluster_tool]:
printError('Minimum identity %s too low for clustering tool %s.' % (str(ident), cluster_tool))
# Count sequence file and parse into a list of SeqRecords
result_count = countSeqFile(seq_file)
seq_iter = readSeqFile(seq_file)
# Perform clustering
start_time = time()
printMessage('Running %s' % cluster_tool, start_time=start_time, width=25)
cluster_dict = cluster_func(seq_iter, ident=ident, length_ratio=length_ratio,
seq_start=seq_start, seq_end=seq_end,
max_memory=cluster_memory,
threads=nproc, cluster_exec=cluster_exec)
printMessage('Done', start_time=start_time, end=True, width=25)
# Determine file type
if out_args['out_type'] is None:
out_args['out_type'] = getFileType(seq_file)
# Open output file handles
if out_file is not None:
pass_handle = open(out_file, 'w')
else:
pass_handle = getOutputHandle(seq_file,
'cluster-pass',
out_dir=out_args['out_dir'],
out_name=out_args['out_name'],
out_type=out_args['out_type'])
# Open indexed sequence file
seq_dict = readSeqFile(seq_file, index=True)
# Iterate over sequence records and update header with cluster annotation
start_time = time()
rec_count = pass_count = 0
for cluster, id_list in cluster_dict.items():
printProgress(rec_count, result_count, 0.05, start_time=start_time)
rec_count += len(id_list)
# Define output sequences
seq_output = [_header(seq_dict[x], cluster) for x in id_list]
# Write output
pass_count += len(seq_output)
SeqIO.write(seq_output, pass_handle, out_args['out_type'])
# Update progress
printProgress(rec_count, result_count, 0.05, start_time=start_time)
# Print log
log = OrderedDict()
log['OUTPUT'] = os.path.basename(pass_handle.name)
log['CLUSTERS'] = len(cluster_dict)
log['SEQUENCES'] = result_count
log['PASS'] = pass_count
log['FAIL'] = rec_count - pass_count
log['END'] = 'ClusterSets'
printLog(log)
# Close handles
pass_handle.close()
return pass_handle.name
def clusterBarcodes(seq_file, ident=default_cluster_ident, length_ratio=default_length_ratio,
barcode_field=default_barcode_field, cluster_field=default_cluster_field,
cluster_prefix=default_cluster_prefix, cluster_memory=default_max_memory,
cluster_tool=default_cluster_tool, cluster_exec=default_cluster_exec,
out_file=None, out_args=default_out_args, nproc=None):
"""
Performs clustering on sets of sequences
Arguments:
seq_file : the sample sequence file name.
ident : the identity threshold for clustering sequences.
length_ratio : minimum short/long length ratio allowed within a cluster.
barcode_field : the annotation field containing barcode sequences.
cluster_field : the name of the output cluster field.
cluster_prefix : string defining a prefix for the cluster identifier.
cluster_memory : cd-hit-est max memory limit (Mb)
seq_start : the start position to trim sequences at before clustering.
seq_end : the end position to trim sequences at before clustering.
cluster_tool : the clustering tool to use; one of cd-hit or usearch.
cluster_exec : the path to the executable for usearch.
out_file : output file name. Automatically generated from the input file if None.
out_args : output arguments.
nproc : the number of processQueue processes;
if None defaults to the number of CPUs.
Returns:
str: the clustered output file name
"""
# Function to modify SeqRecord header with cluster identifier
def _header(seq, cluster, field=cluster_field, prefix=cluster_prefix,
delimiter=out_args['delimiter']):
label = '%s%i' % (prefix, cluster)
header = parseAnnotation(seq.description, delimiter=delimiter)
header = mergeAnnotation(header, {field: label}, delimiter=delimiter)
seq.id = seq.name = flattenAnnotation(header, delimiter=delimiter)
seq.description = ''
return seq
# Function to extract to make SeqRecord object from a barcode annotation
def _barcode(seq, field=barcode_field, delimiter=out_args['delimiter']):
header = parseAnnotation(seq.description, delimiter=delimiter)
return SeqRecord(Seq(header[field]), id=seq.id)
# Print parameter info
log = OrderedDict()
log['START'] = 'ClusterSets'
log['COMMAND'] = 'barcode'
log['FILE'] = os.path.basename(seq_file)
log['IDENTITY'] = ident
log['BARCODE_FIELD'] = barcode_field
log['CLUSTER_FIELD'] = cluster_field
log['CLUSTER_PREFIX'] = cluster_prefix
log['CLUSTER_TOOL'] = cluster_tool
log['NPROC'] = nproc
printLog(log)
# Set cluster tool
try:
cluster_func = map_cluster_tool.get(cluster_tool)
except:
printError('Invalid clustering tool %s.' % cluster_tool)
# Check the minimum identity
if ident < min_cluster_ident[cluster_tool]:
printError('Minimum identity %s too low for clustering tool %s.' % (str(ident), cluster_tool))
# Count sequence file and parse into a list of SeqRecords
result_count = countSeqFile(seq_file)
barcode_iter = (_barcode(x) for x in readSeqFile(seq_file))
# Perform clustering, note reduced min_word_match compared to cluster sets
# see https://github.com/torognes/vsearch/issues/328
start_time = time()
printMessage('Running %s' % cluster_tool, start_time=start_time, width=25)
cluster_dict = cluster_func(barcode_iter, ident=ident, length_ratio=length_ratio,
seq_start=0, seq_end=None, max_memory=cluster_memory,
threads=nproc, cluster_exec=cluster_exec,
min_word_match=1)
printMessage('Done', start_time=start_time, end=True, width=25)
# Determine file type
if out_args['out_type'] is None:
out_args['out_type'] = getFileType(seq_file)
# Open output file handles
if out_file is not None:
pass_handle = open(out_file, 'w')
else:
pass_handle = getOutputHandle(seq_file,
'cluster-pass',
out_dir=out_args['out_dir'],
out_name=out_args['out_name'],
out_type=out_args['out_type'])
# Open indexed sequence file
seq_dict = readSeqFile(seq_file, index=True)
# Iterate over sequence records and update header with cluster annotation
start_time = time()
rec_count = pass_count = 0
for cluster, id_list in cluster_dict.items():
printProgress(rec_count, result_count, 0.05, start_time=start_time)
rec_count += len(id_list)
# TODO: make a generator. Figure out how to get pass_count updated
# Define output sequences
seq_output = [_header(seq_dict[x], cluster) for x in id_list]
# Write output
pass_count += len(seq_output)
SeqIO.write(seq_output, pass_handle, out_args['out_type'])
# Update progress
printProgress(rec_count, result_count, 0.05, start_time=start_time)
# Print log
log = OrderedDict()
log['OUTPUT'] = os.path.basename(pass_handle.name)
log['CLUSTERS'] = len(cluster_dict)
log['SEQUENCES'] = result_count
log['PASS'] = pass_count
log['FAIL'] = rec_count - pass_count
log['END'] = 'ClusterSets'
printLog(log)
# Close handles
pass_handle.close()
return pass_handle.name
def getArgParser():
"""
Defines the ArgumentParser
Returns:
argparse.ArgumentParser: argument parser object.
"""
# Define output file names and header fields
fields = dedent(
'''
output files:
cluster-pass
clustered reads.
cluster-fail
raw reads failing clustering.
output annotation fields:
CLUSTER
a numeric cluster identifier defining the within-group cluster.
''')
# Define ArgumentParser
parser = ArgumentParser(description=__doc__, epilog=fields,
formatter_class=CommonHelpFormatter, add_help=False)
group_help = parser.add_argument_group('help')
group_help.add_argument('--version', action='version',
version='%(prog)s:' + ' %s %s' %(__version__, __date__))
group_help.add_argument('-h', '--help', action='help', help='show this help message and exit')
subparsers = parser.add_subparsers(title='subcommands', dest='command', metavar='',
help='Clustering method')
# TODO: This is a temporary fix for Python issue 9253
subparsers.required = True
# Parent parser of common arguments
parent_parser = ArgumentParser(formatter_class=CommonHelpFormatter, add_help=False)
group_parent = parent_parser.add_argument_group('common clustering arguments')
group_parent.add_argument('-k', action='store', dest='cluster_field', type=str,
default=default_cluster_field,
help='''The name of the output annotation field to add with the
cluster information for each sequence.''')
group_parent.add_argument('--ident', action='store', dest='ident', type=float,
default=default_cluster_ident,
help='''The sequence identity threshold to use for clustering.
Note, how identity is calculated is specific to the clustering
application used.''')
group_parent.add_argument('--length', action='store', dest='length_ratio', type=float,
default=default_length_ratio,
help='''The minimum allowed shorter/longer sequence length ratio allowed
within a cluster. Setting this value to 1.0 will require identical
length matches within clusters. A value of 0.0 will allow clusters
containing any length of substring.''')
group_parent.add_argument('--prefix', action='store', dest='cluster_prefix', type=str,
default=default_cluster_prefix,
help='''A string to use as the prefix for each cluster identifier.
By default, cluster identifiers will be numeric values only.''')
group_parent.add_argument('--cluster', action='store', dest='cluster_tool',
choices=choices_cluster_tool, default=default_cluster_tool,
help='''The clustering tool to use for assigning clusters.
Must be one of usearch, vsearch or cd-hit-est. Note, for
cd-hit-est the default maximum memory limit is set to 3GB.''')
group_parent.add_argument('--mem', action='store', dest='cluster_memory',
default=default_max_memory,
help='''The maximum memory limit for cd-hit-est in MB.
Ignored if using usearch or vsearch.''')
group_parent.add_argument('--exec', action='store', dest='cluster_exec', default=None,
help='The name or path of the usearch, vsearch or cd-hit-est executable.')
# Sequence set clustering arguments
parser_set = subparsers.add_parser('set',
parents=[getCommonArgParser(log=True, multiproc=True), parent_parser],
formatter_class=CommonHelpFormatter, add_help=False,
help='Cluster sequences within annotation sets.',
description='Cluster sequences within annotation sets.')
group_set = parser_set.add_argument_group('grouped sequence clustering arguments')
group_set.add_argument('-f', action='store', dest='set_field', type=str,
default=default_barcode_field,
help='''The annotation field containing annotations, such as UMI
barcode, for sequence grouping.''')
group_set.add_argument('--start', action='store', dest='seq_start', type=int, default=0,
help='''The start of the region to be used for clustering.
Together with --end, this parameter can be used to specify a
subsequence of each read to use in the clustering algorithm.''')
group_set.add_argument('--end', action='store', dest='seq_end', type=int,
help='The end of the region to be used for clustering.')
parser_set.set_defaults(func=clusterSets)
# Total sequence clustering arguments
parser_all = subparsers.add_parser('all',
parents=[getCommonArgParser(log=False, failed=False, multiproc=True), parent_parser],
formatter_class=CommonHelpFormatter, add_help=False,
help='Cluster all sequences regardless of annotation.',
description='Cluster all sequences regardless of annotation.')
group_all = parser_all.add_argument_group('total sequence clustering arguments')
group_all.add_argument('--start', action='store', dest='seq_start', type=int,
help='''The start of the region to be used for clustering.
Together with --end, this parameter can be used to specify a
subsequence of each read to use in the clustering algorithm.''')
group_all.add_argument('--end', action='store', dest='seq_end', type=int,
help='The end of the region to be used for clustering.')
parser_all.set_defaults(func=clusterAll)
# Sequence set clustering arguments
parser_barcode = subparsers.add_parser('barcode',
parents=[getCommonArgParser(log=False, failed=False, multiproc=True), parent_parser],
formatter_class=CommonHelpFormatter, add_help=False,
help='Cluster reads by clustering barcode sequences.',
description='Cluster reads by clustering barcode sequences.')
group_barcode = parser_barcode.add_argument_group('barcode clustering arguments')
group_barcode.add_argument('-f', action='store', dest='barcode_field', type=str,
default=default_barcode_field,
help='''The annotation field containing barcode sequences.''')
parser_barcode.set_defaults(func=clusterBarcodes)
return parser
if __name__ == '__main__':
"""
Parses command line arguments and calls main function
"""
# Parse arguments
parser = getArgParser()
checkArgs(parser)
args = parser.parse_args()
args_dict = parseCommonArgs(args)
# Convert fields to uppercase
if 'set_field' in args_dict and args_dict['set_field'] is not None:
args_dict['set_field'] = args_dict['set_field'].upper()
if 'cluster_field' in args_dict and args_dict['cluster_field'] is not None:
args_dict['cluster_field'] = args_dict['cluster_field'].upper()
# Set cluster exec if unspecified
if args_dict['cluster_exec'] is None:
args_dict['cluster_exec'] = args_dict['cluster_tool']
# Check if a valid clustering executable was specified
if not shutil.which(args_dict['cluster_exec']):
parser.error('%s executable not found' % args_dict['cluster_exec'])
# Check for valid start and end input
if ('seq_start' in args_dict and 'seq_end' in args_dict) and \
args_dict['seq_start'] is not None and args_dict['seq_end'] is not None and \
args_dict['seq_start'] >= args_dict['seq_end']:
parser.error('--start must be less than --end')
# Call cluster main function for each input file
del args_dict['seq_files']
del args_dict['func']
del args_dict['command']
if 'out_files' in args_dict: del args_dict['out_files']
for i, f in enumerate(args.__dict__['seq_files']):
args_dict['seq_file'] = f
args_dict['out_file'] = args.__dict__['out_files'][i] \
if args.__dict__['out_files'] else None
args.func(**args_dict)
# import cProfile
# prof = cProfile.Profile()
# results = prof.runcall(args.func, **args_dict)
# prof.dump_stats('cluster.prof')
|