1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845
|
#!/usr/bin/env python3
"""
Calculates annotation set error rates
"""
# Info
__author__ = 'Jason Anthony Vander Heiden, Namita Gupta, Ruoyi Jiang'
from presto import __version__, __date__
# Imports
import os
import sys
import numpy as np
import pandas as pd
from argparse import ArgumentParser
from collections import OrderedDict, Counter
from textwrap import dedent
from time import time
from scipy.spatial.distance import pdist, squareform
# Presto imports
from presto.Defaults import default_barcode_field, default_missing_chars, \
default_consensus_min_freq, default_consensus_min_qual, default_out_args
from presto.Commandline import CommonHelpFormatter, checkArgs, getCommonArgParser, parseCommonArgs
from presto.IO import countSeqFile, getFileType, countSeqSets, getOutputHandle, readSeqFile, \
printLog, printProgress, printError, printWarning
from presto.Sequence import getDNAScoreDict, calculateDiversity, qualityConsensus, \
frequencyConsensus, indexSeqSets
from presto.Multiprocessing import SeqResult, manageProcesses, feedSeqQueue
from presto.Annotation import parseAnnotation
# Defaults
default_bin_count = 50
default_min_count = 20
default_headers = ['mismatch', 'q_sum', 'total']
default_distance_types = ['all']
default_nucleotides = ['A', 'C', 'G', 'T']
def initializeMismatchDictionary(seq_len, nucleotides=default_nucleotides,
headers=default_headers, distance_types=default_distance_types,
bin_count=default_bin_count):
"""
Generates empty mismatch dictionary
Arguments:
seq_len : the nt length of sequences in the set
nucleotides : valid nucloetide characters.
headers : distance DataFrame headers.
distance_types : distance types to include.
bin_count : histogram bin count.
Returns:
dict: pandas.DataFrame objects containing [mismatch, qsum, total] counts
for {pos:sequence position, nuc:nucleotide pairs, qual:quality score, set:sequence set}
"""
# initialize the reference-sequence mismatch dictionary
pos_dict = {header: {position:0 for position in range(seq_len)} for header in headers}
nuc_dict = {header: {nucleotide: {nucleotide:0 for nucleotide in nucleotides} for nucleotide in nucleotides} \
for header in headers}
qual_dict = {header: {quality:0 for quality in range(94)} for header in headers}
set_dict = {header: None for header in headers}
# initialize the pairwise-distance mismatch dictionary
dist_dict = {header: np.zeros(bin_count) for header in distance_types}
# output the dictionary
return {'pos': pos_dict, 'nuc': nuc_dict, 'qual': qual_dict, 'set': set_dict, 'dist': dist_dict}
def calculateDistances(seq_iter, bin_count=default_bin_count, pad_ends='none'):
"""
Computes and histograms the pairwise distance matrix from a set of sequences
Arguments:
seq_iter (iter): an iterable of strings.
bin_count (int): number of bins to use when computing histogram.
pad_ends (str): action to take for truncated barcode sequences. "none" excludes truncated barcodes from
the calculations. "head" or "tail" will add N characters to the respective end.
Returns:
dict: np.arrays for {all:all pairwise, dtn:distance to nearest}
"""
# Define 2d unicode array of strings
seq_array = [[ord(x) for x in seq] for seq in seq_iter]
# Filter or pad truncated sequences: ord('N') = 78
seq_length = max(map(len, seq_array))
if pad_ends == 'none':
seq_array = list(filter(lambda x: len(x) == seq_length, seq_array))
elif pad_ends == 'head':
seq_array = list(map(lambda x: [78]*(seq_length - len(x)) + x, seq_array))
elif pad_ends == 'tail':
seq_array = list(map(lambda x: x + [78]*(seq_length - len(x)), seq_array))
else:
exit('Invalid pad_ends argument %s' % pad_ends)
# Compute the distance matrix
pairwise_dist = squareform(pdist(np.array(seq_array), metric='hamming'))
# Compute distance to nearest and upper triangular of all pairwise distance matrix
all_pairwise = pairwise_dist[np.triu_indices_from(pairwise_dist, k=1)]
return {'all' : np.histogram(all_pairwise, bins=bin_count, range=(0.0, 1.0), density=False)[0]}
def countMismatches(seq_list, ref_seq, ignore_chars=default_missing_chars,
score_dict=getDNAScoreDict(mask_score=(1, 1), gap_score=(1, 1)),
headers=default_headers, distance_types=default_distance_types,
bin_count=default_bin_count):
"""
Counts the occurrence of nucleotide mismatches in a set of sequences
Arguments:
seq_list : a list of SeqRecord objects with aligned sequences
ref_seq : a SeqRecord object containing the reference sequence to match against
ignore_chars : list of characters to exclude from mismatch counts
score_dict : optional dictionary of alignment scores as {(char1, char2): score}
headers : distance DataFrame headers.
distance_types : distance types to include.
bin_count : histogram bin count.
Returns:
dict: dictionaries containing [mismatch, qsum, total] counts
for {pos:sequence position, nuc:nucleotide pairs, qual:quality score, set:sequence set, dist:sequence distances}
"""
# Define position mismatch DataFrame
mismatch = initializeMismatchDictionary(len(ref_seq), headers=headers,
distance_types=distance_types, bin_count=bin_count)
for seq in seq_list:
qual = seq.letter_annotations['phred_quality']
for i, b in enumerate(seq):
a = ref_seq[i]
q = qual[i]
if a not in ignore_chars and b not in ignore_chars:
mismatch['pos']['total'][i] += 1
mismatch['pos']['q_sum'][i] += q
# Add nt counts, including for mismatches
mismatch['nuc']['mismatch'][b][b] += 1
for a_i in mismatch['nuc']['total'][b]: mismatch['nuc']['total'][b][a_i] += 1
for a_i in mismatch['nuc']['q_sum'][b]: mismatch['nuc']['q_sum'][b][a_i] += q
mismatch['qual']['total'][q] += 1
mismatch['qual']['q_sum'][q] += q
if score_dict[(a, b)] == 0:
mismatch['pos']['mismatch'][i] += 1
mismatch['nuc']['mismatch'][a][b] += 1
#@ Remove nt if mismatch from previous count
mismatch['nuc']['mismatch'][b][b] -= 1
mismatch['qual']['mismatch'][q] += 1
# Generate the set counter (for a given number of sequences in umi group, these are the mismatch values)
mismatch['set'] = {header: {len(seq_list): sum(mismatch['pos'][header].values())} for header in headers}
# Calculate distances
distance_mismatch = calculateDistances(seq_list, bin_count=bin_count)
mismatch['dist'] = {header: distance_mismatch[header] for header in distance_types}
return mismatch
def processEEQueue(alive, data_queue, result_queue, cons_func, cons_args={},
min_count=default_min_count, max_diversity=None):
"""
Pulls from data queue, performs calculations, and feeds results queue
Arguments:
alive : a multiprocessing.Value boolean controlling whether processing
continues; when False function returns
data_queue : a multiprocessing.Queue holding data to process
result_queue : a multiprocessing.Queue to hold processed results
cons_func : the function to use for consensus generation
cons_args : a dictionary of optional arguments for the consensus function
min_count : threshold number of sequences to retain a set
max_diversity : the minimum diversity score to retain a set;
if None do not calculate diversity
Returns:
None
"""
try:
# Iterator over data queue until sentinel object reached
while alive.value:
# Get data from queue
if data_queue.empty(): continue
else: data = data_queue.get()
# Exit upon reaching sentinel
if data is None: break
# Define result dictionary for iteration
result = SeqResult(data.id, data.data)
result.results = {'pos':None,
'nuc':None,
'qual':None,
'set':None}
# Define sequences set
seq_list = data.data
seq_count = len(data)
# Update log
result.log['SET'] = data.id
result.log['SEQCOUNT'] = seq_count
for i, s in enumerate(seq_list):
result.log['SEQ%i' % (i + 1)] = str(s.seq)
# Check count threshold and continue if failed
if len(data) < min_count:
result_queue.put(result)
continue
#@ Check all sequences in group have the same length and continue if failed
init_len = len(seq_list[0])
if any(len(seq) != init_len for seq in seq_list):
result_queue.put(result)
continue
# Calculate average pairwise error rate
if max_diversity is not None:
diversity = calculateDiversity(seq_list)
result.log['DIVERSITY'] = diversity
# Check diversity threshold and continue if failed
if diversity > max_diversity:
result_queue.put(result)
continue
# Define reference sequence by consensus
ref_seq = cons_func(seq_list, **cons_args)
# Count mismatches against consensus
mismatch = countMismatches(seq_list, ref_seq)
# Calculate average reported and observed error
reported_q = mismatch['set']['q_sum'][len(seq_list)] / mismatch['set']['total'][len(seq_list)]
error_rate = mismatch['set']['mismatch'][len(seq_list)] / mismatch['set']['total'][len(seq_list)]
# Update log
result.log['REFERENCE'] = str(ref_seq.seq)
result.log['MISMATCH'] = ''.join(['*' if x > 0 else ' ' \
for x in mismatch['pos']['mismatch']])
result.log['ERROR'] = '%.6f' % error_rate
result.log['REPORTED_Q'] = '%.2f' % reported_q
result.log['EMPIRICAL_Q'] = '%.2f' % (-10 * np.log10(max(error_rate, 1e-9)))
# Update results and feed result queue
result.valid = True
result.results.update(mismatch)
result_queue.put(result)
else:
sys.stderr.write('PID %s> Error in sibling process detected. Cleaning up.\n' \
% os.getpid())
return None
except:
alive.value = False
printError('Error processing sequence set with ID: %s.' % data.id, exit=False)
raise
return None
def collectEEQueue(alive, result_queue, collect_queue, seq_file, out_args, set_field,
nucleotides=default_nucleotides, headers=default_headers,
distance_types=default_distance_types):
"""
Pulls from results queue, assembles results and manages log and file IO
Arguments:
alive : a multiprocessing.Value boolean controlling whether processing
continues; when False function returns.
result_queue : a multiprocessing.Queue holding worker results.
collect_queue : a multiprocessing.Queue to store collector return values.
seq_file : the sample sequence file name.
out_args : common output argument dictionary from parseCommonArgs.
set_field : the field defining set membership.
nucleotides : valid nucloetide characters.
headers : distance DataFrame headers.
distance_types : distance types to include.
Returns:
None : (adds a dictionary of {log: log object, out_files: output file names} to collect_queue)
"""
# Helper function for adding together entries from 2 dictionaries by summation
def _addCounterDict(dict1, dict2):
join = Counter(dict1)
join.update(Counter(dict2))
return dict(join)
# Helper function for adding a mismatch dictionary to the total_mismatch dictionary
def _updateTotalMismatch(total_mismatch, mismatch):
for head in headers:
total_mismatch['qual'][head] = \
_addCounterDict(total_mismatch['qual'][head], mismatch['qual'][head])
total_mismatch['set'][head] = \
_addCounterDict(total_mismatch['set'][head], mismatch['set'][head])
total_mismatch['pos'][head] = \
_addCounterDict(total_mismatch['pos'][head], mismatch['pos'][head])
for nucleotide in mismatch['nuc']['mismatch']:
total_mismatch['nuc'][head][nucleotide] = \
_addCounterDict(total_mismatch['nuc'][head][nucleotide], mismatch['nuc'][head][nucleotide])
for head in distance_types:
total_mismatch['dist'][head] = total_mismatch['dist'][head] + mismatch['dist'][head]
return total_mismatch
try:
# Count sets
result_count = countSeqSets(seq_file, set_field, out_args['delimiter'])
# Define empty DataFrames to store assembled results
total_mismatch = initializeMismatchDictionary(0, nucleotides=nucleotides, headers=headers,
distance_types=distance_types)
# Open log file
if out_args['log_file'] is None:
log_handle = None
else:
log_handle = open(out_args['log_file'], 'w')
except:
alive.value = False
raise
try:
# Iterator over results queue until sentinel object reached
start_time = time()
set_count = seq_count = pass_count = fail_count = 0
while alive.value:
# Get result from queue
if result_queue.empty(): continue
else: result = result_queue.get()
# Exit upon reaching sentinel
if result is None: break
# Print progress for previous iteration
printProgress(set_count, result_count, 0.05, start_time=start_time)
# Update counts for iteration
set_count += 1
seq_count += result.data_count
# Sum results
if result:
pass_count += 1
total_mismatch = _updateTotalMismatch(total_mismatch, result.results)
else:
fail_count += 1
# Write log
printLog(result.log, handle=log_handle)
else:
sys.stderr.write('PID %s: Error in sibling process detected. Cleaning up.\n' \
% os.getpid())
return None
# Print final progress
printProgress(set_count, result_count, 0.05, start_time=start_time)
# Rearrange the nuc_dict and remove A,A T,T C,C G,G entries
nuc_dict = {head: {(n1, n2): total_mismatch['nuc'][head][n1][n2] \
for n2 in nucleotides \
for n1 in nucleotides if n1 != n2} for head in headers}
# Convert total_mismatch dictionary to pd
pos_df = pd.DataFrame.from_dict(total_mismatch['pos'])
qual_df = pd.DataFrame.from_dict(total_mismatch['qual'])
nuc_df = pd.DataFrame.from_dict(nuc_dict)
if pass_count > 0:
set_df = pd.DataFrame.from_dict(total_mismatch['set'])
dist_df = pd.DataFrame.from_dict(total_mismatch['dist'])
dist_df.index = dist_df.index/len(dist_df.index)
# Find the threshold (average minimum between max and 0.75)
dist = total_mismatch['dist']['all']
dist = dist[np.argmax(dist):]
window = dist[:int(len(dist) * 0.75)]
thresh_df = pd.DataFrame.from_dict({'thresh': {'ALL': dist_df.index[np.argmax(dist) + \
int(np.mean([index for index in np.argsort(window) \
if dist[index] == np.min(window)]))]}
})
# Generate console log
log = OrderedDict()
for i in range(6):
log['OUTPUT%i' % (i+ 1)] = None
log['SETS'] = set_count
log['SEQUENCES'] = seq_count
log['PASS'] = pass_count
log['FAIL'] = fail_count
log['POSITION_ERROR'] = None
log['NUCLEOTIDE_ERROR'] = None
log['QUALITY_ERROR'] = None
log['SET_ERROR'] = None
log['ALL_THRESHOLD'] = None
# Return if no mismatch data
if pass_count == 0:
collect_dict = {'log': log, 'out_files': None}
collect_queue.put(collect_dict)
return None
# Calculate error rates
pos_df['error'] = pos_df['mismatch'] / pos_df['total']
nuc_df['error'] = nuc_df['mismatch'] / nuc_df['total']
qual_df['error'] = qual_df['mismatch'] / qual_df['total']
set_df['error'] = set_df['mismatch'] / set_df['total']
# Bound minimum error to Q=90
pos_df.loc[pos_df['error'] == 0, 'error'] = 1e-9
nuc_df.loc[nuc_df['error'] == 0, 'error'] = 1e-9
qual_df.loc[qual_df['error'] == 0, 'error'] = 1e-9
set_df.loc[set_df['error'] == 0, 'error'] = 1e-9
# Convert error to empirical quality score
pos_df['emp_q'] = -10 * np.log10(pos_df['error'])
nuc_df['emp_q'] = -10 * np.log10(nuc_df['error'])
qual_df['emp_q'] = -10 * np.log10(qual_df['error'])
set_df['emp_q'] = -10 * np.log10(set_df['error'])
# Calculate reported quality means
pos_df['rep_q'] = pos_df['q_sum'] / pos_df['total']
nuc_df['rep_q'] = nuc_df['q_sum'] / nuc_df['total']
qual_df['rep_q'] = qual_df['q_sum'] / qual_df['total']
set_df['rep_q'] = set_df['q_sum'] / set_df['total']
# Calculate overall error rate
pos_error = pos_df['mismatch'].sum() / pos_df['total'].sum()
qual_error = qual_df['mismatch'].sum() / qual_df['total'].sum()
nuc_error = nuc_df['mismatch'].sum() / nuc_df['total'].sum()
set_error = set_df['mismatch'].sum() / set_df['total'].sum()
# Build results dictionary
assembled = {'pos': pos_df, 'qual': qual_df, 'nuc': nuc_df, 'set': set_df,
'dist': dist_df, 'thresh': thresh_df}
# Write assembled error counts to output files
out_files = writeResults(assembled, seq_file, out_args)
# Update console log
for i, f in enumerate(out_files, start=1):
log['OUTPUT%i' % i] = os.path.basename(f)
log['POSITION_ERROR'] = '%.6f' % pos_error
log['NUCLEOTIDE_ERROR'] = '%.6f' % (nuc_error * 3)
log['QUALITY_ERROR'] = '%.6f' % qual_error
log['SET_ERROR'] = '%.6f' % set_error
log['ALL_THRESHOLD'] = '%.6f' % thresh_df['thresh']['ALL']
# Update collector results
collect_dict = {'log': log, 'out_files': out_files}
collect_queue.put(collect_dict)
except:
alive.value = False
raise
return None
def writeResults(results, seq_file, out_args):
"""
Formats results and writes to output files
Arguments:
results : assembled results dictionary.
seq_file : the sample sequence file name.
out_args : common output argument dictionary from parseCommonArgs.
Returns:
tuple: (position error, nucleotide pairwise error, quality error, sequence set) file names
"""
pos_df = results['pos']
nuc_df = results['nuc']
qual_df = results['qual']
set_df = results['set']
dist_df = results['dist']
thresh_df = results['thresh']
# Type conversion to int of mismatch and total columns
pos_df[['mismatch', 'total']] = pos_df[['mismatch', 'total']].astype(int)
nuc_df[['mismatch', 'total']] = nuc_df[['mismatch', 'total']].astype(int)
qual_df[['mismatch', 'total']] = qual_df[['mismatch', 'total']].astype(int)
set_df[['mismatch', 'total']] = set_df[['mismatch', 'total']].astype(int)
dist_df[['all']] = dist_df[['all']].astype(int)
# Write to tab delimited files
file_args = {'out_dir': out_args['out_dir'], 'out_name': out_args['out_name'], 'out_type': 'tab'}
with getOutputHandle(seq_file, 'error-position', **file_args) as pos_handle, \
getOutputHandle(seq_file, 'error-quality', **file_args) as qual_handle, \
getOutputHandle(seq_file, 'error-nucleotide', **file_args) as nuc_handle, \
getOutputHandle(seq_file, 'error-set', **file_args) as set_handle, \
getOutputHandle(seq_file, 'distance-set', **file_args) as dist_handle, \
getOutputHandle(seq_file, 'threshold-set', **file_args) as thresh_handle:
pos_df.to_csv(pos_handle, sep='\t', na_rep='NA', index=True,
index_label='POSITION',
columns=['rep_q', 'mismatch', 'total', 'error', 'emp_q'],
header=['REPORTED_Q', 'MISMATCHES', 'OBSERVATIONS', 'ERROR', 'EMPIRICAL_Q'],
float_format='%.6f')
nuc_df.to_csv(nuc_handle, sep='\t', na_rep='NA', index=True,
index_label=['REFERENCE','OBSERVED'],
columns=['rep_q', 'mismatch', 'total', 'error', 'emp_q'],
header=['REPORTED_Q', 'MISMATCHES', 'OBSERVATIONS', 'ERROR', 'EMPIRICAL_Q'],
float_format='%.6f')
qual_df.to_csv(qual_handle, sep='\t', na_rep='NA', index=True,
index_label='Q',
columns=['rep_q', 'mismatch', 'total', 'error', 'emp_q'],
header=['REPORTED_Q', 'MISMATCHES', 'OBSERVATIONS', 'ERROR', 'EMPIRICAL_Q'],
float_format='%.6f')
set_df.to_csv(set_handle, sep='\t', na_rep='NA', index=True,
index_label='SET_COUNT',
columns=['rep_q', 'mismatch', 'total', 'error', 'emp_q'],
header=['REPORTED_Q', 'MISMATCHES', 'OBSERVATIONS', 'ERROR', 'EMPIRICAL_Q'],
float_format='%.6f')
dist_df.to_csv(dist_handle, sep='\t', na_rep='NA', index=True,
index_label='DISTANCE',
columns=['all'],
header=['ALL'],
float_format='%.6f')
thresh_df.to_csv(thresh_handle, sep='\t', na_rep='NA', index=True,
index_label='TYPE',
columns=['thresh'],
header=['THRESHOLD'],
float_format='%.6f')
return (pos_handle.name, qual_handle.name, nuc_handle.name, set_handle.name,
dist_handle.name, thresh_handle.name)
def estimateSets(seq_file, cons_func=frequencyConsensus, cons_args={},
set_field=default_barcode_field, min_count=default_min_count, max_diversity=None,
out_args=default_out_args, nproc=None, queue_size=None):
"""
Calculates error rates of sequence sets
Arguments:
seq_file : the sample sequence file name
cons_func : the function to use for consensus generation
cons_args : a dictionary of arguments for the consensus function
set_field : the annotation field containing set IDs
min_count : threshold number of sequences to consider a set
max_diversity : a threshold defining the average pairwise error rate required to retain a read group;
if None do not calculate diversity
out_args : common output argument dictionary from parseCommonArgs
nproc : the number of processQueue processes;
if None defaults to the number of CPUs
queue_size : maximum size of the argument queue;
if None defaults to 2*nproc
Returns:
tuple : (position error, quality error, nucleotide pairwise error) output file names
"""
# Define subcommand label dictionary
cmd_dict = {frequencyConsensus:'freq', qualityConsensus:'qual'}
# Print parameter info
log = OrderedDict()
log['START'] = 'EstimateError'
log['FILE'] = os.path.basename(seq_file)
log['MODE'] = cmd_dict.get(cons_func, cons_func.__name__)
log['SET_FIELD'] = set_field
log['MIN_COUNT'] = min_count
log['MAX_DIVERSITY'] = max_diversity
log['NPROC'] = nproc
printLog(log)
# Check input file type
in_type = getFileType(seq_file)
if in_type != 'fastq':
printError('Input file must be FASTQ.')
# Define feeder function and arguments
index_args = {'field': set_field, 'delimiter': out_args['delimiter']}
feed_func = feedSeqQueue
feed_args = {'seq_file': seq_file,
'index_func': indexSeqSets,
'index_args': index_args}
# Define worker function and arguments
work_func = processEEQueue
work_args = {'cons_func': cons_func,
'cons_args': cons_args,
'min_count': min_count,
'max_diversity': max_diversity}
# Define collector function and arguments
collect_func = collectEEQueue
collect_args = {'seq_file': seq_file,
'out_args': out_args,
'set_field': set_field}
# Call process manager
result = manageProcesses(feed_func, work_func, collect_func,
feed_args, work_args, collect_args,
nproc, queue_size)
# Print log
result['log']['END'] = 'EstimateError'
printLog(result['log'])
return result['out_files']
def estimateBarcode(seq_file, barcode_field=default_barcode_field, distance_types=default_distance_types,
pad_ends='none', out_args=default_out_args):
"""
Calculates error rates of barcode sequences
Arguments:
seq_file : the sample sequence file name
barcode_field : the annotation field containing barcode sequences.
distance_types : distance types to include.
pad_ends (str): action to take for truncated barcode sequences. "none" excludes truncated barcodes from
the calculations. "head" or "tail" will add N characters to the respective end.
out_args : common output argument dictionary from parseCommonArgs
Returns:
tuple: names of the output files.
"""
# Function to extract to make SeqRecord object from a barcode annotation
def _barcode(seq, field=barcode_field, delimiter=out_args['delimiter']):
header = parseAnnotation(seq.description, delimiter=delimiter)
return header[field]
# Print parameter info
log = OrderedDict()
log['START'] = 'EstimateError'
log['COMMAND'] = 'barcode'
log['FILE'] = os.path.basename(seq_file)
log['BARCODE_FIELD'] = barcode_field
log['PAD'] = pad_ends
printLog(log)
# Count sequence file and parse into a list of SeqRecords
result_count = countSeqFile(seq_file)
barcode_iter = (_barcode(x) for x in readSeqFile(seq_file))
# Compute bin_count defaults to the length of the barcode + 1
bin_count = len(_barcode(next(readSeqFile(seq_file)))) + 1
mismatch = initializeMismatchDictionary(0, distance_types=distance_types, bin_count=bin_count)
# Calculate distances
distance_mismatch = calculateDistances(barcode_iter, bin_count=bin_count, pad_ends=pad_ends)
mismatch['dist'] = {header: distance_mismatch[header] for header in distance_types}
# Generate a df
dist_df = pd.DataFrame.from_dict(mismatch['dist'])
dist_df.index = dist_df.index/len(dist_df.index)
dist_df[['all']] = dist_df[['all']].astype(int)
# Find the threshold (average minimum between 0 and 0.75)
dist = mismatch['dist']['all']
window = dist[:int(len(dist) * 0.75)]
thresh_df = pd.DataFrame.from_dict({'thresh': {'ALL': dist_df.index[int(np.mean([index for index in np.argsort(window) \
if dist[index] == np.min(window)]))]}
})
file_args = {'out_dir':out_args['out_dir'], 'out_name':out_args['out_name'], 'out_type':'tab'}
# Output as tsv
with getOutputHandle(seq_file, 'distance-barcode', **file_args) as dist_handle, \
getOutputHandle(seq_file, 'threshold-barcode', **file_args) as thresh_handle:
dist_df.to_csv(dist_handle, sep='\t', na_rep='NA', index=True,
index_label='DISTANCE',
columns=['all'],
header=['ALL'],
float_format='%.6f')
thresh_df.to_csv(thresh_handle, sep='\t', na_rep='NA', index=True,
index_label='TYPE',
columns=['thresh'],
header=['THRESHOLD'],
float_format='%.6f')
# Update log
log['OUTPUT1'] = os.path.basename(dist_handle.name)
log['OUTPUT2'] = os.path.basename(thresh_handle.name)
log['SEQUENCES'] = result_count
log['ALL_THRESHOLD'] = '%.6f' % thresh_df['thresh']['ALL']
log['END'] = 'EstimateError'
printLog(log)
return (dist_handle.name, thresh_handle.name)
def getArgParser():
"""
Defines the ArgumentParser
Returns:
argparse.ArgumentParser: argument parser object.
"""
# Define output file names and header fields
fields = dedent(
'''
output files:
error-position
estimated error by read position.
error-quality
estimated error by the quality score assigned within the input file.
error-nucleotide
estimated error by nucleotide.
error-set
estimated error by annotation set size.
distance-set
pairwise hamming distances by annotation set.
threshold-set
thresholds from pairwise hamming distances for annotation sets.
distance-barcode
estimated error by pairwise hamming distances
threshold-barcode
thresholds from pairwise hamming distances for clustering barcodes
output fields:
POSITION
read position with base zero indexing.
Q
Phred quality score.
OBSERVED
observed nucleotide value.
REFERENCE
consensus nucleotide for the barcode read group.
SET_COUNT
barcode read group size.
REPORTED_Q
mean Phred quality score reported within the input file for the given
position, quality score, nucleotide or read group.
MISMATCHES
count of observed mismatches from consensus for the given position,
quality score, nucleotide or read group.
OBSERVATIONS
total count of observed values for each position, quality score,
nucleotide or read group size.
ERROR
estimated error rate.
EMPIRICAL_Q
estimated error rate converted to a Phred quality score.
ALL
histogram (count) of all pairwise distance distribution.
DTN
histogram (count) of distance to nearest distribution.
DISTANCE
length normalized hamming distance.
''')
# Define ArgumentParser
parser = ArgumentParser(description=__doc__, epilog=fields,
formatter_class=CommonHelpFormatter, add_help=False)
group_help = parser.add_argument_group('help')
group_help.add_argument('--version', action='version',
version='%(prog)s:' + ' %s %s' %(__version__, __date__))
group_help.add_argument('-h', '--help', action='help', help='show this help message and exit')
subparsers = parser.add_subparsers(title='subcommands', dest='command', metavar='',
help='Estimation method')
# TODO: This is a temporary fix for Python issue 9253
subparsers.required = True
# Error profiling arguments for sets
parent_set = getCommonArgParser(failed=False, seq_out=False, log=True, out_file=False, multiproc=True)
parser_set = subparsers.add_parser('set', parents=[parent_set],
formatter_class=CommonHelpFormatter, add_help=False,
help='Estimates error statistics within annotation sets.',
description='Estimates error statistics within annotation sets.')
group_set = parser_set.add_argument_group('error profiling arguments')
group_set.add_argument('-f', action='store', dest='set_field', type=str, default=default_barcode_field,
help='The name of the annotation field to group sequences by')
group_set.add_argument('-n', action='store', dest='min_count', type=int, default=default_min_count,
help='The minimum number of sequences needed to consider a set')
group_set.add_argument('--mode', action='store', dest='mode', choices=('freq', 'qual'), default='freq',
help='''Specifies which method to use to determine the consensus
sequence. The "freq" method will determine the consensus by
nucleotide frequency at each position and assign the most
common value. The "qual" method will weight values by their
quality scores to determine the consensus nucleotide at
each position.''')
group_set.add_argument('-q', action='store', dest='min_qual', type=float, default=default_consensus_min_qual,
help='''Consensus quality score cut-off under which an ambiguous
character is assigned.''')
group_set.add_argument('--freq', action='store', dest='min_freq', type=float, default=default_consensus_min_freq,
help='''Fraction of character occurrences under which an ambiguous
character is assigned.''')
group_set.add_argument('--maxdiv', action='store', dest='max_diversity', type=float, default=None,
help='''Specify to calculate the nucleotide diversity of each read
group (average pairwise error rate) and exclude groups which
exceed the given diversity threshold.''')
parser_set.set_defaults(func=estimateSets)
# Error profiling arguments for barcodes
parent_barcode = getCommonArgParser(failed=False, seq_out=False, log=False, out_file=False, multiproc=False)
parser_barcode = subparsers.add_parser('barcode', parents=[parent_barcode],
formatter_class=CommonHelpFormatter, add_help=False,
help='Calculates pairwise distance metrics of barcode sequences.',
description='Calculates pairwise distance metrics of barcode sequences.')
group_barcode = parser_barcode.add_argument_group('distance calculation arguments')
group_barcode.add_argument('-f', action='store', dest='barcode_field', type=str, default=default_barcode_field,
help='''The name of the barcode field. Note, barcodes are expected to all be identical
length. Barcode sequences shorter than the maximum barcode length will be excluded
from the distance calculations.''')
group_barcode.add_argument('--pad', action='store', dest='pad_ends', type=str,
choices=['none', 'head', 'tail'], default='none',
help='''Specifies the action to take for barcode sequences shorter than the maximum
barcode length. The "none" action will exclude truncated barcodes from the distance
calculations. The "head" and "tail" actions will add N characters to either the
front or back, respectively, of truncated barcode sequence to give all barcodes
identical length. N characters will be treated as mismatches in the distance
calculation.''')
parser_barcode.set_defaults(func=estimateBarcode)
return parser
if __name__ == '__main__':
"""
Parses command line arguments and calls main function
"""
# Parse arguments
parser = getArgParser()
checkArgs(parser)
args = parser.parse_args()
args_dict = parseCommonArgs(args)
# Convert case of fields
if args_dict['command'] == 'set':
if args_dict['set_field']:
args_dict['set_field'] = args_dict['set_field'].upper()
# Define cons_func and cons_args
if args_dict['mode'] == 'freq':
args_dict['cons_func'] = frequencyConsensus
args_dict['cons_args'] = {'min_freq':args_dict['min_freq']}
elif args_dict['mode'] == 'qual':
args_dict['cons_func'] = qualityConsensus
args_dict['cons_args'] = {'min_qual':args_dict['min_qual'],
'min_freq':args_dict['min_freq'],
'dependent':False}
del args_dict['mode']
if 'min_freq' in args_dict: del args_dict['min_freq']
if 'min_qual' in args_dict: del args_dict['min_qual']
# Call estimateError for each sample file
del args_dict['seq_files']
del args_dict['func']
del args_dict['command']
for f in args.__dict__['seq_files']:
args_dict['seq_file'] = f
args.func(**args_dict)
|