File: Vector.hpp

package info (click to toggle)
primecount 7.20%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,660 kB
  • sloc: cpp: 21,734; ansic: 121; sh: 99; makefile: 89
file content (462 lines) | stat: -rw-r--r-- 11,347 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
///
/// @file  Vector.hpp
///
/// Copyright (C) 2025 Kim Walisch, <kim.walisch@gmail.com>
///
/// This file is distributed under the BSD License. See the COPYING
/// file in the top level directory.
///

#ifndef VECTOR_HPP
#define VECTOR_HPP

#include "macros.hpp"

#include <algorithm>
#include <cstddef>
#include <memory>
#include <stdint.h>
#include <type_traits>
#include <utility>

namespace primecount {

/// Vector is a dynamically growing array.
/// It has the same API (though not complete) as std::vector but its
/// resize() method does not default initialize memory for built-in
/// integer types. It does however default initialize classes and
/// struct types if they have a constructor. It also prevents bounds
/// checks in release builds which is important for primecount's
/// performance, e.g. the Fedora Linux distribution compiles with
/// -D_GLIBCXX_ASSERTIONS which enables std::vector bounds checks.
///
template <typename T,
          typename Allocator = std::allocator<T>>
class Vector
{
public:
  // The default C++ std::allocator is stateless. We use this
  // allocator and do not support other statefull allocators,
  // which simplifies our implementation.
  //
  // "The default allocator is stateless, that is, all instances
  // of the given allocator are interchangeable, compare equal
  // and can deallocate memory allocated by any other instance
  // of the same allocator type."
  // https://en.cppreference.com/w/cpp/memory/allocator
  //
  // "The member type is_always_equal of std::allocator_traits
  // is intendedly used for determining whether an allocator
  // type is stateless."
  // https://en.cppreference.com/w/cpp/named_req/Allocator
  static_assert(std::allocator_traits<Allocator>::is_always_equal::value,
                "Vector<T> only supports stateless allocators!");

  using value_type = T;
  Vector() noexcept = default;

  Vector(std::size_t size)
  {
    resize(size);
  }

  ~Vector()
  {
    destroy(array_, end_);
    Allocator().deallocate(array_, capacity());
  }

  /// Free all memory, the Vector
  /// can be reused afterwards.
  void deallocate() noexcept
  {
    destroy(array_, end_);
    Allocator().deallocate(array_, capacity());
    array_ = nullptr;
    end_ = nullptr;
    capacity_ = nullptr;
  }

  /// Reset the Vector, but do not free its
  /// memory. Same as std::vector.clear().
  void clear() noexcept
  {
    destroy(array_, end_);
    end_ = array_;
  }

  /// Copying is slow, we prevent it
  Vector(const Vector&) = delete;
  Vector& operator=(const Vector&) = delete;

  /// Move constructor
  Vector(Vector&& other) noexcept
  {
    swap(other);
  }

  /// Move assignment operator
  Vector& operator=(Vector&& other) noexcept
  {
    if (this != &other)
      swap(other);

    return *this;
  }

  /// Better assembly than: std::swap(vect1, vect2)
  void swap(Vector& other) noexcept
  {
    T* tmp_array = array_;
    T* tmp_end = end_;
    T* tmp_capacity = capacity_;

    array_ = other.array_;
    end_ = other.end_;
    capacity_ = other.capacity_;

    other.array_ = tmp_array;
    other.end_ = tmp_end;
    other.capacity_ = tmp_capacity;
  }

  bool empty() const noexcept
  {
    return array_ == end_;
  }

  T& operator[](std::size_t pos) noexcept
  {
    ASSERT(pos < size());
    return array_[pos];
  }

  const T& operator[](std::size_t pos) const noexcept
  {
    ASSERT(pos < size());
    return array_[pos];
  }

  T* data() noexcept
  {
    return array_;
  }

  const T* data() const noexcept
  {
    return array_;
  }

  std::size_t size() const noexcept
  {
    ASSERT(end_ >= array_);
    return (std::size_t)(end_ - array_);
  }

  std::size_t capacity() const noexcept
  {
    ASSERT(capacity_ >= array_);
    return (std::size_t)(capacity_ - array_);
  }

  T* begin() noexcept
  {
    return array_;
  }

  const T* begin() const noexcept
  {
    return array_;
  }

  T* end() noexcept
  {
    return end_;
  }

  const T* end() const noexcept
  {
    return end_;
  }

  T& front() noexcept
  {
    ASSERT(!empty());
    return *array_;
  }

  const T& front() const noexcept
  {
    ASSERT(!empty());
    return *array_;
  }

  T& back() noexcept
  {
    ASSERT(!empty());
    return *(end_ - 1);
  }

  const T& back() const noexcept
  {
    ASSERT(!empty());
    return *(end_ - 1);
  }

  ALWAYS_INLINE void push_back(const T& value)
  {
    if_unlikely(end_ == capacity_)
      reserve_unchecked(std::max((std::size_t) 1, capacity() * 2));
    // Placement new
    new(end_) T(value);
    end_++;
  }

  ALWAYS_INLINE void push_back(T&& value)
  {
    if_unlikely(end_ == capacity_)
      reserve_unchecked(std::max((std::size_t) 1, capacity() * 2));
    // Without std::move() the copy constructor will
    // be called instead of the move constructor.
    new(end_) T(std::move(value));
    end_++;
  }

  template <class... Args>
  ALWAYS_INLINE void emplace_back(Args&&... args)
  {
    if_unlikely(end_ == capacity_)
      reserve_unchecked(std::max((std::size_t) 1, capacity() * 2));
    // Placement new
    new(end_) T(std::forward<Args>(args)...);
    end_++;
  }

  template <class InputIt>
  void insert(T* const pos, InputIt first, InputIt last)
  {
    static_assert(std::is_trivially_copyable<T>::value,
                  "Vector<T>::insert() supports only trivially copyable types!");

    // We only support appending to the vector
    ASSERT(pos == end_);
    (void) pos;

    if (first < last)
    {
      std::size_t new_size = size() + (std::size_t) (last - first);
      reserve(new_size);
      std::uninitialized_copy(first, last, end_);
      end_ = array_ + new_size;
    }
  }

  void reserve(std::size_t n)
  {
    if (n > capacity())
      reserve_unchecked(n);
  }

  void resize(std::size_t n)
  {
    if (n > size())
    {
      if (n > capacity())
        reserve_unchecked(n);

      // This default initializes memory of classes and structs
      // with constructors (and with in-class initialization of
      // non-static members). But it does not default initialize
      // memory for POD types like int, long.
      if (!std::is_trivially_default_constructible<T>::value)
        uninitialized_default_construct(end_, array_ + n);

      end_ = array_ + n;
    }
    else if (n < size())
    {
      destroy(array_ + n, end_);
      end_ = array_ + n;
    }
  }

private:
  T* array_ = nullptr;
  T* end_ = nullptr;
  T* capacity_ = nullptr;

  /// Requires n > capacity()
  void reserve_unchecked(std::size_t n)
  {
    ASSERT(n > capacity());
    ASSERT(size() <= capacity());
    std::size_t old_size = size();
    std::size_t old_capacity = capacity();

    // GCC & Clang's std::vector grow the capacity by at least
    // 2x for every call to resize() with n > capacity(). We
    // grow by at least 1.5x as we tend to accurately calculate
    // the amount of memory we need upfront.
    std::size_t new_capacity = (old_capacity * 3) / 2;
    new_capacity = std::max(new_capacity, n);
    ASSERT(old_capacity < new_capacity);

    T* old = array_;
    array_ = Allocator().allocate(new_capacity);
    end_ = array_ + old_size;
    capacity_ = array_ + new_capacity;
    ASSERT(size() < capacity());

    // Both primesieve & primecount require that byte arrays are
    // aligned to at least a alignof(uint64_t) boundary. This is
    // needed because our code casts byte arrays into uint64_t arrays
    // in some places in order to improve performance. The default
    // allocator guarantees that each memory allocation is at least
    // aligned to the largest built-in type (usually 16 or 32).
    ASSERT(((uintptr_t) (void*) array_) % sizeof(uint64_t) == 0);

    if (old)
    {
      static_assert(std::is_nothrow_move_constructible<T>::value,
                    "Vector<T> only supports nothrow moveable types!");

      uninitialized_move_n(old, old_size, array_);
      Allocator().deallocate(old, old_capacity);
    }
  }

  template <typename U>
  ALWAYS_INLINE typename std::enable_if<std::is_trivially_copyable<U>::value, void>::type
  uninitialized_move_n(U* __restrict first,
                       std::size_t count,
                       U* __restrict d_first)
  {
    // We can use memcpy to move trivially copyable types.
    // https://en.cppreference.com/w/cpp/language/classes#Trivially_copyable_class
    // https://stackoverflow.com/questions/17625635/moving-an-object-in-memory-using-stdmemcpy
    std::uninitialized_copy_n(first, count, d_first);
  }

  /// Same as std::uninitialized_move_n() from C++17.
  /// https://en.cppreference.com/w/cpp/memory/uninitialized_move_n
  ///
  /// Unlike std::uninitialized_move_n() our implementation uses
  /// __restrict pointers which improves the generated assembly
  /// (using GCC & Clang). We can do this because we only use this
  /// method for non-overlapping arrays.
  template <typename U>
  ALWAYS_INLINE typename std::enable_if<!std::is_trivially_copyable<U>::value, void>::type
  uninitialized_move_n(U* __restrict first,
                       std::size_t count,
                       U* __restrict d_first)
  {
    for (std::size_t i = 0; i < count; i++)
      new (d_first++) T(std::move(*first++));
  }

  /// Same as std::uninitialized_default_construct() from C++17.
  /// https://en.cppreference.com/w/cpp/memory/uninitialized_default_construct
  ALWAYS_INLINE void uninitialized_default_construct(T* first, T* last)
  {
    // Default initialize array using placement new.
    // Note that `new (first) T();` zero initializes built-in integer types,
    // whereas `new (first) T;` does not initialize built-in integer types.
    for (; first != last; first++)
      new (first) T;
  }

  /// Same as std::destroy() from C++17.
  /// https://en.cppreference.com/w/cpp/memory/destroy
  ALWAYS_INLINE void destroy(T* first, T* last)
  {
    if (!std::is_trivially_destructible<T>::value)
    {
      // Theoretically deallocating in reverse order is more
      // cache efficient. Clang's std::vector implementation
      // also deallocates in reverse order.
      while (first != last)
        (--last)->~T();
    }
  }
};

/// Array has the same API as std::array, but unlike std::array
/// our Array is guaranteed to not use any bounds checks in release
/// builds. E.g. the Fedora Linux distribution compiles with
/// -D_GLIBCXX_ASSERTIONS which enables std::array bounds checks.
///
template <typename T, std::size_t N>
class Array
{
public:
  using value_type = T;
  T array_[N];

  T& operator[](std::size_t pos) noexcept
  {
    ASSERT(pos < size());
    return array_[pos];
  }

  const T& operator[](std::size_t pos) const noexcept
  {
    ASSERT(pos < size());
    return array_[pos];
  }

  void fill(const T& value)
  {
    std::fill_n(begin(), size(), value);
  }

  T* data() noexcept
  {
    return array_;
  }

  const T* data() const noexcept
  {
    return array_;
  }

  T* begin() noexcept
  {
    return array_;
  }

  const T* begin() const noexcept
  {
    return array_;
  }

  T* end() noexcept
  {
    return array_ + N;
  }

  const T* end() const noexcept
  {
    return array_ + N;
  }

  T& back() noexcept
  {
    ASSERT(N > 0);
    return array_[N - 1];
  }

  const T& back() const noexcept
  {
    ASSERT(N > 0);
    return array_[N - 1];
  }

  constexpr std::size_t size() const noexcept
  {
    return N;
  }
};

} // namespace

#endif