1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
|
///
/// @file P3.cpp
/// @brief Test the 3rd partial sieve function P3(x, a)
/// that counts the numbers <= x that have exactly
/// 3 prime factors each exceeding the a-th prime.
///
/// Copyright (C) 2023 Kim Walisch, <kim.walisch@gmail.com>
///
/// This file is distributed under the BSD License. See the COPYING
/// file in the top level directory.
///
#include <primecount-internal.hpp>
#include <generate_primes.hpp>
#include <imath.hpp>
#include <stdint.h>
#include <iostream>
#include <cstdlib>
#include <vector>
#include <random>
using std::size_t;
using namespace primecount;
void check(bool OK)
{
std::cout << " " << (OK ? "OK" : "ERROR") << "\n";
if (!OK)
std::exit(1);
}
int main()
{
// Test small x
{
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<int> dist(2, 1000);
for (int i = 0; i < 100; i++)
{
int threads = 1;
int64_t x = dist(gen);
auto primes = generate_primes<int64_t>(x);
for (int64_t a = 1; primes[a] <= iroot<3>(x); a++)
{
int64_t p3 = 0;
for (size_t b = a + 1; b < primes.size(); b++)
{
for (size_t c = b; c < primes.size(); c++)
{
for (size_t d = c; d < primes.size(); d++)
{
if (primes[b] * primes[c] * primes[d] <= x)
p3++;
else
break;
}
}
}
std::cout << "P3(" << x << ", " << a << ") = " << p3;
check(p3 == P3(x, primes[a], a, threads));
}
}
}
// Test medium x
{
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<int> dist(1000, 20000);
for (int i = 0; i < 10; i++)
{
int threads = 1;
int64_t x = dist(gen);
auto primes = generate_primes<int64_t>(x);
for (int64_t a = 1; primes[a] <= iroot<3>(x); a++)
{
int64_t p3 = 0;
for (size_t b = a + 1; b < primes.size(); b++)
{
for (size_t c = b; c < primes.size(); c++)
{
for (size_t d = c; d < primes.size(); d++)
{
if (primes[b] * primes[c] * primes[d] <= x)
p3++;
else
break;
}
}
}
std::cout << "P3(" << x << ", " << a << ") = " << p3;
check(p3 == P3(x, primes[a], a, threads));
}
}
}
std::cout << std::endl;
std::cout << "All tests passed successfully!" << std::endl;
return 0;
}
|