File: isqrt.cpp

package info (click to toggle)
primecount 8.0%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 2,640 kB
  • sloc: cpp: 21,835; ansic: 121; sh: 99; makefile: 89
file content (178 lines) | stat: -rw-r--r-- 4,706 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
///
/// @file   isqrt.cpp
/// @brief  Test integer square root function.
///
/// Copyright (C) 2021 Kim Walisch, <kim.walisch@gmail.com>
///
/// This file is distributed under the BSD License. See the COPYING
/// file in the top level directory.
///

#include <isqrt.hpp>
#include <imath.hpp>
#include <int128_t.hpp>
#include <calculator.hpp>

#include <stdint.h>
#include <iostream>
#include <cmath>
#include <cstdlib>

using namespace primecount;

void check(bool OK)
{
  std::cout << "   " << (OK ? "OK" : "ERROR") << "\n";
  if (!OK)
    std::exit(1);
}

int main()
{
  uint64_t n;
  uint64_t res1;
  double res2;

  for (n = 0; n < 100000; n++)
  {
    res1 = isqrt(n);
    res2 = std::sqrt((double) n);
    std::cout << "isqrt(" << n << ") = " << res1;
    check(res1 == (uint64_t) res2);
  }

  n = (1ull << 32) - 1;
  res1 = isqrt(n);
  res2 = std::sqrt((double) n);
  std::cout << "isqrt(" << n << ") = " << res1;
  check(res1 == (uint64_t) res2);

  n = 1ull << 32;
  res1 = isqrt(n);
  res2 = std::sqrt((double) n);
  std::cout << "isqrt(" << n << ") = " << res1;
  check(res1 == (uint64_t) res2);

  n = 1000000000000000000ull - 1;
  res1 = isqrt(n);
  std::cout << "isqrt(" << n << ") = " << res1;
  check(res1 == 999999999);

  n = 1000000000000000000ull;
  res1 = isqrt(n);
  std::cout << "isqrt(" << n << ") = " << res1;
  check(res1 == 1000000000);

  n = pstd::numeric_limits<int8_t>::max();
  res1 = isqrt(n);
  std::cout << "isqrt(" << n << ") = " << res1;
  check(res1 == 11);

  n = pstd::numeric_limits<uint8_t>::max();
  res1 = isqrt(n);
  std::cout << "isqrt(" << n << ") = " << res1;
  check(res1 == 15);

  n = pstd::numeric_limits<int16_t>::max();
  res1 = isqrt(n);
  std::cout << "isqrt(" << n << ") = " << res1;
  check(res1 == 181);

  n = pstd::numeric_limits<uint16_t>::max();
  res1 = isqrt(n);
  std::cout << "isqrt(" << n << ") = " << res1;
  check(res1 == 255);

  n = pstd::numeric_limits<int32_t>::max();
  res1 = isqrt(n);
  std::cout << "isqrt(" << n << ") = " << res1;
  check(res1 == 46340);

  n = pstd::numeric_limits<uint32_t>::max();
  res1 = isqrt(n);
  std::cout << "isqrt(" << n << ") = " << res1;
  check(res1 == 65535);

  n = pstd::numeric_limits<int64_t>::max();
  res1 = isqrt(n);
  std::cout << "isqrt(" << n << ") = " << res1;
  check(res1 == 3037000499ll);

  n = pstd::numeric_limits<uint64_t>::max();
  res1 = isqrt(n);
  std::cout << "isqrt(" << n << ") = " << res1;
  check(res1 == 4294967295ull);

#ifdef HAVE_INT128_T

  for (n = 0; n < 100000; n++)
  {
    res1 = isqrt((int128_t) n);
    res2 = std::sqrt((double) n);
    std::cout << "isqrt(" << n << ") = " << res1;
    check(res1 == (uint64_t) res2);
  }

  int128_t x = ((int128_t) 1) << 100;
  int128_t res3 = isqrt(x);
  std::cout << "isqrt(" << x << ") = " << res3;
  check(res3 == 1ll << 50);

  x -= 1;
  res3 = isqrt(x);
  std::cout << "isqrt(" << x << ") = " << res3;
  check(res3 == 1125899906842623ll);

  x = ipow<31>((int128_t) 10);
  res3 = isqrt(x);
  std::cout << "isqrt(" << x << ") = " << res3;
  check(res3 == 3162277660168379ll);

  x = ipow<30>((int128_t) 10);
  res3 = isqrt(x);
  std::cout << "isqrt(" << x << ") = " << res3;
  check(res3 == 1000000000000000ll);

  x -= 1;
  res3 = isqrt(x);
  std::cout << "isqrt(" << x << ") = " << res3;
  check(res3 == 999999999999999ll);

  // In my tests the first occurrences where std::sqrt((double) x)
  // is off by more than 1 happened above 10^32. If std::sqrt(x)
  // is off by more than 1 our isqrt(x) function corrects the
  // result using a while loop. Since primecount can only compute
  // pi(x) for x <= 10^31 our isqrt(x) function is guaranteed to
  // execute in O(1) instructions.

  // here std::sqrt((double) x) is 1 too small
  x = calculator::eval<int128_t>("443075998594972078030832658571409090");
  res3 = isqrt(x);
  std::cout << "isqrt(" << x << ") = " << res3;
  check(res3 == 665639541039271553ll);

  // here std::sqrt((double) x) is 1 too large
  x = calculator::eval<int128_t>("443075998594972075382716071791084150");
  res3 = isqrt(x);
  std::cout << "isqrt(" << x << ") = " << res3;
  check(res3 == 665639541039271551ll);

  // here std::sqrt((double) x) is 38 too small
  x = calculator::eval<int128_t>("443075998594971958032420320541208365");
  res3 = isqrt(x);
  std::cout << "isqrt(" << x << ") = " << res3;
  check(res3 == 665639541039271462ll);

  // here std::sqrt((double) x) is 81 too large
  x = calculator::eval<int128_t>("443075998594971969939937761777907585");
  res3 = isqrt(x);
  std::cout << "isqrt(" << x << ") = " << res3;
  check(res3 == 665639541039271471ll);

#endif

  std::cout << std::endl;
  std::cout << "All tests passed successfully!" << std::endl;

  return 0;
}