1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
|
///
/// @file sieve1.cpp
/// @brief Test primecount's highly optimized modulo 30 sieve
/// of Eratosthenes implementation, specifically
/// Sieve::cross_off() and Sieve::count(low, high).
///
/// Copyright (C) 2025 Kim Walisch, <kim.walisch@gmail.com>
///
/// This file is distributed under the BSD License. See the COPYING
/// file in the top level directory.
///
#include <Sieve.hpp>
#include <generate_primes.hpp>
#include <imath.hpp>
#include <stdint.h>
#include <iostream>
#include <cstdlib>
#include <vector>
#include <random>
using std::size_t;
using namespace primecount;
void check(bool OK)
{
std::cout << " " << (OK ? "OK" : "ERROR") << "\n";
if (!OK)
std::exit(1);
}
int main()
{
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<int> dist(1000000, 2000000);
int low = 0;
int high = dist(gen);
int sqrt_high = isqrt(high);
auto primes = generate_primes<int32_t>(sqrt_high);
uint64_t segment_size = high - low;
segment_size = Sieve::align_segment_size(segment_size);
Sieve sieve(low, segment_size, primes.size());
std::vector<int> sieve2(high, 1);
sieve2[0] = 0;
for (size_t i = 1; i < primes.size(); i++)
{
if (primes[i] <= 5)
{
sieve.pre_sieve(primes, i, low, high);
sieve.init_counter(low, high);
}
else
sieve.cross_off(primes[i], i);
for (int j = primes[i]; j < high; j += primes[i])
sieve2[j] = 0;
if (primes[i] >= 5)
{
int start = dist(gen) % high;
int stop = dist(gen) % high;
if (start > stop)
std::swap(start, stop);
uint64_t count = 0;
for (int j = start; j <= stop; j++)
count += sieve2[j];
std::cout << "sieve.count(" << start << ", " << stop << ") = " << sieve.count(start, stop);
check(count == sieve.count(start, stop));
}
}
std::cout << std::endl;
std::cout << "All tests passed successfully!" << std::endl;
return 0;
}
|