File: EratMedium.cpp

package info (click to toggle)
primesieve 12.11%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,952 kB
  • sloc: cpp: 16,515; ansic: 723; sh: 536; makefile: 91
file content (451 lines) | stat: -rw-r--r-- 16,015 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
///
/// @file   EratMedium.cpp
/// @brief  EratMedium is a segmented sieve of Eratosthenes
///         implementation optimized for medium sieving primes.
///         EratMedium is similar to EratSmall except that in
///         EratMedium each sieving prime is sorted (by its
///         wheelIndex) after the sieving step. When we then iterate
///         over the sorted sieving primes in the next segment the
///         initial indirect branch i.e. 'switch (wheelIndex)' is
///         predicted correctly by the CPU. This improves performance
///         by up to 30% for sieving primes that have only a few
///         multiple occurrences per segment.
///
/// Copyright (C) 2025 Kim Walisch, <kim.walisch@gmail.com>
///
/// This file is distributed under the BSD License. See the COPYING
/// file in the top level directory.
///

#include "EratMedium.hpp"
#include "Bucket.hpp"
#include "MemoryPool.hpp"

#include <primesieve/bits.hpp>
#include <primesieve/macros.hpp>

#include <stdint.h>

namespace primesieve {

/// @stop:      Upper bound for sieving
/// @maxPrime:  Sieving primes <= maxPrime
///
void EratMedium::init(uint64_t stop,
                      uint64_t maxPrime,
                      MemoryPool& memoryPool)
{
  ASSERT((maxPrime / 30) * getMaxFactor() + getMaxFactor() <= SievingPrime::MAX_MULTIPLEINDEX);
  static_assert(config::FACTOR_ERATMEDIUM <= 4.5,
               "config::FACTOR_ERATMEDIUM > 4.5 causes multipleIndex overflow 23-bits!");

  stop_ = stop;
  maxPrime_ = maxPrime;
  memoryPool_ = &memoryPool;
}

/// Add a new sieving prime to EratMedium
void EratMedium::storeSievingPrime(uint64_t prime,
                                   uint64_t multipleIndex,
                                   uint64_t wheelIndex)
{
  ASSERT(prime <= maxPrime_);
  uint64_t sievingPrime = prime / 30;

  if_unlikely(buckets_.empty())
  {
    buckets_.resize(64);
    currentBuckets_.resize(64);
    std::fill_n(buckets_.begin(), 64, nullptr);
    std::fill_n(currentBuckets_.begin(), 64, nullptr);
  }

  if (Bucket::isFull(buckets_[wheelIndex]))
    memoryPool_->addBucket(buckets_[wheelIndex]);

  buckets_[wheelIndex]++->set(sievingPrime, multipleIndex, wheelIndex);
}

void EratMedium::crossOff(Vector<uint8_t>& sieve)
{
  currentBuckets_.swap(buckets_);

  // Iterate over the 64 bucket lists.
  // The 1st list contains sieving primes with wheelIndex = 0.
  // The 2nd list contains sieving primes with wheelIndex = 1.
  // The 3rd list contains sieving primes with wheelIndex = 2.
  // ...
  for (std::size_t i = 0; i < 64; i++)
  {
    if (currentBuckets_[i])
    {
      Bucket* bucket = Bucket::get(currentBuckets_[i]);
      bucket->setEnd(currentBuckets_[i]);
      currentBuckets_[i] = nullptr;
      std::size_t wheelIndex = i;

      // Iterate over the current bucket list.
      // For each bucket cross off the
      // multiples of its sieving primes.
      while (bucket)
      {
        switch (wheelIndex / 8)
        {
          case 0: crossOff_7 (sieve.data(), sieve.size(), bucket); break;
          case 1: crossOff_11(sieve.data(), sieve.size(), bucket); break;
          case 2: crossOff_13(sieve.data(), sieve.size(), bucket); break;
          case 3: crossOff_17(sieve.data(), sieve.size(), bucket); break;
          case 4: crossOff_19(sieve.data(), sieve.size(), bucket); break;
          case 5: crossOff_23(sieve.data(), sieve.size(), bucket); break;
          case 6: crossOff_29(sieve.data(), sieve.size(), bucket); break;
          case 7: crossOff_31(sieve.data(), sieve.size(), bucket); break;
          default: UNREACHABLE;
        }

        Bucket* processed = bucket;
        bucket = bucket->next();
        memoryPool_->freeBucket(processed);
      }
    }
  }
}

/// This macro sorts the current sieving prime by its
/// wheelIndex after sieving has finished. When we then
/// iterate over the sieving primes in the next segment the
/// 'switch (wheelIndex)' branch will be predicted
/// correctly by the CPU.
///
#define CHECK_FINISHED(wheelIndex) \
  if_unlikely(i >= sieveSize) \
  { \
    i -= sieveSize; \
    if (Bucket::isFull(buckets[wheelIndex])) \
      memoryPool.addBucket(buckets[wheelIndex]); \
    buckets[wheelIndex]++->set(sievingPrime, i, wheelIndex); \
    break; \
  }

/// For sieving primes of type n % 30 == 7
void EratMedium::crossOff_7(uint8_t* sieve, std::size_t sieveSize, Bucket* bucket)
{
  auto buckets = buckets_.data();
  MemoryPool& memoryPool = *memoryPool_;
  SievingPrime* prime = bucket->begin();
  SievingPrime* end = bucket->end();
  std::size_t wheelIndex = prime->getWheelIndex();

  for (; prime != end; prime++)
  {
    std::size_t sievingPrime = prime->getSievingPrime();
    std::size_t i = prime->getMultipleIndex();
    std::size_t dist0 = sievingPrime * 6 + 1;
    std::size_t dist1 = sievingPrime * 4 + 1;
    std::size_t dist2 = sievingPrime * 2 + 0;
    std::size_t dist4 = sievingPrime * 2 + 1;
    ASSERT(wheelIndex <= 7);

    switch (wheelIndex)
    {
      default: UNREACHABLE;

      for (;;)
      {
        case 0: CHECK_FINISHED(0); sieve[i] &= BIT0; i += dist0; FALLTHROUGH;
        case 1: CHECK_FINISHED(1); sieve[i] &= BIT4; i += dist1; FALLTHROUGH;
        case 2: CHECK_FINISHED(2); sieve[i] &= BIT3; i += dist2; FALLTHROUGH;
        case 3: CHECK_FINISHED(3); sieve[i] &= BIT7; i += dist1; FALLTHROUGH;
        case 4: CHECK_FINISHED(4); sieve[i] &= BIT6; i += dist4; FALLTHROUGH;
        case 5: CHECK_FINISHED(5); sieve[i] &= BIT2; i += dist1; FALLTHROUGH;
        case 6: CHECK_FINISHED(6); sieve[i] &= BIT1; i += dist0; FALLTHROUGH;
        case 7: CHECK_FINISHED(7); sieve[i] &= BIT5; i += dist4;
      }
    }
  }
}

/// For sieving primes of type n % 30 == 11
void EratMedium::crossOff_11(uint8_t* sieve, std::size_t sieveSize, Bucket* bucket)
{
  auto buckets = buckets_.data();
  MemoryPool& memoryPool = *memoryPool_;
  SievingPrime* prime = bucket->begin();
  SievingPrime* end = bucket->end();
  std::size_t wheelIndex = prime->getWheelIndex();

  for (; prime != end; prime++)
  {
    std::size_t sievingPrime = prime->getSievingPrime();
    std::size_t i = prime->getMultipleIndex();
    std::size_t dist0 = sievingPrime * 6 + 2;
    std::size_t dist1 = sievingPrime * 4 + 1;
    std::size_t dist2 = sievingPrime * 2 + 1;
    std::size_t dist3 = sievingPrime * 4 + 2;
    std::size_t dist4 = sievingPrime * 2 + 0;

    ASSERT(wheelIndex >= 8);
    ASSERT(wheelIndex <= 15);

    switch (wheelIndex)
    {
      default: UNREACHABLE;

      for (;;)
      {
        case  8: CHECK_FINISHED( 8); sieve[i] &= BIT1; i += dist0; FALLTHROUGH;
        case  9: CHECK_FINISHED( 9); sieve[i] &= BIT3; i += dist1; FALLTHROUGH;
        case 10: CHECK_FINISHED(10); sieve[i] &= BIT7; i += dist2; FALLTHROUGH;
        case 11: CHECK_FINISHED(11); sieve[i] &= BIT5; i += dist3; FALLTHROUGH;
        case 12: CHECK_FINISHED(12); sieve[i] &= BIT0; i += dist4; FALLTHROUGH;
        case 13: CHECK_FINISHED(13); sieve[i] &= BIT6; i += dist3; FALLTHROUGH;
        case 14: CHECK_FINISHED(14); sieve[i] &= BIT2; i += dist0; FALLTHROUGH;
        case 15: CHECK_FINISHED(15); sieve[i] &= BIT4; i += dist2;
      }
    }
  }
}

/// For sieving primes of type n % 30 == 13
void EratMedium::crossOff_13(uint8_t* sieve, std::size_t sieveSize, Bucket* bucket)
{
  auto buckets = buckets_.data();
  MemoryPool& memoryPool = *memoryPool_;
  SievingPrime* prime = bucket->begin();
  SievingPrime* end = bucket->end();
  std::size_t wheelIndex = prime->getWheelIndex();

  for (; prime != end; prime++)
  {
    std::size_t sievingPrime = prime->getSievingPrime();
    std::size_t i = prime->getMultipleIndex();
    std::size_t dist0 = sievingPrime * 6 + 2;
    std::size_t dist1 = sievingPrime * 4 + 2;
    std::size_t dist2 = sievingPrime * 2 + 1;
    std::size_t dist5 = sievingPrime * 4 + 1;
    std::size_t dist6 = sievingPrime * 6 + 3;

    ASSERT(wheelIndex >= 16);
    ASSERT(wheelIndex <= 23);

    switch (wheelIndex)
    {
      default: UNREACHABLE;

      for (;;)
      {
        case 16: CHECK_FINISHED(16); sieve[i] &= BIT2; i += dist0; FALLTHROUGH;
        case 17: CHECK_FINISHED(17); sieve[i] &= BIT7; i += dist1; FALLTHROUGH;
        case 18: CHECK_FINISHED(18); sieve[i] &= BIT5; i += dist2; FALLTHROUGH;
        case 19: CHECK_FINISHED(19); sieve[i] &= BIT4; i += dist1; FALLTHROUGH;
        case 20: CHECK_FINISHED(20); sieve[i] &= BIT1; i += dist2; FALLTHROUGH;
        case 21: CHECK_FINISHED(21); sieve[i] &= BIT0; i += dist5; FALLTHROUGH;
        case 22: CHECK_FINISHED(22); sieve[i] &= BIT6; i += dist6; FALLTHROUGH;
        case 23: CHECK_FINISHED(23); sieve[i] &= BIT3; i += dist2;
      }
    }
  }
}

/// For sieving primes of type n % 30 == 17
void EratMedium::crossOff_17(uint8_t* sieve, std::size_t sieveSize, Bucket* bucket)
{
  auto buckets = buckets_.data();
  MemoryPool& memoryPool = *memoryPool_;
  SievingPrime* prime = bucket->begin();
  SievingPrime* end = bucket->end();
  std::size_t wheelIndex = prime->getWheelIndex();

  for (; prime != end; prime++)
  {
    std::size_t sievingPrime = prime->getSievingPrime();
    std::size_t i = prime->getMultipleIndex();
    std::size_t dist0 = sievingPrime * 6 + 3;
    std::size_t dist1 = sievingPrime * 4 + 3;
    std::size_t dist2 = sievingPrime * 2 + 1;
    std::size_t dist3 = sievingPrime * 4 + 2;
    std::size_t dist6 = sievingPrime * 6 + 4;

    ASSERT(wheelIndex >= 24);
    ASSERT(wheelIndex <= 31);

    switch (wheelIndex)
    {
      default: UNREACHABLE;

      for (;;)
      {
        case 24: CHECK_FINISHED(24); sieve[i] &= BIT3; i += dist0; FALLTHROUGH;
        case 25: CHECK_FINISHED(25); sieve[i] &= BIT6; i += dist1; FALLTHROUGH;
        case 26: CHECK_FINISHED(26); sieve[i] &= BIT0; i += dist2; FALLTHROUGH;
        case 27: CHECK_FINISHED(27); sieve[i] &= BIT1; i += dist3; FALLTHROUGH;
        case 28: CHECK_FINISHED(28); sieve[i] &= BIT4; i += dist2; FALLTHROUGH;
        case 29: CHECK_FINISHED(29); sieve[i] &= BIT5; i += dist3; FALLTHROUGH;
        case 30: CHECK_FINISHED(30); sieve[i] &= BIT7; i += dist6; FALLTHROUGH;
        case 31: CHECK_FINISHED(31); sieve[i] &= BIT2; i += dist2;
      }
    }
  }
}

/// For sieving primes of type n % 30 == 19
void EratMedium::crossOff_19(uint8_t* sieve, std::size_t sieveSize, Bucket* bucket)
{
  auto buckets = buckets_.data();
  MemoryPool& memoryPool = *memoryPool_;
  SievingPrime* prime = bucket->begin();
  SievingPrime* end = bucket->end();
  std::size_t wheelIndex = prime->getWheelIndex();

  for (; prime != end; prime++)
  {
    std::size_t sievingPrime = prime->getSievingPrime();
    std::size_t i = prime->getMultipleIndex();
    std::size_t dist0 = sievingPrime * 6 + 4;
    std::size_t dist1 = sievingPrime * 4 + 2;
    std::size_t dist2 = sievingPrime * 2 + 2;
    std::size_t dist4 = sievingPrime * 2 + 1;
    std::size_t dist5 = sievingPrime * 4 + 3;

    ASSERT(wheelIndex >= 32);
    ASSERT(wheelIndex <= 39);

    switch (wheelIndex)
    {
      default: UNREACHABLE;

      for (;;)
      {
        case 32: CHECK_FINISHED(32); sieve[i] &= BIT4; i += dist0; FALLTHROUGH;
        case 33: CHECK_FINISHED(33); sieve[i] &= BIT2; i += dist1; FALLTHROUGH;
        case 34: CHECK_FINISHED(34); sieve[i] &= BIT6; i += dist2; FALLTHROUGH;
        case 35: CHECK_FINISHED(35); sieve[i] &= BIT0; i += dist1; FALLTHROUGH;
        case 36: CHECK_FINISHED(36); sieve[i] &= BIT5; i += dist4; FALLTHROUGH;
        case 37: CHECK_FINISHED(37); sieve[i] &= BIT7; i += dist5; FALLTHROUGH;
        case 38: CHECK_FINISHED(38); sieve[i] &= BIT3; i += dist0; FALLTHROUGH;
        case 39: CHECK_FINISHED(39); sieve[i] &= BIT1; i += dist4;
      }
    }
  }
}

/// For sieving primes of type n % 30 == 23
void EratMedium::crossOff_23(uint8_t* sieve, std::size_t sieveSize, Bucket* bucket)
{
  auto buckets = buckets_.data();
  MemoryPool& memoryPool = *memoryPool_;
  SievingPrime* prime = bucket->begin();
  SievingPrime* end = bucket->end();
  std::size_t wheelIndex = prime->getWheelIndex();

  for (; prime != end; prime++)
  {
    std::size_t sievingPrime = prime->getSievingPrime();
    std::size_t i = prime->getMultipleIndex();
    std::size_t dist0 = sievingPrime * 6 + 5;
    std::size_t dist1 = sievingPrime * 4 + 3;
    std::size_t dist2 = sievingPrime * 2 + 1;
    std::size_t dist4 = sievingPrime * 2 + 2;

    ASSERT(wheelIndex >= 40);
    ASSERT(wheelIndex <= 47);

    switch (wheelIndex)
    {
      default: UNREACHABLE;

      for (;;)
      {
        case 40: CHECK_FINISHED(40); sieve[i] &= BIT5; i += dist0; FALLTHROUGH;
        case 41: CHECK_FINISHED(41); sieve[i] &= BIT1; i += dist1; FALLTHROUGH;
        case 42: CHECK_FINISHED(42); sieve[i] &= BIT2; i += dist2; FALLTHROUGH;
        case 43: CHECK_FINISHED(43); sieve[i] &= BIT6; i += dist1; FALLTHROUGH;
        case 44: CHECK_FINISHED(44); sieve[i] &= BIT7; i += dist4; FALLTHROUGH;
        case 45: CHECK_FINISHED(45); sieve[i] &= BIT3; i += dist1; FALLTHROUGH;
        case 46: CHECK_FINISHED(46); sieve[i] &= BIT4; i += dist0; FALLTHROUGH;
        case 47: CHECK_FINISHED(47); sieve[i] &= BIT0; i += dist2;
      }
    }
  }
}

/// For sieving primes of type n % 30 == 29
void EratMedium::crossOff_29(uint8_t* sieve, std::size_t sieveSize, Bucket* bucket)
{
  auto buckets = buckets_.data();
  MemoryPool& memoryPool = *memoryPool_;
  SievingPrime* prime = bucket->begin();
  SievingPrime* end = bucket->end();
  std::size_t wheelIndex = prime->getWheelIndex();

  for (; prime != end; prime++)
  {
    std::size_t sievingPrime = prime->getSievingPrime();
    std::size_t i = prime->getMultipleIndex();
    std::size_t dist0 = sievingPrime * 6 + 6;
    std::size_t dist1 = sievingPrime * 4 + 4;
    std::size_t dist2 = sievingPrime * 2 + 2;
    std::size_t dist6 = sievingPrime * 6 + 5;

    ASSERT(wheelIndex >= 48);
    ASSERT(wheelIndex <= 55);

    switch (wheelIndex)
    {
      default: UNREACHABLE;

      for (;;)
      {
        case 48: CHECK_FINISHED(48); sieve[i] &= BIT6; i += dist0; FALLTHROUGH;
        case 49: CHECK_FINISHED(49); sieve[i] &= BIT5; i += dist1; FALLTHROUGH;
        case 50: CHECK_FINISHED(50); sieve[i] &= BIT4; i += dist2; FALLTHROUGH;
        case 51: CHECK_FINISHED(51); sieve[i] &= BIT3; i += dist1; FALLTHROUGH;
        case 52: CHECK_FINISHED(52); sieve[i] &= BIT2; i += dist2; FALLTHROUGH;
        case 53: CHECK_FINISHED(53); sieve[i] &= BIT1; i += dist1; FALLTHROUGH;
        case 54: CHECK_FINISHED(54); sieve[i] &= BIT0; i += dist6; FALLTHROUGH;
        case 55: CHECK_FINISHED(55); sieve[i] &= BIT7; i += dist2;
      }
    }
  }
}

/// For sieving primes of type n % 30 == 1
void EratMedium::crossOff_31(uint8_t* sieve, std::size_t sieveSize, Bucket* bucket)
{
  auto buckets = buckets_.data();
  MemoryPool& memoryPool = *memoryPool_;
  SievingPrime* prime = bucket->begin();
  SievingPrime* end = bucket->end();
  std::size_t wheelIndex = prime->getWheelIndex();

  for (; prime != end; prime++)
  {
    std::size_t sievingPrime = prime->getSievingPrime();
    std::size_t i = prime->getMultipleIndex();
    std::size_t dist0 = sievingPrime * 6 + 1;
    std::size_t dist1 = sievingPrime * 4 + 0;
    std::size_t dist2 = sievingPrime * 2 + 0;
    std::size_t dist6 = sievingPrime * 6 + 0;

    ASSERT(wheelIndex >= 56);
    ASSERT(wheelIndex <= 63);

    switch (wheelIndex)
    {
      default: UNREACHABLE;

      for (;;)
      {
        case 56: CHECK_FINISHED(56); sieve[i] &= BIT7; i += dist0; FALLTHROUGH;
        case 57: CHECK_FINISHED(57); sieve[i] &= BIT0; i += dist1; FALLTHROUGH;
        case 58: CHECK_FINISHED(58); sieve[i] &= BIT1; i += dist2; FALLTHROUGH;
        case 59: CHECK_FINISHED(59); sieve[i] &= BIT2; i += dist1; FALLTHROUGH;
        case 60: CHECK_FINISHED(60); sieve[i] &= BIT3; i += dist2; FALLTHROUGH;
        case 61: CHECK_FINISHED(61); sieve[i] &= BIT4; i += dist1; FALLTHROUGH;
        case 62: CHECK_FINISHED(62); sieve[i] &= BIT5; i += dist6; FALLTHROUGH;
        case 63: CHECK_FINISHED(63); sieve[i] &= BIT6; i += dist2;
      }
    }
  }
}

} // namespace