1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
///
/// @file Riemann_R.cpp
/// @brief Test the Riemann R function.
///
/// Copyright (C) 2025 Kim Walisch, <kim.walisch@gmail.com>
///
/// This file is distributed under the BSD License. See the COPYING
/// file in the top level directory.
///
#include <RiemannR.hpp>
#include <primesieve/Vector.hpp>
#include <stdint.h>
#include <iostream>
#include <cstdlib>
#include <cmath>
#include <limits>
using std::size_t;
using namespace primesieve;
/// Generated using Mathematica:
/// Table[IntegerPart[RiemannR[k]], {k, 0, 99}]
Array<uint64_t, 100> RiemannR_tiny =
{
0, 1, 1, 2, 2, 2, 3, 3, 3, 4,
4, 4, 5, 5, 5, 6, 6, 6, 6, 7,
7, 7, 8, 8, 8, 8, 9, 9, 9, 9,
10, 10, 10, 10, 11, 11, 11, 11, 12, 12,
12, 12, 13, 13, 13, 13, 14, 14, 14, 14,
14, 15, 15, 15, 15, 16, 16, 16, 16, 17,
17, 17, 17, 17, 18, 18, 18, 18, 18, 19,
19, 19, 19, 20, 20, 20, 20, 20, 21, 21,
21, 21, 21, 22, 22, 22, 22, 23, 23, 23,
23, 23, 24, 24, 24, 24, 24, 25, 25, 25
};
Array<uint64_t, 14> RiemannR_table =
{
4, // RiemannR(10^1)
25, // RiemannR(10^2)
168, // RiemannR(10^3)
1226, // RiemannR(10^4)
9587, // RiemannR(10^5)
78527, // RiemannR(10^6)
664667, // RiemannR(10^7)
5761551, // RiemannR(10^8)
50847455, // RiemannR(10^9)
455050683, // RiemannR(10^10)
4118052494ll, // RiemannR(10^11)
37607910542ll, // RiemannR(10^12)
346065531065ll, // RiemannR(10^13)
3204941731601ll // RiemannR(10^14)
};
void check(bool OK)
{
std::cout << " " << (OK ? "OK" : "ERROR") << "\n";
if (!OK)
std::exit(1);
}
int main()
{
for (size_t x = 0; x < RiemannR_tiny.size(); x++)
{
std::cout << "RiemannR(" << x << ") = " << (uint64_t) RiemannR((long double) x);
check((uint64_t) RiemannR((long double) x) == RiemannR_tiny[x]);
}
uint64_t x = 1;
for (size_t i = 0; i < RiemannR_table.size(); i++)
{
x *= 10;
std::cout << "RiemannR(" << x << ") = " << (uint64_t) RiemannR((long double) x);
check((uint64_t) RiemannR((long double) x) == RiemannR_table[i]);
}
std::cout << "RiemannR_inverse(1) = " << RiemannR_inverse((long double) 1);
check((uint64_t) RiemannR_inverse((long double) 1) == 1);
for (x = 2; x < RiemannR_tiny.size(); x++)
{
uint64_t y = RiemannR_tiny[x];
std::cout << "RiemannR_inverse(" << y << ") = " << (uint64_t) RiemannR_inverse((long double) y);
check((uint64_t) RiemannR_inverse((long double) y) < x &&
(uint64_t) RiemannR_inverse((long double) y + 1) >= x);
}
x = 1;
for (size_t i = 0; i < RiemannR_table.size(); i++)
{
x *= 10;
uint64_t y = RiemannR_table[i];
std::cout << "RiemannR_inverse(" << y << ") = " << (uint64_t) RiemannR_inverse((long double) y);
check((uint64_t) RiemannR_inverse((long double) y) < x &&
(uint64_t) RiemannR_inverse((long double) y + 1) >= x);
}
// Sanity checks for tiny values of RiemannR(x)
for (x = 0; x < 10000; x++)
{
uint64_t rix = (uint64_t) RiemannR((long double) x);
double logx = std::log(std::max((double) x, 2.0));
if ((x >= 20 && rix < x / logx) ||
(x >= 2 && rix > x * logx))
{
std::cout << "RiemannR(" << x << ") = " << rix << " ERROR" << std::endl;
std::exit(1);
}
}
// Sanity checks for small values of RiemannR(x)
for (; x < 100000; x += 101)
{
uint64_t rix = (uint64_t) RiemannR((long double) x);
double logx = std::log(std::max((double) x, 2.0));
if ((x >= 20 && rix < x / logx) ||
(x >= 2 && rix > x * logx))
{
std::cout << "RiemannR(" << x << ") = " << rix << " ERROR" << std::endl;
std::exit(1);
}
}
// Sanity checks for tiny values of RiemannR_inverse(x)
for (x = 2; x < 1000; x++)
{
uint64_t res = (uint64_t) RiemannR_inverse((long double) x);
double logx = std::log((double) x);
if (res < x ||
(x >= 5 && res > x * logx * logx))
{
std::cout << "RiemannR_inverse(" << x << ") = " << res << " ERROR" << std::endl;
std::exit(1);
}
}
// Sanity checks for small values of RiemannR_inverse(x)
for (; x < 100000; x += 101)
{
uint64_t res = (uint64_t) RiemannR_inverse((long double) x);
double logx = std::log((double) x);
if (res < x ||
(x >= 5 && res > x * logx * logx))
{
std::cout << "RiemannR_inverse(" << x << ") = " << res << " ERROR" << std::endl;
std::exit(1);
}
}
{
uint64_t x = std::numeric_limits<uint64_t>::max() / 10;
uint64_t res = nthPrimeApprox(x);
if (res != std::numeric_limits<uint64_t>::max())
{
std::cout << "nthPrimeApprox(" << x << ") != UINT64_MAX, failed to prevent integer overflow!" << std::endl;
std::exit(1);
}
}
std::cout << std::endl;
std::cout << "All tests passed successfully!" << std::endl;
return 0;
}
|