1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
|
///
/// @file count_primes3.cpp
/// @brief Count the primes within [10^12, 10^12 + 10^9]
/// using random sized intervals.
///
/// Copyright (C) 2022 Kim Walisch, <kim.walisch@gmail.com>
///
/// This file is distributed under the BSD License. See the COPYING
/// file in the top level directory.
///
#include <primesieve.hpp>
#include <stdint.h>
#include <algorithm>
#include <cstdlib>
#include <iostream>
#include <random>
using namespace primesieve;
void check(bool OK)
{
std::cout << " " << (OK ? "OK" : "ERROR") << "\n";
if (!OK)
std::exit(1);
}
int main()
{
std::cout << "Sieving the primes within [10^12, 10^12 + 10^9] randomly" << std::endl;
uint64_t count = 0;
uint64_t maxDist = (uint64_t) 1e7;
uint64_t lowerBound = (uint64_t) 1e12;
uint64_t upperBound = lowerBound + (uint64_t) 1e9;
uint64_t start = lowerBound - 1;
uint64_t stop = start;
std::random_device rd;
std::mt19937 gen(rd());
std::uniform_int_distribution<uint64_t> dist(0, maxDist);
while (stop < upperBound)
{
start = stop + 1;
stop = std::min(start + dist(gen), upperBound);
set_sieve_size(1 << (dist(gen) % 14));
count += count_primes(start, stop);
std::cout << "\rRemaining chunk: "
<< "\rRemaining chunk: "
<< upperBound - stop << std::flush;
}
std::cout << "\nPrime count: " << count;
check(count == 36190991);
std::cout << std::endl;
std::cout << "Test passed successfully!" << std::endl;
return 0;
}
|