1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
|
/*
* Modification History
*
* 2001-September-9 Jason Rohrer
* Created.
*
* 2001-September-13 Jason Rohrer
* Made an error message more verbose.
*/
#ifndef EXPRESSION_MUTATOR_INCLUDED
#define EXPRESSION_MUTATOR_INCLUDED
#include "minorGems/util/random/RandomSource.h"
#include "Expression.h"
#include "ConstantExpression.h"
#include "InvertExpression.h"
#include "ProductExpression.h"
#include "PowerExpression.h"
#include "SumExpression.h"
#include "NegateExpression.h"
#include "SinExpression.h"
#include "FixedConstantExpression.h"
#include "MultiConstantArgumentExpression.h"
/**
* Utility class for mutating expressions.
*
* Note that the number and position of constant expressions
* within the expression will not change during mutation. Thus,
* the structure of the expression remains constant while the operations
* being performed at each node are mutated.
*
* @author Jason Rohrer
*/
class ExpressionMutator {
public:
/**
* Mutates an expression.
*
* Note that this function's implementation is recursive.
*
* @param inExpression the expression to mutate. Will be destroyed
* by this function (or if not destroyed, then passed back through
* the return value). Only the return value, not inExpression,
* can be accessed safely after this function returns.
* @param inMutationProb the probability of mutations at each
* node in inExpression.
* @param inMaxMutation the fraction of a fixed constant's value
* by which it can be mutated. For example, if a fixed constant
* has the value 100, and inMaxMutation is 0.5, then the mutated
* constant will be a random value in the range [50, 150].
* @param inRandSource the source of random numbers to use.
* Must be destroyed by caller.
*
* @return a new expression that is a mutated version of inExpression.
* (Note that the returned expression may be inExpression).
*/
static Expression *mutateExpression( Expression *inExpression,
double inMutationProb,
double inMaxMutation,
RandomSource *inRandSource );
};
inline Expression *ExpressionMutator::mutateExpression(
Expression *inExpression,
double inMutationProb,
double inMaxMutation,
RandomSource *inRandSource ) {
long expressionID = inExpression->getID();
// first, deal with constant case
if( expressionID == ConstantExpression::staticGetID() ) {
// mutate the constant's value
ConstantExpression *c = (ConstantExpression *)inExpression;
double value = c->getValue();
double maxMutationAmount = inMaxMutation * value;
// a value in [-1, 1]
double mutator = ( inRandSource->getRandomDouble() * 2.0 ) - 1.0;
value = value + mutator * maxMutationAmount;
c->setValue( value );
return c;
}
else if( expressionID == FixedConstantExpression::staticGetID() ) {
// mutate the fixed constant's value
FixedConstantExpression *c = (FixedConstantExpression *)inExpression;
double value = c->getValue();
double maxMutationAmount = inMaxMutation * value;
// a value in [-1, 1]
double mutator = ( inRandSource->getRandomDouble() * 2.0 ) - 1.0;
value = value + mutator * maxMutationAmount;
delete c;
return new FixedConstantExpression( value );
}
// next deal with the multi-argument case
else if( expressionID == MultiConstantArgumentExpression::staticGetID() ) {
MultiConstantArgumentExpression *m =
(MultiConstantArgumentExpression*)inExpression;
Expression *wrappedExpression =
m->extractWrappedExpression();
wrappedExpression = mutateExpression( wrappedExpression,
inMutationProb,
inMaxMutation,
inRandSource );
m->setWrappedExpression( wrappedExpression );
return m;
}
else {
// the general expression case
Expression *newExpression = inExpression;
if( inRandSource->getRandomDouble() <= inMutationProb ) {
// we need to mutate this node
long newID;
if( expressionID == InvertExpression::staticGetID()
|| expressionID == NegateExpression::staticGetID()
|| expressionID == SinExpression::staticGetID() ) {
// a unary expression
// pick another expression type at random
newID = expressionID;
while( newID == expressionID ) {
int randValue = inRandSource->getRandomBoundedInt( 0, 2 );
switch( randValue ) {
case 0:
newID = InvertExpression::staticGetID();
break;
case 1:
newID = NegateExpression::staticGetID();
break;
case 2:
newID = SinExpression::staticGetID();
break;
default:
// we should never hit this
// note that this newID will cause a printed
// error below
newID = -1;
break;
}
}
}
else {
// a binary expression
// pick another expression type at random
newID = expressionID;
while( newID == expressionID ) {
int randValue = inRandSource->getRandomBoundedInt( 0, 2 );
switch( randValue ) {
case 0:
newID = PowerExpression::staticGetID();
break;
case 1:
newID = ProductExpression::staticGetID();
break;
case 2:
newID = SumExpression::staticGetID();
break;
default:
// we should never hit this
// note that this newID will cause a printed
// error below
newID = -1;
break;
}
}
}
// now build an expression based on newID
if( newID == InvertExpression::staticGetID() ) {
newExpression = new InvertExpression( NULL );
}
else if( newID == NegateExpression::staticGetID() ) {
newExpression = new NegateExpression( NULL );
}
else if( newID == PowerExpression::staticGetID() ) {
newExpression = new PowerExpression( NULL, NULL );
}
else if( newID == ProductExpression::staticGetID() ) {
newExpression = new ProductExpression( NULL, NULL );
}
else if( newID == SinExpression::staticGetID() ) {
newExpression = new SinExpression( NULL );
}
else if( newID == SumExpression::staticGetID() ) {
newExpression = new SumExpression( NULL, NULL );
}
else {
printf( "Error in ExpressionMutator: ID does not " );
printf( "match a known expression type: %d\n", newID );
}
// at this point, we have constructed a new expression node
// with the same number of arguments as the old node
// we need to fill in the arguments from inExpression
for( int i=0; i<inExpression->getNumArguments(); i++ ) {
// use extractArgument so that the argument
// won't be destroyed when inExpression is destroyed
Expression *argument = inExpression->extractArgument( i );
newExpression->setArgument( i, argument );
}
// destroy the old node
delete inExpression;
}
// mutate the sub nodes
for( int i=0; i<newExpression->getNumArguments(); i++ ) {
Expression *argument = newExpression->extractArgument( i );
// mutate the argument
argument = mutateExpression( argument,
inMutationProb,
inMaxMutation,
inRandSource );
newExpression->setArgument( i, argument );
}
return newExpression;
}
}
#endif
|