1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
|
#include "RoutingGraph.hpp"
#include "Chip.hpp"
#include "Tile.hpp"
#include <regex>
#include <iostream>
#include <algorithm>
namespace Trellis {
// This is ignored for the MachXO2 family- globals are handled during routing
// graph creation.
const Location GlobalLoc(-2, -2);
RoutingGraph::RoutingGraph(const Chip &c) : chip_name(c.info.name), chip_family(c.info.family), max_row(c.get_max_row()), max_col(c.get_max_col())
{
tiles[GlobalLoc].loc = GlobalLoc;
for (int y = 0; y <= max_row; y++) {
for (int x = 0; x <= max_col; x++) {
Location loc(x, y);
tiles[loc].loc = loc;
}
}
// ECP5
if (chip_name.find("25F") != string::npos || chip_name.find("12F") != string::npos)
chip_prefix = "25K_";
else if (chip_name.find("45F") != string::npos)
chip_prefix = "45K_";
else if (chip_name.find("85F") != string::npos)
chip_prefix = "85K_";
// MachXO
else if (chip_name.find("LCMXO256") != string::npos)
chip_prefix = "256X_";
else if (chip_name.find("LCMXO640") != string::npos)
chip_prefix = "640X_";
else if (chip_name.find("LCMXO1200") != string::npos)
chip_prefix = "1200X_";
else if (chip_name.find("LCMXO2280") != string::npos)
chip_prefix = "2280X_";
// MachXO2
else if (chip_name.find("LCMXO2-256") != string::npos)
chip_prefix = "256_";
else if (chip_name.find("LCMXO2-640") != string::npos)
chip_prefix = "640_";
else if (chip_name.find("LCMXO2-1200") != string::npos)
chip_prefix = "1200_";
else if (chip_name.find("LCMXO2-2000") != string::npos)
chip_prefix = "2000_";
else if (chip_name.find("LCMXO2-4000") != string::npos)
chip_prefix = "4000_";
else if (chip_name.find("LCMXO2-7000") != string::npos)
chip_prefix = "7000_";
// MachXO3
else if (chip_name.find("LCMXO3-1300") != string::npos)
chip_prefix = "1300_";
else if (chip_name.find("LCMXO3-2100") != string::npos)
chip_prefix = "2100_";
else if (chip_name.find("LCMXO3-4300") != string::npos)
chip_prefix = "4300_";
else if (chip_name.find("LCMXO3-6900") != string::npos)
chip_prefix = "6900_";
else if (chip_name.find("LCMXO3-9400") != string::npos)
chip_prefix = "9400_";
// MachXO3D
else if (chip_name.find("LCMXO3D-4300") != string::npos)
chip_prefix = "4300D_";
else if (chip_name.find("LCMXO3D-9400") != string::npos)
chip_prefix = "9400D_";
else
assert(false);
if(c.info.family == "MachXO2" || c.info.family == "MachXO3" || c.info.family == "MachXO3D")
global_data_machxo2 = &c.global_data_machxo2;
}
ident_t IdStore::ident(const std::string &str) const
{
if (str_to_id.find(str) != str_to_id.end()) {
return str_to_id.at(str);
} else {
str_to_id[str] = int(identifiers.size());
identifiers.push_back(str);
return str_to_id.at(str);
}
}
std::string IdStore::to_str(ident_t id) const
{
return identifiers.at(id);
}
RoutingId IdStore::id_at_loc(int16_t x, int16_t y, const std::string &str) const
{
RoutingId rid;
rid.id = ident(str);
rid.loc = Location(x, y);
return rid;
}
RoutingId RoutingGraph::globalise_net(int row, int col, const std::string &db_name)
{
if(chip_family == "ECP5") {
return globalise_net_ecp5(row, col, db_name);
} else if(chip_family == "MachXO") {
return RoutingId();
} else if(chip_family == "MachXO2" || chip_family == "MachXO3" || chip_family == "MachXO3D") {
return globalise_net_machxo2(row, col, db_name);
} else
throw runtime_error("Unknown chip family: " + chip_family);
}
RoutingId RoutingGraph::globalise_net_ecp5(int row, int col, const std::string &db_name)
{
static const std::regex e(R"(^([NS]\d+)?([EW]\d+)?_(.*))", std::regex::optimize);
std::string stripped_name = db_name;
if (db_name.find("25K_") == 0 || db_name.find("45K_") == 0 || db_name.find("85K_") == 0) {
if (db_name.substr(0, 4) == chip_prefix) {
stripped_name = db_name.substr(4);
} else {
return RoutingId();
}
}
// Workaround for PCSA/B sharing tile dbs
if (col >= 69) {
size_t pcsa_pos = stripped_name.find("PCSA");
if (pcsa_pos != std::string::npos)
stripped_name.replace(pcsa_pos + 3, 1, "B");
}
if (stripped_name.find("G_") == 0 || stripped_name.find("L_") == 0 || stripped_name.find("R_") == 0) {
// Global net
// TODO: quadrants and TAP_DRIVE regions
// TAP_DRIVE and SPINE wires go in their respective tiles
// Other globals are placed at a nominal location of (0, 0)
RoutingId id;
if (stripped_name.find("G_") == 0 && stripped_name.find("VPTX") == string::npos &&
stripped_name.find("HPBX") == string::npos && stripped_name.find("HPRX") == string::npos) {
id.loc.x = 0;
id.loc.y = 0;
} else {
id.loc.x = int16_t(col);
id.loc.y = int16_t(row);
}
id.id = ident(stripped_name);
return id;
} else {
RoutingId id;
id.loc.x = int16_t(col);
id.loc.y = int16_t(row);
// Local net, process prefix
smatch m;
if (regex_match(stripped_name, m, e)) {
for (int i = 1; i < int(m.size()) - 1; i++) {
string g = m.str(i);
if (g.empty()) continue;
if (g[0] == 'N') id.loc.y -= std::stoi(g.substr(1));
else if (g[0] == 'S') id.loc.y += std::stoi(g.substr(1));
else if (g[0] == 'W') id.loc.x -= std::stoi(g.substr(1));
else if (g[0] == 'E') id.loc.x += std::stoi(g.substr(1));
else
assert(false);
}
id.id = ident(m.str(m.size() - 1));
} else {
id.id = ident(stripped_name);
}
if (id.loc.x < 0 || id.loc.x > max_col || id.loc.y < 0 || id.loc.y > max_row)
return RoutingId(); // TODO: handle edge nets properly
return id;
}
}
RoutingId RoutingGraph::globalise_net_machxo2(int row, int col, const std::string &db_name)
{
static const std::regex e(R"(^([NS]\d+)?([EW]\d+)?_(.*))", std::regex::optimize);
std::string stripped_name = db_name;
if (db_name.find("256_") == 0 || db_name.find("640_") == 0) {
if (db_name.substr(0, 4) == chip_prefix) {
stripped_name = db_name.substr(4);
} else {
return RoutingId();
}
}
if (db_name.find("1200_") == 0 || db_name.find("1300_") == 0 || db_name.find("2000_") == 0 ||
db_name.find("2100_") == 0 || db_name.find("4000_") == 0 || db_name.find("4300_") == 0 ||
db_name.find("6900_") == 0 || db_name.find("7000_") == 0 || db_name.find("9400_") == 0) {
if (db_name.substr(0, 5) == chip_prefix) {
stripped_name = db_name.substr(5);
} else {
return RoutingId();
}
}
if (db_name.find("4300D_") == 0 || db_name.find("9400D_") == 0) {
if (db_name.substr(0, 5) == chip_prefix) {
stripped_name = db_name.substr(6);
} else {
return RoutingId();
}
}
if (stripped_name.find("G_") == 0 || stripped_name.find("L_") == 0 || stripped_name.find("R_") == 0 ||
stripped_name.find("U_") == 0 || stripped_name.find("D_") == 0 || stripped_name.find("BRANCH_") == 0) {
// Global prefix detected, use the prefix and row/col to map "logical"
// globals on a tile basis to physical globals which are shared between
// tiles.
return find_machxo2_global_position(row, col, stripped_name);
} else {
RoutingId id;
id.loc.x = int16_t(col);
id.loc.y = int16_t(row);
// Local net, process prefix
smatch m;
if (regex_match(stripped_name, m, e)) {
for (int i = 1; i < int(m.size()) - 1; i++) {
string g = m.str(i);
if (g.empty()) continue;
if (g[0] == 'N') id.loc.y -= std::stoi(g.substr(1));
else if (g[0] == 'S') id.loc.y += std::stoi(g.substr(1));
else if (g[0] == 'W') {
id.loc.x -= std::stoi(g.substr(1));
if(id.loc.x < 0) {
// Special case: PIO wires on left side have a relative
// position placing them outside the chip thanks to MachXO2's
// wonderful 1-based column numbering, and lack of dedicated
// PIO tiles on the left and right.
// Top and bottom unaffected due to dedicated PIO tiles.
// TODO: Convert to regex.
bool pio_wire = (
db_name.find("DI") != string::npos ||
db_name.find("JDI") != string::npos ||
db_name.find("PADD") != string::npos ||
db_name.find("INDD") != string::npos ||
db_name.find("IOLDO") != string::npos ||
db_name.find("IOLTO") != string::npos ||
db_name.find("JCE") != string::npos ||
db_name.find("JCLK") != string::npos ||
db_name.find("JLSR") != string::npos ||
db_name.find("JONEG") != string::npos ||
db_name.find("JOPOS") != string::npos ||
db_name.find("JTS") != string::npos ||
db_name.find("JIN") != string::npos ||
db_name.find("JIP") != string::npos ||
// Connections to global mux
db_name.find("JINCK") != string::npos
);
if((id.loc.x == -1) && pio_wire)
id.loc.x = 0;
}
}
else if (g[0] == 'E') {
id.loc.x += std::stoi(g.substr(1));
if(id.loc.x > max_col) {
bool pio_wire = (
db_name.find("DI") != string::npos ||
db_name.find("JDI") != string::npos ||
db_name.find("PADD") != string::npos ||
db_name.find("INDD") != string::npos ||
db_name.find("IOLDO") != string::npos ||
db_name.find("IOLTO") != string::npos ||
db_name.find("JCE") != string::npos ||
db_name.find("JCLK") != string::npos ||
db_name.find("JLSR") != string::npos ||
db_name.find("JONEG") != string::npos ||
db_name.find("JOPOS") != string::npos ||
db_name.find("JTS") != string::npos ||
db_name.find("JIN") != string::npos ||
db_name.find("JIP") != string::npos ||
// Connections to global mux
db_name.find("JINCK") != string::npos
);
// Same deal as left side, except the position exceeds
// the maximum row.
// TODO: Should this become part of general edge-handling
// code, rather than a special case in the generic relative-
// position logic?
if((id.loc.x == max_col + 1) && pio_wire)
id.loc.x = max_col;
}
}
else
assert(false);
}
id.id = ident(m.str(m.size() - 1));
} else {
id.id = ident(stripped_name);
}
if (id.loc.x < 0 || id.loc.x > max_col || id.loc.y < 0 || id.loc.y > max_row)
return RoutingId(); // TODO: handle edge nets properly
return id;
}
}
void RoutingGraph::add_arc(Location loc, const RoutingArc &arc)
{
RoutingId arcId;
arcId.loc = loc;
arcId.id = arc.id;
add_wire(arc.source);
add_wire(arc.sink);
tiles[loc].arcs[arc.id] = arc;
tiles[arc.sink.loc].wires.at(arc.sink.id).uphill.push_back(arcId);
tiles[arc.source.loc].wires.at(arc.source.id).downhill.push_back(arcId);
}
void RoutingGraph::add_wire(RoutingId wire)
{
RoutingTileLoc &tile = tiles[wire.loc];
if (tile.wires.find(wire.id) == tile.wires.end()) {
RoutingWire rw;
rw.id = wire.id;
tiles[wire.loc].wires[rw.id] = rw;
}
}
void RoutingGraph::add_bel(RoutingBel &bel)
{
tiles[bel.loc].bels[bel.name] = bel;
}
void RoutingGraph::add_bel_input(RoutingBel &bel, ident_t pin, int wire_x, int wire_y, ident_t wire_name) {
RoutingId wireId, belId;
wireId.id = wire_name;
wireId.loc.x = wire_x;
wireId.loc.y = wire_y;
belId.id = bel.name;
belId.loc = bel.loc;
add_wire(wireId);
bel.pins[pin] = make_pair(wireId, PORT_IN);
tiles[wireId.loc].wires[wireId.id].belsDownhill.push_back(make_pair(belId, pin));
}
void RoutingGraph::add_bel_output(RoutingBel &bel, ident_t pin, int wire_x, int wire_y, ident_t wire_name) {
RoutingId wireId, belId;
wireId.id = wire_name;
wireId.loc.x = wire_x;
wireId.loc.y = wire_y;
belId.id = bel.name;
belId.loc = bel.loc;
add_wire(wireId);
bel.pins[pin] = make_pair(wireId, PORT_OUT);
tiles[wireId.loc].wires[wireId.id].belsUphill.push_back(make_pair(belId, pin));
}
RoutingId RoutingGraph::find_machxo2_global_position(int row, int col, const std::string &db_name) {
// Globals are given their nominal position, even if they span multiple
// tiles, by the following rules (determined by a combination of regexes
// on db_name and row/col):
smatch m;
pair<int, int> center = center_map[make_pair(max_row, max_col)];
SpineInfo spine_1 = global_data_machxo2->spines[0];
SpineInfo spine_2 = (global_data_machxo2->spines.size() > 1) ? global_data_machxo2->spines[1] : SpineInfo{-1,-1};
RoutingId curr_global;
GlobalType strategy = get_global_type_from_name(db_name, m);
// All globals in the center tile get a nominal position of the center
// tile. We have to use regexes because a number of these connections
// in the center mux have config bits spread across multiple tiles
// (although few nets actually have routing bits which cross tiles).
//
// This handles L/R_HPSX as well. DCCs are handled a bit differently
// until we can determine they only truly exist in center tile (the row,
// col, and db_name will still be enough to distinguish them).
if(strategy == GlobalType::CENTER) {
// Some arcs, like those which connect to VPRXCLKI0 in the 1200HC part
// may appear more than once. We assume that open tools like nextpnr
// are able to tolerate the same physical arc appearing twice in the
// routing graph without any problems. This should also make bitstream
// generation easier if the open tools make sure to set an arc as used
// in each tile where it exists.
curr_global.id = ident(db_name);
curr_global.loc.x = center.second;
curr_global.loc.y = center.first;
return curr_global;
} else if(strategy == GlobalType::SPINE_LEFT_RIGHT) {
assert(row == spine_1.row || row == spine_2.row);
curr_global.id = ident(db_name);
curr_global.loc.x = center.second;
curr_global.loc.y = row;
return curr_global;
// If we found a global emanating from the CENTER MUX, return a L_/R_
// global net in the center tile based upon the current tile position
// (specifically column).
} else if(strategy == GlobalType::LEFT_RIGHT) {
assert(row == spine_1.row || row == spine_2.row);
// Prefixes only required in the center tile.
assert(db_name[0] == 'G');
std::string db_copy = db_name;
// Center column tiles connect to the left side of the center mux.
if(col <= center.second)
db_copy[0] = 'L';
else
db_copy[0] = 'R';
curr_global.id = ident(db_copy);
curr_global.loc.x = center.second;
curr_global.loc.y = row;
return curr_global;
// U/D wires get the nominal position of center row, current column.
// Both U_/D_ and G_ prefixes are handled here.
} else if(strategy == GlobalType::UP_DOWN) {
std::string db_copy = db_name;
const std::vector<int> & ud_conns_in_col = global_data_machxo2->ud_conns[col];
auto conn_begin = ud_conns_in_col.begin();
auto conn_end = ud_conns_in_col.end();
int conn_no = std::stoi(m.str(1));
// First check whether the requested global is in the current column.
// If not, no point in continuing.
if(std::find(conn_begin, conn_end, conn_no) == conn_end)
return RoutingId();
// Special case the center row, which will have both U/D wires.
if(row == spine_1.row || row == spine_2.row) {
assert((db_name[0] == 'U') || (db_name[0] == 'D'));
curr_global.id = ident(db_copy);
curr_global.loc.x = col;
curr_global.loc.y = row;
return curr_global;
} else {
// Otherwise choose an U_/D_ wire at nominal position based on
// the current tile's row.
// Prefixes only required in the center row.
assert(db_name[0] == 'G');
// Center column tiles are considered above the center mux,
// despite sharing the same tile.
int spine_row = spine_1.row;
if(row <= spine_1.row) {
db_copy[0] = 'U';
} else {
if (spine_2.row == -1 || row <= (spine_1.row + spine_1.down)) {
db_copy[0] = 'D';
} else {
if(row <= spine_2.row)
db_copy[0] = 'U';
else
db_copy[0] = 'D';
spine_row = spine_2.row;
}
}
curr_global.id = ident(db_copy);
curr_global.loc.x = col;
curr_global.loc.y = spine_row;
return curr_global;
}
// BRANCH wires get nominal position of the row/col where they connect
// to U_/D_ routing. We need the global_data_machxo2 struct to figure
// out this information.
} else if(strategy == GlobalType::BRANCH) {
std::vector<int> candidate_cols;
// At the second-to-last row of the chip, the branch, which spans two
// columns to the right, will be truncated by the chip's edge.
// At the last row of the chip, BRANCHES connecting to U/D routing (which
// which normally span two column to the right) will be truncated by the
// chip's edge.
// The remaining two globals should come from BRANCHES from the right.
// But since we run into the chip's edge, we route them to the current
// column (and only the current column!) here.
if(col > 1)
candidate_cols.push_back(col - 2);
if(col > 0)
candidate_cols.push_back(col - 1);
candidate_cols.push_back(col);
if(col < max_col)
candidate_cols.push_back(col + 1);
for(auto curr_col : candidate_cols) {
const std::vector<int> & ud_conns_in_col = global_data_machxo2->ud_conns[curr_col];
auto conn_begin = ud_conns_in_col.begin();
auto conn_end = ud_conns_in_col.end();
int conn_no = std::stoi(m.str(1));
// First check whether the requested global is in the current column.
// If not, no point in continuing.
if(std::find(conn_begin, conn_end, conn_no) != conn_end) {
curr_global.id = ident(db_name);
curr_global.loc.x = curr_col;
curr_global.loc.y = row;
break;
}
}
// One of the candidate columns should have had the correct U/D
// connection to route to.
assert(curr_global != RoutingId());
return curr_global;
// For OSCH, and DCCs assign nominal position of current requested tile.
// DCM only exist in center tile but have their routing spread out
// across tiles.
} else if(strategy == GlobalType::OTHER) {
curr_global.id = ident(db_name);
curr_global.loc.x = col;
curr_global.loc.y = row;
return curr_global;
} else {
// TODO: Not fuzzed and/or handled yet!
return RoutingId();
}
}
RoutingGraph::GlobalType RoutingGraph::get_global_type_from_name(const std::string &db_name, smatch &match) {
// A RoutingId uniquely describes a net on the chip- using a string
// identifier (id- converted to int), and a nominal position (loc).
// Two RoutingIds with the same id and loc represent the same net, so
// we can use heuristics to connect globals to the rest of the routing
// graph properly, given the current tile position and the global's
// identifier.
// First copy regexes from utils.nets.machxo2, adjusting as necessary for
// prefixes and regex syntax. Commented-out ones are not ready yet:
// Globals
static const std::regex global_entry(R"(G_VPRX(\d){2}00)", std::regex::optimize);
static const std::regex global_left_right(R"([LR]_HPSX(\d){2}00)", std::regex::optimize);
static const std::regex global_left_right_g(R"(G_HPSX(\d){2}00)", std::regex::optimize);
static const std::regex global_up_down(R"([UD]_VPTX(\d){2}00)", std::regex::optimize);
static const std::regex global_up_down_g(R"(G_VPTX(\d){2}00)", std::regex::optimize);
static const std::regex global_branch(R"(BRANCH_HPBX(\d){2}00)", std::regex::optimize);
// High Fanout Secondary Nets
// static const std::regex hfsn_entry(R"(G_VSRX(\d){2}00)", std::regex::optimize);
// static const std::regex hfsn_left_right(R"(G_HSSX(\d){2}00)", std::regex::optimize);
// L2Rs control bidirectional portion of HFSNs!!
// static const std::regex hfsn_l2r(R"(G_HSSX(\d){2}00_[RL]2[LR])", std::regex::optimize);
// static const std::regex hfsn_up_down(R"(G_VSTX(\d){2}00)", std::regex::optimize);
// HSBX(\d){2}00 are fixed connections to HSBX(\d){2}01s.
// static const std::regex hfsn_branch(R"(G_HSBX(\d){2}0[01])", std::regex::optimize);
// Center Mux
// Outputs- entry to DCCs connected to globals (VPRXI -> DCC -> VPRX) *
static const std::regex center_mux_glb_out(R"(G_VPRXCLKI\d+)", std::regex::optimize);
// Outputs- connected to ECLKBRIDGEs *
// static const std::regex center_mux_ebrg_out(R"(G_EBRG(\d){1}CLK(\d){1})", std::regex::optimize);
// Inputs- CIB routing to HFSNs
// static const std::regex cib_out_to_hfsn(R"(G_JSNETCIB([TBRL]|MID)(\d){1})", std::regex::optimize);
// Inputs- CIB routing to globals
static const std::regex cib_out_to_glb(R"(G_J?PCLKCIB(L[TBRL]Q|MID|VIQ[TBRL])(\d){1})", std::regex::optimize);
// Inputs- CIB routing to ECLKBRIDGEs
// static const std::regex cib_out_to_eclk(R"(G_J?ECLKCIB[TBRL](\d){1})", std::regex::optimize);
// Inputs- Edge clocks dividers
// static const std::regex eclk_out(R"(G_J?[TBRL]CDIV(X(\d){1}|(\d){2}))", std::regex::optimize);
// Inputs- PLL
// static const std::regex pll_out(R"(G_J?[LR]PLLCLK\d+)", std::regex::optimize);
// Inputs- Clock pads
// static const std::regex clock_pin(R"(G_J?PCLK[TBLR]\d+)", std::regex::optimize);
// Part of center-mux but can also be found elsewhere
// DCCs connected to globals *
static const std::regex dcc_sig(R"(G_J?(CLK[IO]|CE)(\d){1}[TB]?_DCC)", std::regex::optimize);
// DCMs- connected to DCCs on globals 6 and 7 *
static const std::regex dcm_sig(R"(G_J?(CLK(\d){1}_|SEL|DCMOUT)(\d){1}_DCM)", std::regex::optimize);
// ECLKBRIDGEs- TODO
// static const std::regex eclkbridge_sig(R"(G_J?(CLK(\d){1}_|SEL|ECSOUT)(\d){1}_ECLKBRIDGECS)", std::regex::optimize);
// Oscillator output
static const std::regex osc_clk(R"(G_J?OSC_.*)", std::regex::optimize);
// Soft Error Detection Clock *
// static const std::regex sed_clk(R"(G_J?SEDCLKOUT)", std::regex::optimize);
// PLL/DLL Clocks
// static const std::regex pll_clk(R"(G_[TB]ECLK\d)", std::regex::optimize);
// PG/INRD/LVDS
// static const std::regex pg(R"(G_PG)", std::regex::optimize);
// static const std::regex inrd(R"(G_INRD)", std::regex::optimize);
// static const std::regex vds(R"(G_LVDS)", std::regex::optimize);
// DDR
// static const std::regex ddrclkpol(R"(G_DDRCLKPOL)", std::regex::optimize);
// static const std::regex dqsr90(R"(G_DQSR90)", std::regex::optimize);
// static const std::regex qsw90(R"(G_DQSW90)", std::regex::optimize);
if(regex_match(db_name, match, global_entry) ||
regex_match(db_name, match, center_mux_glb_out) ||
regex_match(db_name, match, cib_out_to_glb) ||
regex_match(db_name, match, dcm_sig)) {
return GlobalType::CENTER;
} else if(regex_match(db_name, match, global_left_right)) {
return GlobalType::SPINE_LEFT_RIGHT;
} else if(regex_match(db_name, match, global_left_right_g)) {
return GlobalType::LEFT_RIGHT;
} else if(regex_match(db_name, match, global_up_down) ||
regex_match(db_name, match, global_up_down_g)) {
return GlobalType::UP_DOWN;
} else if(regex_match(db_name, match, global_branch)) {
return GlobalType::BRANCH;
} else if(regex_match(db_name, match, dcc_sig) ||
regex_match(db_name, match, osc_clk)) {
return GlobalType::OTHER;
} else {
// TODO: Not fuzzed and/or handled yet!
return GlobalType::NONE;
}
}
}
|