File: RoutingGraph.cpp

package info (click to toggle)
prjtrellis 1.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 83,000 kB
  • sloc: cpp: 20,813; python: 16,246; sh: 375; makefile: 262; asm: 80; ansic: 58
file content (613 lines) | stat: -rw-r--r-- 25,980 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
#include "RoutingGraph.hpp"
#include "Chip.hpp"
#include "Tile.hpp"
#include <regex>
#include <iostream>
#include <algorithm>

namespace Trellis {

// This is ignored for the MachXO2 family- globals are handled during routing
// graph creation.
const Location GlobalLoc(-2, -2);

RoutingGraph::RoutingGraph(const Chip &c) : chip_name(c.info.name), chip_family(c.info.family), max_row(c.get_max_row()), max_col(c.get_max_col())
{
    tiles[GlobalLoc].loc = GlobalLoc;
    for (int y = 0; y <= max_row; y++) {
        for (int x = 0; x <= max_col; x++) {
            Location loc(x, y);
            tiles[loc].loc = loc;
        }
    }
    // ECP5
    if (chip_name.find("25F") != string::npos || chip_name.find("12F") != string::npos)
        chip_prefix = "25K_";
    else if (chip_name.find("45F") != string::npos)
        chip_prefix = "45K_";
    else if (chip_name.find("85F") != string::npos)
        chip_prefix = "85K_";
    // MachXO
    else if (chip_name.find("LCMXO256") != string::npos)
        chip_prefix = "256X_";
    else if (chip_name.find("LCMXO640") != string::npos)
        chip_prefix = "640X_";
    else if (chip_name.find("LCMXO1200") != string::npos)
        chip_prefix = "1200X_";
    else if (chip_name.find("LCMXO2280") != string::npos)
        chip_prefix = "2280X_";
    // MachXO2
    else if (chip_name.find("LCMXO2-256") != string::npos)
        chip_prefix = "256_";
    else if (chip_name.find("LCMXO2-640") != string::npos)
        chip_prefix = "640_";
    else if (chip_name.find("LCMXO2-1200") != string::npos)
        chip_prefix = "1200_";
    else if (chip_name.find("LCMXO2-2000") != string::npos)
        chip_prefix = "2000_";
    else if (chip_name.find("LCMXO2-4000") != string::npos)
        chip_prefix = "4000_";
    else if (chip_name.find("LCMXO2-7000") != string::npos)
        chip_prefix = "7000_";
    // MachXO3
    else if (chip_name.find("LCMXO3-1300") != string::npos)
        chip_prefix = "1300_";
    else if (chip_name.find("LCMXO3-2100") != string::npos)
        chip_prefix = "2100_";
    else if (chip_name.find("LCMXO3-4300") != string::npos)
        chip_prefix = "4300_";
    else if (chip_name.find("LCMXO3-6900") != string::npos)
        chip_prefix = "6900_";
    else if (chip_name.find("LCMXO3-9400") != string::npos)
        chip_prefix = "9400_";
    // MachXO3D
    else if (chip_name.find("LCMXO3D-4300") != string::npos)
        chip_prefix = "4300D_";
    else if (chip_name.find("LCMXO3D-9400") != string::npos)
        chip_prefix = "9400D_";
    else
        assert(false);

    if(c.info.family == "MachXO2" || c.info.family == "MachXO3" || c.info.family == "MachXO3D")
        global_data_machxo2 = &c.global_data_machxo2;
}

ident_t IdStore::ident(const std::string &str) const
{
    if (str_to_id.find(str) != str_to_id.end()) {
        return str_to_id.at(str);
    } else {
        str_to_id[str] = int(identifiers.size());
        identifiers.push_back(str);
        return str_to_id.at(str);
    }
}

std::string IdStore::to_str(ident_t id) const
{
    return identifiers.at(id);
}

RoutingId IdStore::id_at_loc(int16_t x, int16_t y, const std::string &str) const
{
    RoutingId rid;
    rid.id = ident(str);
    rid.loc = Location(x, y);
    return rid;
}

RoutingId RoutingGraph::globalise_net(int row, int col, const std::string &db_name)
{
    if(chip_family == "ECP5") {
        return globalise_net_ecp5(row, col, db_name);
    } else if(chip_family == "MachXO") {
        return RoutingId();
    } else if(chip_family == "MachXO2" || chip_family == "MachXO3" || chip_family == "MachXO3D") {
        return globalise_net_machxo2(row, col, db_name);
    } else
        throw runtime_error("Unknown chip family: " + chip_family);
}

RoutingId RoutingGraph::globalise_net_ecp5(int row, int col, const std::string &db_name)
{
    static const std::regex e(R"(^([NS]\d+)?([EW]\d+)?_(.*))", std::regex::optimize);
    std::string stripped_name = db_name;
    if (db_name.find("25K_") == 0 || db_name.find("45K_") == 0 || db_name.find("85K_") == 0) {
        if (db_name.substr(0, 4) == chip_prefix) {
            stripped_name = db_name.substr(4);
        } else {
            return RoutingId();
        }
    }
    // Workaround for PCSA/B sharing tile dbs
    if (col >= 69) {
        size_t pcsa_pos = stripped_name.find("PCSA");
        if (pcsa_pos != std::string::npos)
            stripped_name.replace(pcsa_pos + 3, 1, "B");
    }
    if (stripped_name.find("G_") == 0 || stripped_name.find("L_") == 0 || stripped_name.find("R_") == 0) {
        // Global net
        // TODO: quadrants and TAP_DRIVE regions
        // TAP_DRIVE and SPINE wires go in their respective tiles
        // Other globals are placed at a nominal location of (0, 0)
        RoutingId id;
        if (stripped_name.find("G_") == 0 && stripped_name.find("VPTX") == string::npos &&
            stripped_name.find("HPBX") == string::npos && stripped_name.find("HPRX") == string::npos) {
            id.loc.x = 0;
            id.loc.y = 0;
        } else {
            id.loc.x = int16_t(col);
            id.loc.y = int16_t(row);
        }
        id.id = ident(stripped_name);
        return id;
    } else {
        RoutingId id;
        id.loc.x = int16_t(col);
        id.loc.y = int16_t(row);
        // Local net, process prefix
        smatch m;
        if (regex_match(stripped_name, m, e)) {
            for (int i = 1; i < int(m.size()) - 1; i++) {
                string g = m.str(i);
                if (g.empty()) continue;
                if (g[0] == 'N') id.loc.y -= std::stoi(g.substr(1));
                else if (g[0] == 'S') id.loc.y += std::stoi(g.substr(1));
                else if (g[0] == 'W') id.loc.x -= std::stoi(g.substr(1));
                else if (g[0] == 'E') id.loc.x += std::stoi(g.substr(1));
                else
                    assert(false);
            }
            id.id = ident(m.str(m.size() - 1));
        } else {
            id.id = ident(stripped_name);
        }
        if (id.loc.x < 0 || id.loc.x > max_col || id.loc.y < 0 || id.loc.y > max_row)
            return RoutingId(); // TODO: handle edge nets properly
        return id;
    }
}

RoutingId RoutingGraph::globalise_net_machxo2(int row, int col, const std::string &db_name)
{
  static const std::regex e(R"(^([NS]\d+)?([EW]\d+)?_(.*))", std::regex::optimize);
  std::string stripped_name = db_name;

  if (db_name.find("256_") == 0 || db_name.find("640_") == 0) {
      if (db_name.substr(0, 4) == chip_prefix) {
          stripped_name = db_name.substr(4);
      } else {
          return RoutingId();
      }
  }

  if (db_name.find("1200_") == 0 || db_name.find("1300_") == 0 || db_name.find("2000_") == 0 ||
      db_name.find("2100_") == 0 || db_name.find("4000_") == 0 || db_name.find("4300_") == 0 ||
      db_name.find("6900_") == 0 || db_name.find("7000_") == 0 || db_name.find("9400_") == 0) {
      if (db_name.substr(0, 5) == chip_prefix) {
          stripped_name = db_name.substr(5);
      } else {
          return RoutingId();
      }
  }

  if (db_name.find("4300D_") == 0 || db_name.find("9400D_") == 0) {
      if (db_name.substr(0, 5) == chip_prefix) {
          stripped_name = db_name.substr(6);
      } else {
          return RoutingId();
      }
  }

  if (stripped_name.find("G_") == 0 || stripped_name.find("L_") == 0 || stripped_name.find("R_") == 0 ||
      stripped_name.find("U_") == 0 || stripped_name.find("D_") == 0 || stripped_name.find("BRANCH_") == 0) {
        // Global prefix detected, use the prefix and row/col to map "logical"
        // globals on a tile basis to physical globals which are shared between
        // tiles.
        return find_machxo2_global_position(row, col, stripped_name);
  } else {
      RoutingId id;
      id.loc.x = int16_t(col);
      id.loc.y = int16_t(row);
      // Local net, process prefix
      smatch m;
      if (regex_match(stripped_name, m, e)) {
          for (int i = 1; i < int(m.size()) - 1; i++) {
              string g = m.str(i);
              if (g.empty()) continue;
              if (g[0] == 'N') id.loc.y -= std::stoi(g.substr(1));
              else if (g[0] == 'S') id.loc.y += std::stoi(g.substr(1));
              else if (g[0] == 'W') {
                  id.loc.x -= std::stoi(g.substr(1));

                  if(id.loc.x < 0) {
                      // Special case: PIO wires on left side have a relative
                      // position placing them outside the chip thanks to MachXO2's
                      // wonderful 1-based column numbering, and lack of dedicated
                      // PIO tiles on the left and right.
                      // Top and bottom unaffected due to dedicated PIO tiles.
                      // TODO: Convert to regex.
                      bool pio_wire = (
                          db_name.find("DI") != string::npos ||
                          db_name.find("JDI") != string::npos ||
                          db_name.find("PADD") != string::npos ||
                          db_name.find("INDD") != string::npos ||
                          db_name.find("IOLDO") != string::npos ||
                          db_name.find("IOLTO") != string::npos ||
                          db_name.find("JCE") != string::npos ||
                          db_name.find("JCLK") != string::npos ||
                          db_name.find("JLSR") != string::npos ||
                          db_name.find("JONEG") != string::npos ||
                          db_name.find("JOPOS") != string::npos ||
                          db_name.find("JTS") != string::npos ||
                          db_name.find("JIN") != string::npos ||
                          db_name.find("JIP") != string::npos ||
                          // Connections to global mux
                          db_name.find("JINCK") != string::npos
                      );

                      if((id.loc.x == -1) && pio_wire)
                          id.loc.x = 0;
                  }
              }
              else if (g[0] == 'E') {
                  id.loc.x += std::stoi(g.substr(1));

                  if(id.loc.x > max_col) {
                      bool pio_wire = (
                          db_name.find("DI") != string::npos ||
                          db_name.find("JDI") != string::npos ||
                          db_name.find("PADD") != string::npos ||
                          db_name.find("INDD") != string::npos ||
                          db_name.find("IOLDO") != string::npos ||
                          db_name.find("IOLTO") != string::npos ||
                          db_name.find("JCE") != string::npos ||
                          db_name.find("JCLK") != string::npos ||
                          db_name.find("JLSR") != string::npos ||
                          db_name.find("JONEG") != string::npos ||
                          db_name.find("JOPOS") != string::npos ||
                          db_name.find("JTS") != string::npos ||
                          db_name.find("JIN") != string::npos ||
                          db_name.find("JIP") != string::npos ||
                          // Connections to global mux
                          db_name.find("JINCK") != string::npos
                      );

                      // Same deal as left side, except the position exceeds
                      // the maximum row.
                      // TODO: Should this become part of general edge-handling
                      // code, rather than a special case in the generic relative-
                      // position logic?
                      if((id.loc.x == max_col + 1) && pio_wire)
                          id.loc.x = max_col;
                  }
              }
              else
                  assert(false);
          }
          id.id = ident(m.str(m.size() - 1));
      } else {
          id.id = ident(stripped_name);
      }
      if (id.loc.x < 0 || id.loc.x > max_col || id.loc.y < 0 || id.loc.y > max_row)
          return RoutingId(); // TODO: handle edge nets properly
      return id;
  }
}

void RoutingGraph::add_arc(Location loc, const RoutingArc &arc)
{
    RoutingId arcId;
    arcId.loc = loc;
    arcId.id = arc.id;
    add_wire(arc.source);
    add_wire(arc.sink);
    tiles[loc].arcs[arc.id] = arc;
    tiles[arc.sink.loc].wires.at(arc.sink.id).uphill.push_back(arcId);
    tiles[arc.source.loc].wires.at(arc.source.id).downhill.push_back(arcId);
}

void RoutingGraph::add_wire(RoutingId wire)
{
    RoutingTileLoc &tile = tiles[wire.loc];
    if (tile.wires.find(wire.id) == tile.wires.end()) {
        RoutingWire rw;
        rw.id = wire.id;
        tiles[wire.loc].wires[rw.id] = rw;
    }
}

void RoutingGraph::add_bel(RoutingBel &bel)
{
    tiles[bel.loc].bels[bel.name] = bel;
}

void RoutingGraph::add_bel_input(RoutingBel &bel, ident_t pin, int wire_x, int wire_y, ident_t wire_name) {
    RoutingId wireId, belId;
    wireId.id = wire_name;
    wireId.loc.x = wire_x;
    wireId.loc.y = wire_y;
    belId.id = bel.name;
    belId.loc = bel.loc;
    add_wire(wireId);
    bel.pins[pin] = make_pair(wireId, PORT_IN);
    tiles[wireId.loc].wires[wireId.id].belsDownhill.push_back(make_pair(belId, pin));
}

void RoutingGraph::add_bel_output(RoutingBel &bel, ident_t pin, int wire_x, int wire_y, ident_t wire_name) {
    RoutingId wireId, belId;
    wireId.id = wire_name;
    wireId.loc.x = wire_x;
    wireId.loc.y = wire_y;
    belId.id = bel.name;
    belId.loc = bel.loc;
    add_wire(wireId);
    bel.pins[pin] = make_pair(wireId, PORT_OUT);
    tiles[wireId.loc].wires[wireId.id].belsUphill.push_back(make_pair(belId, pin));
}

RoutingId RoutingGraph::find_machxo2_global_position(int row, int col, const std::string &db_name) {
    // Globals are given their nominal position, even if they span multiple
    // tiles, by the following rules (determined by a combination of regexes
    // on db_name and row/col):
    smatch m;
    pair<int, int> center = center_map[make_pair(max_row, max_col)];
    SpineInfo spine_1 = global_data_machxo2->spines[0];
    SpineInfo spine_2 = (global_data_machxo2->spines.size() > 1) ? global_data_machxo2->spines[1] : SpineInfo{-1,-1};
    RoutingId curr_global;

    GlobalType strategy = get_global_type_from_name(db_name, m);

    // All globals in the center tile get a nominal position of the center
    // tile. We have to use regexes because a number of these connections
    // in the center mux have config bits spread across multiple tiles
    // (although few nets actually have routing bits which cross tiles).
    //
    // This handles L/R_HPSX as well. DCCs are handled a bit differently
    // until we can determine they only truly exist in center tile (the row,
    // col, and db_name will still be enough to distinguish them).
    if(strategy == GlobalType::CENTER) {
        // Some arcs, like those which connect to VPRXCLKI0 in the 1200HC part
        // may appear more than once. We assume that open tools like nextpnr
        // are able to tolerate the same physical arc appearing twice in the
        // routing graph without any problems. This should also make bitstream
        // generation easier if the open tools make sure to set an arc as used
        // in each tile where it exists.
        curr_global.id = ident(db_name);
        curr_global.loc.x = center.second;
        curr_global.loc.y = center.first;
        return curr_global;

    } else if(strategy == GlobalType::SPINE_LEFT_RIGHT) {
        assert(row == spine_1.row || row == spine_2.row);
        curr_global.id = ident(db_name);
        curr_global.loc.x = center.second;
        curr_global.loc.y = row;
        return curr_global;
    // If we found a global emanating from the CENTER MUX, return a L_/R_
    // global net in the center tile based upon the current tile position
    // (specifically column).
    } else if(strategy == GlobalType::LEFT_RIGHT) {
        assert(row == spine_1.row || row == spine_2.row);
        // Prefixes only required in the center tile.
        assert(db_name[0] == 'G');

        std::string db_copy = db_name;

        // Center column tiles connect to the left side of the center mux.
        if(col <= center.second)
            db_copy[0] = 'L';
        else
            db_copy[0] = 'R';

        curr_global.id = ident(db_copy);
        curr_global.loc.x = center.second;
        curr_global.loc.y = row;
        return curr_global;

    // U/D wires get the nominal position of center row, current column.
    // Both U_/D_ and G_ prefixes are handled here.
    } else if(strategy == GlobalType::UP_DOWN) {
        std::string db_copy = db_name;
        const std::vector<int> & ud_conns_in_col = global_data_machxo2->ud_conns[col];
        auto conn_begin = ud_conns_in_col.begin();
        auto conn_end = ud_conns_in_col.end();
        int conn_no = std::stoi(m.str(1));

        // First check whether the requested global is in the current column.
        // If not, no point in continuing.
        if(std::find(conn_begin, conn_end, conn_no) == conn_end)
            return RoutingId();

        // Special case the center row, which will have both U/D wires.
        if(row == spine_1.row || row == spine_2.row) {
            assert((db_name[0] == 'U') || (db_name[0] == 'D'));
            curr_global.id = ident(db_copy);
            curr_global.loc.x = col;
            curr_global.loc.y = row;
            return curr_global;
        } else {
            // Otherwise choose an U_/D_ wire at nominal position based on
            // the current tile's row.
            // Prefixes only required in the center row.
            assert(db_name[0] == 'G');

            // Center column tiles are considered above the center mux,
            // despite sharing the same tile.
            int spine_row = spine_1.row;
            if(row <= spine_1.row) {
                db_copy[0] = 'U';
            } else {
                if (spine_2.row == -1 || row <= (spine_1.row + spine_1.down)) {
                    db_copy[0] = 'D';
                } else {
                    if(row <= spine_2.row)
                        db_copy[0] = 'U';
                    else
                        db_copy[0] = 'D';
                    spine_row = spine_2.row;
                }
            }
            curr_global.id = ident(db_copy);
            curr_global.loc.x = col;
            curr_global.loc.y = spine_row;
            return curr_global;
        }

    // BRANCH wires get nominal position of the row/col where they connect
    // to U_/D_ routing. We need the global_data_machxo2 struct to figure
    // out this information.
    } else if(strategy == GlobalType::BRANCH) {
        std::vector<int> candidate_cols;

        // At the second-to-last row of the chip, the branch, which spans two
        // columns to the right, will be truncated by the chip's edge.
        // At the last row of the chip, BRANCHES connecting to U/D routing (which
        // which normally span two column to the right) will be truncated by the
        // chip's edge.
        // The remaining two globals should come from BRANCHES from the right.
        // But since we run into the chip's edge, we route them to the current
        // column (and only the current column!) here.
        if(col > 1)
            candidate_cols.push_back(col - 2);
        if(col > 0)
            candidate_cols.push_back(col - 1);
        candidate_cols.push_back(col);
        if(col < max_col)
            candidate_cols.push_back(col + 1);

        for(auto curr_col : candidate_cols) {
            const std::vector<int> & ud_conns_in_col = global_data_machxo2->ud_conns[curr_col];
            auto conn_begin = ud_conns_in_col.begin();
            auto conn_end = ud_conns_in_col.end();
            int conn_no = std::stoi(m.str(1));

            // First check whether the requested global is in the current column.
            // If not, no point in continuing.
            if(std::find(conn_begin, conn_end, conn_no) != conn_end) {
                curr_global.id = ident(db_name);
                curr_global.loc.x = curr_col;
                curr_global.loc.y = row;
                break;
            }
        }

        // One of the candidate columns should have had the correct U/D
        // connection to route to.
        assert(curr_global != RoutingId());
        return curr_global;

    // For OSCH, and DCCs assign nominal position of current requested tile.
    // DCM only exist in center tile but have their routing spread out
    // across tiles.
    } else if(strategy == GlobalType::OTHER) {
        curr_global.id = ident(db_name);
        curr_global.loc.x = col;
        curr_global.loc.y = row;
        return curr_global;
    } else {
        // TODO: Not fuzzed and/or handled yet!
        return RoutingId();
    }
}

RoutingGraph::GlobalType RoutingGraph::get_global_type_from_name(const std::string &db_name, smatch &match) {
    // A RoutingId uniquely describes a net on the chip- using a string
    // identifier (id- converted to int), and a nominal position (loc).
    // Two RoutingIds with the same id and loc represent the same net, so
    // we can use heuristics to connect globals to the rest of the routing
    // graph properly, given the current tile position and the global's
    // identifier.

    // First copy regexes from utils.nets.machxo2, adjusting as necessary for
    // prefixes and regex syntax. Commented-out ones are not ready yet:
    // Globals
    static const std::regex global_entry(R"(G_VPRX(\d){2}00)", std::regex::optimize);
    static const std::regex global_left_right(R"([LR]_HPSX(\d){2}00)", std::regex::optimize);
    static const std::regex global_left_right_g(R"(G_HPSX(\d){2}00)", std::regex::optimize);
    static const std::regex global_up_down(R"([UD]_VPTX(\d){2}00)", std::regex::optimize);
    static const std::regex global_up_down_g(R"(G_VPTX(\d){2}00)", std::regex::optimize);
    static const std::regex global_branch(R"(BRANCH_HPBX(\d){2}00)", std::regex::optimize);

    // High Fanout Secondary Nets
    // static const std::regex hfsn_entry(R"(G_VSRX(\d){2}00)", std::regex::optimize);
    // static const std::regex hfsn_left_right(R"(G_HSSX(\d){2}00)", std::regex::optimize);
    // L2Rs control bidirectional portion of HFSNs!!
    // static const std::regex hfsn_l2r(R"(G_HSSX(\d){2}00_[RL]2[LR])", std::regex::optimize);
    // static const std::regex hfsn_up_down(R"(G_VSTX(\d){2}00)", std::regex::optimize);
    // HSBX(\d){2}00 are fixed connections to HSBX(\d){2}01s.
    // static const std::regex hfsn_branch(R"(G_HSBX(\d){2}0[01])", std::regex::optimize);

    // Center Mux
    // Outputs- entry to DCCs connected to globals (VPRXI -> DCC -> VPRX) *
    static const std::regex center_mux_glb_out(R"(G_VPRXCLKI\d+)", std::regex::optimize);
    // Outputs- connected to ECLKBRIDGEs *
    // static const std::regex center_mux_ebrg_out(R"(G_EBRG(\d){1}CLK(\d){1})", std::regex::optimize);

    // Inputs- CIB routing to HFSNs
    // static const std::regex cib_out_to_hfsn(R"(G_JSNETCIB([TBRL]|MID)(\d){1})", std::regex::optimize);
    // Inputs- CIB routing to globals
    static const std::regex cib_out_to_glb(R"(G_J?PCLKCIB(L[TBRL]Q|MID|VIQ[TBRL])(\d){1})", std::regex::optimize);
    // Inputs- CIB routing to ECLKBRIDGEs
    // static const std::regex cib_out_to_eclk(R"(G_J?ECLKCIB[TBRL](\d){1})", std::regex::optimize);

    // Inputs- Edge clocks dividers
    // static const std::regex eclk_out(R"(G_J?[TBRL]CDIV(X(\d){1}|(\d){2}))", std::regex::optimize);
    // Inputs- PLL
    // static const std::regex pll_out(R"(G_J?[LR]PLLCLK\d+)", std::regex::optimize);
    // Inputs- Clock pads
    // static const std::regex clock_pin(R"(G_J?PCLK[TBLR]\d+)", std::regex::optimize);

    // Part of center-mux but can also be found elsewhere
    // DCCs connected to globals *
    static const std::regex dcc_sig(R"(G_J?(CLK[IO]|CE)(\d){1}[TB]?_DCC)", std::regex::optimize);

    // DCMs- connected to DCCs on globals 6 and 7 *
    static const std::regex dcm_sig(R"(G_J?(CLK(\d){1}_|SEL|DCMOUT)(\d){1}_DCM)", std::regex::optimize);

    // ECLKBRIDGEs- TODO
    // static const std::regex eclkbridge_sig(R"(G_J?(CLK(\d){1}_|SEL|ECSOUT)(\d){1}_ECLKBRIDGECS)", std::regex::optimize);

    // Oscillator output
    static const std::regex osc_clk(R"(G_J?OSC_.*)", std::regex::optimize);

    // Soft Error Detection Clock *
    // static const std::regex sed_clk(R"(G_J?SEDCLKOUT)", std::regex::optimize);

    // PLL/DLL Clocks
    // static const std::regex pll_clk(R"(G_[TB]ECLK\d)", std::regex::optimize);

    // PG/INRD/LVDS
    // static const std::regex pg(R"(G_PG)", std::regex::optimize);
    // static const std::regex inrd(R"(G_INRD)", std::regex::optimize);
    // static const std::regex vds(R"(G_LVDS)", std::regex::optimize);

    // DDR
    // static const std::regex ddrclkpol(R"(G_DDRCLKPOL)", std::regex::optimize);
    // static const std::regex dqsr90(R"(G_DQSR90)", std::regex::optimize);
    // static const std::regex qsw90(R"(G_DQSW90)", std::regex::optimize);

    if(regex_match(db_name, match, global_entry) ||
        regex_match(db_name, match, center_mux_glb_out) ||
        regex_match(db_name, match, cib_out_to_glb) ||
        regex_match(db_name, match, dcm_sig)) {
        return GlobalType::CENTER;
    } else if(regex_match(db_name, match, global_left_right)) {
        return GlobalType::SPINE_LEFT_RIGHT;
    } else if(regex_match(db_name, match, global_left_right_g)) {
        return GlobalType::LEFT_RIGHT;
    } else if(regex_match(db_name, match, global_up_down) ||
        regex_match(db_name, match, global_up_down_g)) {
        return GlobalType::UP_DOWN;
    } else if(regex_match(db_name, match, global_branch)) {
        return GlobalType::BRANCH;
    } else if(regex_match(db_name, match, dcc_sig) ||
        regex_match(db_name, match, osc_clk)) {
        return GlobalType::OTHER;
    } else {
        // TODO: Not fuzzed and/or handled yet!
        return GlobalType::NONE;
    }
}

}