File: ecppll.cpp

package info (click to toggle)
prjtrellis 1.4-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 83,000 kB
  • sloc: cpp: 20,813; python: 16,246; sh: 375; makefile: 262; asm: 80; ansic: 58
file content (528 lines) | stat: -rw-r--r-- 20,398 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
/* I was unable to find good information on how the PLL dividers work
in the ECP5 PLL Design and Usage Guide, so I ran several frequencies
through Lattice's clarity designer, and was surprised with what I
found:
| Input | Output | refclk | feedback | output | fvco |
|    12 |     48 |      1 |        4 |     12 |  576 |
|    12 |     60 |      1 |        5 |     10 |  600 |
|    20 |     30 |      2 |        3 |     20 |  600 |
|    45 |     30 |      3 |        2 |     20 |  600 |
|   100 |    400 |      1 |        4 |      1 |  400 |
|   200 |    400 |      1 |        2 |      2 |  800 |
|    50 |    400 |      1 |        8 |      2 |  800 |
|    70 |     40 |      7 |        4 |     15 |  600 |
|    12 |     36 |      1 |        3 |     18 |  648 |
|    12 |     96 |      1 |        8 |      6 |  576 |
|    90 |     40 |      9 |        4 |     15 |  600 |
|    90 |     50 |      9 |        5 |     13 |  650 |
|    43 |     86 |      1 |        2 |      7 |  602 |

it appears that
f_pfd = f_in/refclk
f_vco = f_pfd * feedback * output
f_out = f_vco / output
*/

#define INPUT_MIN 8.0f
#define INPUT_MAX 400.0f
#define OUTPUT_MIN 10.0f
#define OUTPUT_MAX 400.0f
#define PFD_MIN 3.125f
#define PFD_MAX 400.0f
#define VCO_MIN 400.0f
#define VCO_MAX 800.0f
#include <iostream>
#include <limits>
#include <fstream>
#include <string>
#include <boost/program_options.hpp>
#include "version.hpp"
#include "wasmexcept.hpp"
using namespace std;

enum class pll_mode{
  SIMPLE,
  HIGHRES
};

struct secondary_params{
  bool enabled;
  int div;
  int cphase;
  int fphase;
  string name;

  float freq;
  float phase;
};

struct pll_params{
  pll_mode mode;
  int refclk_div;
  int feedback_div;
  int output_div;
  int primary_cphase;
  string clkin_name;
  string clkout0_name;
  int dynamic;
  int reset, standby;
  int feedback_clkout, internal_feedback, internal_feedback_wake;
  string feedback_name[4], feedback_wname[4];


  float clkin_frequency;

  secondary_params secondary[3];

  float fout;
  float fvco;

  bool xo2;

  pll_params() :mode(pll_mode::SIMPLE) {
    for(int i=0;i<3;i++){
      secondary[i].enabled = false;
      primary_cphase = 9;
    }
  }
};

void calc_pll_params(pll_params &params, float input, float output);
void calc_pll_params_highres(pll_params &params, float input, float output);
void generate_secondary_output(pll_params &params, int channel, string name, float frequency, float phase);
void write_pll_config(const pll_params & params, const string &name, ofstream& file);

int main(int argc, char** argv){
  namespace po = boost::program_options;
  po::options_description options("Allowed options");

  options.add_options()("help,h", "show help");
  options.add_options()("module,n", po::value<string>(), "module name");
  options.add_options()("clkin_name", po::value<string>(), "Input signal name");
  options.add_options()("clkin,i", po::value<float>(), "Input frequency in MHz");
  options.add_options()("clkout0_name", po::value<string>(), "Primary Output(0) signal name");
  options.add_options()("clkout0,o", po::value<float>(), "Primary Output(0) frequency in MHz");
  options.add_options()("clkout1_name", po::value<string>(), "Secondary Output(1) signal name");
  options.add_options()("clkout1", po::value<float>(), "Secondary Output(1) frequency in MHz");
  options.add_options()("phase1", po::value<float>()->default_value(0), "Secondary Output(1) phase in degrees");
  options.add_options()("clkout2_name", po::value<string>(), "Secondary Output(2) signal name");
  options.add_options()("clkout2", po::value<float>(), "Secondary Output(2) frequency in MHz");
  options.add_options()("phase2", po::value<float>()->default_value(0), "Secondary Output(2) phase in degrees");
  options.add_options()("clkout3_name", po::value<string>(), "Secondary Output(3) signal name");
  options.add_options()("clkout3", po::value<float>(), "Secondary Output(3) frequency in MHz");
  options.add_options()("phase3", po::value<float>()->default_value(0), "Secondary Output(3) phase in degrees");
  options.add_options()("file,f", po::value<string>(), "Output to file");
  options.add_options()("highres", "Use secondary PLL output for higher frequency resolution");
  options.add_options()("dynamic", "Use dynamic clock control");
  options.add_options()("reset", "Enable reset input");
  options.add_options()("standby", "Enable standby input");
  options.add_options()("feedback_clkout", po::value<string>(), "Use Nth Output as feedback signal");
  options.add_options()("internal_feedback", "Use internal feedback (instead of external)");
  options.add_options()("internal_feedback_wake", "Wake internal feedback");
  options.add_options()("xo2", "Generate MachXO2/3 PLL");

  po::variables_map vm;
  po::parsed_options parsed = po::command_line_parser(argc, argv).options(options).run();
  po::store(parsed, vm);
  po::notify(vm);

  if(vm.count("help")){
    cerr << "Project Trellis - Open Source Tools for ECP5 FPGAs" << endl;
    cerr << argv[0] << ": ECP5 PLL Configuration Calculator" << endl;
    cerr << "Version " << git_describe_str << endl;
    cerr << endl;
    cerr << "This tool is experimental! Use at your own risk!" << endl;
    cerr << endl;
    cerr << "Copyright (C) 2018-2019 gatecat <gatecat@ds0.me>" << endl;
    cerr << endl;
    cerr << options << endl;
    return vm.count("help") ? 0 : 1;
  }
  if(vm.count("clkin") != 1 || vm.count("clkout0") != 1){
    cerr << "Error: missing input or output frequency!\n";
    return 1;
  }
  float inputf = vm["clkin"].as<float>();
  float outputf = vm["clkout0"].as<float>();
  if(inputf < INPUT_MIN || inputf > INPUT_MAX){
    cerr << "Warning: Input frequency " << inputf << "MHz not in range (" << INPUT_MIN << "MHz, " << INPUT_MAX << "MHz)\n";
  }
  if(outputf < OUTPUT_MIN || outputf > OUTPUT_MAX){
    cerr << "Warning: Output frequency " << outputf << "MHz not in range (" << OUTPUT_MIN << "MHz, " << OUTPUT_MAX << "MHz)\n";
  }

  pll_params params = {};

  string module_name = "pll";
  if(vm.count("module"))
    module_name = vm["module"].as<string>();
  params.clkin_frequency = inputf;

  params.clkin_name = "clkin";
  if(vm.count("clkin_name"))
    params.clkin_name = vm["clkin_name"].as<string>();

  params.clkout0_name = "clkout0";
  if(vm.count("clkout0_name"))
    params.clkout0_name = vm["clkout0_name"].as<string>();

  params.secondary[0].name = "clkout[1]";
  params.secondary[1].name = "clkout[2]";
  params.secondary[2].name = "clkout[3]";

  if(vm.count("highres"))
  {
    if(vm.count("clkout1") > 0)
    {
      cerr << "Cannot specify secondary frequency in highres mode\n";
    }
    params.secondary[0].name = "clkout1";
    if(vm.count("clkout1_name"))
      params.secondary[0].name = vm["clkout1_name"].as<string>();
    calc_pll_params_highres(params, inputf, outputf);
  }
  else
  {
    calc_pll_params(params, inputf, outputf);
    if(vm.count("clkout1"))
    {
      string clkout1_name = "clkout1";
      if(vm.count("clkout1_name"))
        clkout1_name = vm["clkout1_name"].as<string>();
      generate_secondary_output(params, 0, clkout1_name, vm["clkout1"].as<float>(), vm["phase1"].as<float>());
    }
    if(vm.count("clkout2"))
    {
      string clkout2_name = "clkout2";
      if(vm.count("clkout2_name"))
        clkout2_name = vm["clkout2_name"].as<string>();
      generate_secondary_output(params, 1, clkout2_name, vm["clkout2"].as<float>(), vm["phase2"].as<float>());
    }
    if(vm.count("clkout3"))
    {
      string clkout3_name = "clkout3";
      if(vm.count("clkout3_name"))
        clkout3_name = vm["clkout3_name"].as<string>();
      generate_secondary_output(params, 2, clkout3_name, vm["clkout3"].as<float>(), vm["phase3"].as<float>());
    }
  }

  params.xo2 = false;
  if(vm.count("xo2"))
    params.xo2 = true;
  params.dynamic = 0;
  if(vm.count("dynamic"))
    params.dynamic = 1;
  params.reset = 0;
  if(vm.count("reset"))
    params.reset = 1;
  params.standby = 0;
  if(vm.count("standby"))
    params.standby = 1;
  params.feedback_name[0] = "OP";
  params.feedback_name[1] = "OS";
  params.feedback_name[2] = "OS2";
  params.feedback_name[3] = "OS3";
  params.feedback_wname[0] = params.clkout0_name;
  params.feedback_wname[1] = params.secondary[0].name;
  params.feedback_wname[2] = params.secondary[1].name;
  params.feedback_wname[3] = params.secondary[2].name;
  params.feedback_clkout = 0;
  if(vm.count("feedback_clkout"))
  {
    if(vm["feedback_clkout"].as<string>() == "0")
      params.feedback_clkout = 0;
    if(vm["feedback_clkout"].as<string>() == "1")
      params.feedback_clkout = 1;
    if(vm["feedback_clkout"].as<string>() == "2")
      params.feedback_clkout = 2;
    if(vm["feedback_clkout"].as<string>() == "3")
      params.feedback_clkout = 3;
  }
  params.internal_feedback = 0;
  if(vm.count("internal_feedback"))
    params.internal_feedback = 1;
  params.internal_feedback_wake = 0;
  if(vm.count("internal_feedback_wake"))
    params.internal_feedback_wake = 1;

  cout << "Pll parameters:" << endl;
  cout << "Refclk divisor: " << params.refclk_div << endl;
  cout << "Feedback divisor: " << params.feedback_div << endl;
  cout << "clkout0 divisor: " << params.output_div << "" << endl;
  cout << "clkout0 frequency: " << params.fout << " MHz" << endl;
  if(params.secondary[0].enabled){
    cout << "clkout1 divisor: " << params.secondary[0].div << endl;
    cout << "clkout1 frequency: " << params.secondary[0].freq << " MHz" << endl;
    cout << "clkout1 phase shift: " << params.secondary[0].phase << " degrees" << endl;
  }
  if(params.secondary[1].enabled){
    cout << "clkout2 divisor: " << params.secondary[1].div << endl;
    cout << "clkout2 frequency: " << params.secondary[1].freq << " MHz" << endl;
    cout << "clkout2 phase shift: " << params.secondary[1].phase << " degrees" << endl;
  }
  if(params.secondary[2].enabled){
    cout << "clkout3 divisor: " << params.secondary[2].div << endl;
    cout << "clkout3 frequency: " << params.secondary[2].freq << " MHz" << endl;
    cout << "clkout3 phase shift: " << params.secondary[2].phase << " degrees" << endl;
  }
  cout << "VCO frequency: " << params.fvco << endl;
  if(vm.count("file")){
    ofstream f;
    f.open(vm["file"].as<string>().c_str());
    write_pll_config(params, module_name, f);
    f.close();
  }
}

void calc_pll_params(pll_params &params, float input, float output){
  float error = std::numeric_limits<float>::max();
  for(int input_div=1;input_div <= 128; input_div++){

    float fpfd = input / (float)input_div;
    if(fpfd < PFD_MIN || fpfd > PFD_MAX)
      continue;
    for(int feedback_div=1;feedback_div <= 80; feedback_div++){
      for(int output_div=1;output_div <= 128; output_div++){
	float fvco = fpfd * (float)feedback_div * (float) output_div;

	if(fvco < VCO_MIN || fvco > VCO_MAX)
	  continue;

	float fout = fvco / (float) output_div;
	if(fabsf(fout - output) < error ||
	   (fabsf(fout-output) == error && fabsf(fvco - 600) < fabsf(params.fvco - 600))){
	  error = fabsf(fout-output);
	  params.refclk_div = input_div;
	  params.feedback_div = feedback_div;
	  params.output_div = output_div;
	  params.fout = fout;
	  params.fvco = fvco;
	  // shift the primary by 180 degrees. Lattice seems to do this
	  float ns_phase = 1/(fout * 1e6) * 0.5;
	  params.primary_cphase = ns_phase * (fvco * 1e6);
	}
      }
    }
  }
}

void calc_pll_params_highres(pll_params &params, float input, float output){
  float error = std::numeric_limits<float>::max();
  for(int input_div=1;input_div <= 128; input_div++){

    float fpfd = input / (float)input_div;
    if(fpfd < PFD_MIN || fpfd > PFD_MAX)
      continue;
    for(int feedback_div=1;feedback_div <= 80; feedback_div++){
      for(int output_div=1;output_div <= 128; output_div++){
	float fvco = fpfd * (float)feedback_div * (float) output_div;

	if(fvco < VCO_MIN || fvco > VCO_MAX)
	  continue;
	float ffeedback = fvco / (float) output_div;
	if(ffeedback < OUTPUT_MIN || ffeedback > OUTPUT_MAX)
	  continue;
	for(int secondary_div = 1; secondary_div <= 128; secondary_div++){
	  float fout = fvco / (float) secondary_div;
	  if(fabsf(fout - output) < error ||
	     (fabsf(fout-output) == error && fabsf(fvco - 600) < fabsf(params.fvco - 600))){
	    error = fabsf(fout-output);
	    params.mode = pll_mode::HIGHRES;
	    params.refclk_div = input_div;
	    params.feedback_div = feedback_div;
	    params.output_div = output_div;
	    params.secondary[0].div = secondary_div;
	    params.secondary[0].enabled = true;
	    params.secondary[0].freq = fout;
	    params.fout = fout;
	    params.fvco = fvco;
	  }
	}
      }
    }
  }
}


void generate_secondary_output(pll_params &params, int channel, string name, float frequency, float phase){
  int div = params.fvco/frequency;
  float freq = params.fvco/div;
  cout << "sdiv " << div << endl;

  float ns_shift = 1/(freq * 1e6) * phase /  360.0;
  float phase_count = ns_shift * (params.fvco * 1e6);
  int cphase = (int) phase_count;
  int fphase = (int) ((phase_count - cphase) * 8);

  float ns_actual = 1/(params.fvco * 1e6) * (cphase + fphase/8.0);
  float phase_shift = 360 * ns_actual/ (1/(freq * 1e6));

  params.secondary[channel].enabled = true;
  params.secondary[channel].div = div;
  params.secondary[channel].freq = freq;
  params.secondary[channel].phase = phase_shift;
  params.secondary[channel].cphase = cphase + params.primary_cphase;
  params.secondary[channel].fphase = fphase;
  params.secondary[channel].name = name;
}

void write_pll_config(const pll_params & params, const string &name, ofstream& file)
{
  file << "// diamond 3.7 accepts this PLL\n";
  file << "// diamond 3.8-3.9 is untested\n";
  file << "// diamond 3.10 or higher is likely to abort with error about unable to use feedback signal\n";
  file << "// cause of this could be from wrong CPHASE/FPHASE parameters\n";
  file << "module " << name << "\n(\n";
  if(params.reset)
    file << "    input reset, // 0:inactive, 1:reset\n";
  if(params.standby)
    file << "    input standby, // 0:inactive, 1:standby\n";
  if(params.dynamic)
  {
    file << "    input [1:0] phasesel, // clkout[] index affected by dynamic phase shift (except clkfb), 5 ns min before apply\n";
    file << "    input phasedir, // 0:delayed (lagging), 1:advence (leading), 5 ns min before apply\n";
    file << "    input phasestep, // 45 deg step, high for 5 ns min, falling edge = apply\n";
    file << "    input phaseloadreg, // high for 10 ns min, falling edge = apply\n";
  }
  file << "    input " << params.clkin_name << ", // " << params.clkin_frequency << " MHz, 0 deg\n";
  file << "    output " << params.clkout0_name << ", // " << params.fout << " MHz, 0 deg\n";

  for(int i=0;i<3;i++){
    if(!(i==0 && params.mode == pll_mode::HIGHRES) && params.secondary[i].enabled){
      file << "    output " << params.secondary[i].name << ", // " << params.secondary[i].freq << " MHz, " << params.secondary[i].phase << " deg\n";
    }
  }

  file << "    output locked\n";
  file << ");\n";
  if(params.internal_feedback || params.mode == pll_mode::HIGHRES)
    file << "wire clkfb;\n";
  if(params.dynamic)
  {
    file << "wire [1:0] phasesel_hw;\n";
    file << "assign phasesel_hw = phasesel - 1;\n";
  }
  file << "(* FREQUENCY_PIN_CLKI=\"" << params.clkin_frequency << "\" *)\n";

  if(params.mode != pll_mode::HIGHRES)
    file << "(* FREQUENCY_PIN_CLKOP=\"" << params.fout << "\" *)\n";

  if(params.secondary[0].enabled)
    file << "(* FREQUENCY_PIN_CLKOS=\"" << params.secondary[0].freq << "\" *)\n";
  if(params.secondary[1].enabled)
    file << "(* FREQUENCY_PIN_CLKOS2=\"" << params.secondary[1].freq << "\" *)\n";
  if(params.secondary[2].enabled)
    file << "(* FREQUENCY_PIN_CLKOS3=\"" << params.secondary[2].freq << "\" *)\n";
  file << "(* ICP_CURRENT=\"12\" *) (* LPF_RESISTOR=\"8\" *) (* MFG_ENABLE_FILTEROPAMP=\"1\" *) (* MFG_GMCREF_SEL=\"2\" *)\n";
  file << (params.xo2 ? "EHXPLLJ" :"EHXPLLL")  << " #(\n";
  file << "        .PLLRST_ENA(\"" << (params.reset ? "EN" :"DIS") << "ABLED\"),\n";
  file << "        .INTFB_WAKE(\"" << (params.internal_feedback_wake ? "EN" :"DIS") << "ABLED\"),\n";
  file << "        .STDBY_ENABLE(\"" << (params.standby ? "EN" :"DIS") << "ABLED\"),\n";
  file << "        .DPHASE_SOURCE(\"" << (params.dynamic ? "EN" :"DIS") << "ABLED\"),\n";
  if(params.xo2) {
    file << "        .OUTDIVIDER_MUXA2(\"DIVA\"),\n";
    file << "        .OUTDIVIDER_MUXB2(\"DIVB\"),\n";
    file << "        .OUTDIVIDER_MUXC2(\"DIVC\"),\n";
    file << "        .OUTDIVIDER_MUXD2(\"DIVD\"),\n";
  } else {
    file << "        .OUTDIVIDER_MUXA(\"DIVA\"),\n";
    file << "        .OUTDIVIDER_MUXB(\"DIVB\"),\n";
    file << "        .OUTDIVIDER_MUXC(\"DIVC\"),\n";
    file << "        .OUTDIVIDER_MUXD(\"DIVD\"),\n";
  }
  file << "        .CLKI_DIV(" << params.refclk_div <<"),\n";
  file << "        .CLKOP_ENABLE(\"ENABLED\"),\n";
  file << "        .CLKOP_DIV(" << params.output_div << "),\n";
  file << "        .CLKOP_CPHASE(" << params.primary_cphase << "),\n";
  file << "        .CLKOP_FPHASE(0),\n";
  if(params.secondary[0].enabled){
    file << "        .CLKOS_ENABLE(\"ENABLED\"),\n";
    file << "        .CLKOS_DIV(" << params.secondary[0].div << "),\n";
    file << "        .CLKOS_CPHASE(" << params.secondary[0].cphase << "),\n";
    file << "        .CLKOS_FPHASE(" << params.secondary[0].fphase << "),\n";
  }
  if(params.secondary[1].enabled){
    file << "        .CLKOS2_ENABLE(\"ENABLED\"),\n";
    file << "        .CLKOS2_DIV(" << params.secondary[1].div << "),\n";
    file << "        .CLKOS2_CPHASE(" << params.secondary[1].cphase << "),\n";
    file << "        .CLKOS2_FPHASE(" << params.secondary[1].fphase << "),\n";
  }
  if(params.secondary[2].enabled){
    file << "        .CLKOS3_ENABLE(\"ENABLED\"),\n";
    file << "        .CLKOS3_DIV(" << params.secondary[2].div << "),\n";
    file << "        .CLKOS3_CPHASE(" << params.secondary[2].cphase << "),\n";
    file << "        .CLKOS3_FPHASE(" << params.secondary[2].fphase << "),\n";
  }
  if(params.internal_feedback)
    file << "        .FEEDBK_PATH(\"INT_" <<  params.feedback_name[params.feedback_clkout] << "\"),\n";
  else
    file << "        .FEEDBK_PATH(\"CLK" <<  params.feedback_name[params.feedback_clkout] << "\"),\n";
  file << "        .CLKFB_DIV(" << params.feedback_div << ")\n";
  file << "    ) pll_i (\n";
  if(params.reset)
    file << "        .RST(reset),\n";
  else
    file << "        .RST(1'b0),\n";
  if(params.standby)
    file << "        .STDBY(standby),\n";
  else
    file << "        .STDBY(1'b0),\n";
  file << "        .CLKI(" << params.clkin_name << "),\n";

  if(params.mode == pll_mode::HIGHRES)
    file << "        .CLKOP(clkfb),\n";
  else
    file << "        .CLKOP(" << params.clkout0_name << "),\n";

  if(params.secondary[0].enabled){
    if(params.mode == pll_mode::HIGHRES)
      file << "        .CLKOS(" << params.clkout0_name << "),\n";
    else
      file << "        .CLKOS(" << params.secondary[0].name << "),\n";
  }
  if(params.secondary[1].enabled){
    file << "        .CLKOS2(" << params.secondary[1].name << "),\n";
  }
  if(params.secondary[2].enabled){
    file << "        .CLKOS3(" << params.secondary[2].name << "),\n";
  }

  if(params.internal_feedback || params.mode == pll_mode::HIGHRES)
    file << "        .CLKFB(clkfb),\n";
  else
    file << "        .CLKFB(" <<  params.feedback_wname[params.feedback_clkout] << "),\n";

  if(params.internal_feedback)
    file << "        .CLKINTFB(clkfb),\n";
  else
    file << "        .CLKINTFB(),\n";

  if(params.dynamic)
  {
    file << "        .PHASESEL0(phasesel_hw[0]),\n";
    file << "        .PHASESEL1(phasesel_hw[1]),\n";
    file << "        .PHASEDIR(phasedir),\n";
    file << "        .PHASESTEP(phasestep),\n";
    if (params.xo2)
      file << "        .LOADREG(phaseloadreg),\n";
    else 
      file << "        .PHASELOADREG(phaseloadreg),\n";
  }
  else
  {
    file << "        .PHASESEL0(1'b0),\n";
    file << "        .PHASESEL1(1'b0),\n";
    file << "        .PHASEDIR(1'b1),\n";
    file << "        .PHASESTEP(1'b1),\n";
    if (params.xo2)
      file << "        .LOADREG(1'b1),\n";
    else
      file << "        .PHASELOADREG(1'b1),\n";
  }
  file << "        .PLLWAKESYNC(1'b0),\n";
  file << "        .ENCLKOP(1'b0),\n";
  file << "        .LOCK(locked)\n";
  file << "	);\n";
  file << "endmodule\n";
}