File: mmscore.R

package info (click to toggle)
probabel 0.4.3-2
  • links: PTS, VCS
  • area: main
  • in suites: jessie, jessie-kfreebsd
  • size: 12,552 kB
  • ctags: 1,269
  • sloc: cpp: 6,571; ansic: 2,270; sh: 1,826; makefile: 449; perl: 351
file content (172 lines) | stat: -rw-r--r-- 5,057 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#=====================================================================================
#
#       Filename:  mmscore.R
#
#    Description:  Example how to get inverse of the
#                  variance-covariance matrix from GenABEL and right
#                  phenotype table to use it in ProbABEL.
#
#        Version:  1.0
#        Created:  26_Jan-2009
#       Revision:  2010.04.18 (YA)
#
#
#         Author:  Maksim V. Struchalin
#        Company:  ErasmusMC, Epidemiology & Biostatistics Department, The Netherlands.
#          Email:  m.struchalin@@erasmusmc.nl
#
#=====================================================================================

## You have to have the GenABEL package installed on your computer
library(GenABEL)

## Load example data. Use your data here instead of example. All
## phenotypes you need must be there
data(ge03d2.clean)
data <- ge03d2.clean

## Choose snps which we are going to use as example. Just change the
## snps array if you'd like to use other snps (or use all)
snps <- c("rs70099", "rs735579", "rs9088604", "rs1413801", "rs4911638")

data <- data[!is.na(data@phdata$height),]
data <- data[!is.na(data@phdata$sex),]
data <- data[!is.na(data@phdata$age),]


## Take only 500 people for this exercise
data <- data[1:500,]

## Calculate the kinship matrix
gkin <- ibs(data[, autosomal(data)], w="freq")

## Estimate the polygenic model
h2ht <- polygenic(height~sex+age,
                  data=data,
                  kin=gkin,
                  steptol=1.e-9,
                  gradtol=1.e-9)

## Get the inverse of the variance-covariance matrix
InvSigma <- h2ht$InvSigma

## Get the phenotypes for analysis.
pheno <- data@phdata[,c("id", "height", "sex","age")]


#get rid of na
#pheno_no_na <- na.omit(pheno)

#give row names to inverse of the variance-covariance matrix
#rownames(InvSigma) <- pheno_no_na$id

## Save the inverse variance-covariance matrix it to a file. We'll use
## it in ProbABEL for mmscore
write.table(InvSigma, file="mmscore_InvSigma_aj.sex.age.dat",
            row.names=TRUE,
            col.names=FALSE,
            quote=FALSE)

## Get residuals from analysis, based on covariate effects only.
height_residuals <- h2ht$residualY

## Create a table with two columns: id and trait
pheno_residuals <- data.frame(id=pheno$id,
                              height_residuals=height_residuals)

## Add row names
rownames(pheno_residuals) <- as.character(pheno_residuals$id)

## Save it into the file. We will use this file in ProbABEL
write.table(pheno_residuals,
            file="mmscore_pheno.PHE",
            row.names=FALSE,
            quote=FALSE)

## Now we have two files:
## 1) inverse of the variance-covariance matrix
## 2) residuals of the phenotype, which will be the new phenotype that
## ProbABEL will analyse.

## Mow, go to ProbABEL and start analysis





##____________________________________________________
## The following part is for historic purposes only. It is not
## necessary for using the --mmscore option of ProbABEL's palinear.

## Create test file with genotypes

data_cut   <- data[, snps]
gen_table  <- as.numeric(data_cut)
prob_table <- matrix()

#Replace NA by mean for each snp. NA is forbiden in genotypes in ProbABEL input (!).
#for(snpnum in 1:dim(gen_table)[2])
#	{
#	mean <- mean(gen_table[,snpnum], na.rm=T)
#	gen_table[is.na(gen_table[,snpnum]),snpnum]	<- mean
#	}


gen_table_df        <- data.frame(gen_table)
gen_table_df$MLDOSE <- gen_table_df[, 1]
gen_table_df[,1]    <- "MLDOSE"
colnam <- colnames(gen_table_df)

#colnam[-c(1:length(colnam)-1)] <- colnam[1]
#colnam[1] <- "MLDOSE"

colnam[length(colnam)] <- colnam[1]
colnam[1]              <- "MLDOSE"
colnames(gen_table_df) <- colnam


rownames <- rownames(gen_table_df)
rownames <- paste("1->", rownames, sep="")
rownames(gen_table_df) <- rownames

write.table(file="mmscore_gen.mldose",
            gen_table_df,
            row.names=TRUE,
            col.names=FALSE,
            quote=FALSE,
            na="NaN")

mlinfo <- data.frame(SNP=colnam[2:length(colnam)])
mlinfo$Al1 <- "A"
mlinfo$Al2 <- "B"
mlinfo$Freq1 <- 0.5847
mlinfo$MAF <- 0.5847
mlinfo$Quality <- 0.5847
mlinfo$Rsq <- 0.5847

write.table(mlinfo, "mmscore_gen.mlinfo", row.names=FALSE, quote=FALSE)

## arrange probability-file
prob_table <- matrix(NA,
                     ncol=(dim(gen_table_df)[2]-1) * 2,
                     nrow=dim(gen_table_df)[1])
j <- 1
for (i in (1:(dim(gen_table_df)[2]-1))) {
    prob_table[,j] <- rep(0, dim(prob_table)[1])
    prob_table[gen_table_df[,i+1]==2, j] <- 1
    prob_table[is.na(gen_table_df[, i+1]), j] <- NA
    j <- j + 1
    prob_table[, j] <- rep(0,dim(prob_table)[1])
    prob_table[gen_table_df[, i+1]==1, j] <- 1
    prob_table[is.na(gen_table_df[, i+1]),j] <- NA
    j <- j + 1
}
prob_table_df <- data.frame(MLPROB="MLPROB", prob_table)
rownames(prob_table_df) <- rownames(gen_table_df)

write.table(file="mmscore_gen.mlprob",
            prob_table_df,
            row.names=TRUE,
            col.names=FILE,
            quote=FILE,
            na="NaN")