File: PostProbs.cc

package info (click to toggle)
probalign 1.4-10
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 368 kB
  • sloc: cpp: 4,964; makefile: 27; sh: 12
file content (951 lines) | stat: -rwxr-xr-x 19,962 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
#include "SafeVector.h"
#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <stdio.h>
#include <ctype.h>
#include <assert.h>
#define  TRACE 0		// 0: NOTRACE 1: TRACE

//proba like settings
#define  endgaps 1		// 1: engap penaties enabled 0: disabled
#define  PART_FULL_MEMORY 0	//0: LOW MEM OPTION
#define  REVPART_FULL_MEMORY 0	//0: LOW MEM OPTION
using namespace std;


///////////////////////////////////////////////////////////////////////////////////////////////////
//
//  stochastic alignment modules  : PostProbs.cc
//
//  Version : Nov  2010 
//  ---------------------------
//
//  Updates:
//      scoring matrix module relocated, replaced by static matrices
//      Low memory integration of posterior probability module
//               and reverse partition function implemented
//
//      Satish Chikkagoudar, Dept of CS, NJIT 2005-06
////////////////////////////////////////////////////////////////////////////////////////////////////////////

typedef struct {
    char input[30];
    int matrix;
    int N;
    float T;
    float beta;
    char opt;			//can be 'P' or 'M'
    float gapopen;
    float gapext;
} argument_decl;


typedef struct sequence {
    char *title;
    char *text;
    int length;
} fasta;



typedef struct alignment {
    char *title;
    char *text;
    int length;
} align;

fasta sequences[2];

char proteins[20];
int dna[4];
int prob_flag;
float termgapopen, termgapextend;

float *hydro_seq1, *hydro_seq2;


////////////////////////////////////////////////////////
//externs related to scoring matrix and input arguments
///////////////////////////////////////////////////////////
extern float g_gap_open1, g_gap_open2, g_gap_ext1, g_gap_ext2;
extern char aminos[26], matrixtype[20], bases[26];

extern float sub_matrix[26][26];
extern float scorez_matrix[26][26];
extern int subst_index[26];


extern float TEMPERATURE;
extern int MATRIXTYPE;

extern float GAPOPEN;
extern float GAPEXT;
extern argument_decl argument;

//////////////////////////////////////////////////////////
//rest of the structures
//////////////////////////////////////////////////////////

int number_of_sequences = 0;
int monomers = 0;
float beta_ln;
int DNA_flag = 0;		//input is (0:protein 1: DNA)



//////////////////////////////////////////////////////////////////////////////
//calculates reverse partition function values based on z matrices
//and also simulaneously calculates the propability of each basepair
//or aminoacid residue pair i,j
//////////////////////////////////////////////////////////////////////////////

VF *revers_partf(long double **Zfm, float d, float e, float beta)
{
    // printf("revpart\n");
    //rest of the declarations

    int i, j;
    long double **Zm = NULL;
    long double **Ze = NULL;
    long double **Zf = NULL;
    int len0, len1;
    float probability;
    long double tempvar;

    float open0, extend0, open1, extend1;

    open0 = open1 = d;
    extend0 = extend1 = e;

  const long double beta_d = exp(beta * d); 
  const long double beta_e = exp(beta * e);
   
    long double beta_open0 = exp(beta * open0);
    long double beta_open1 = exp(beta * open1);
    long double beta_extend0 = exp(beta * extend0);
    long double beta_extend1 = exp(beta * extend1);

    int Si, Tj;
    float endgapopen, endgapextend;
    FILE *fo;

   //Init lengths of sequences
    len0 = strlen(sequences[0].text);
    len1 = strlen(sequences[1].text);

    //Safe vector declared
    VF *posteriorPtr = new VF((len0 + 1) * (len1 + 1));
    VF & posterior = *posteriorPtr;
    VF::iterator ptr = posterior.begin();

    if (TRACE)			//open the trace file
	fo = fopen("revpartdump", "a");

    //default:
    endgapopen = termgapopen;
    endgapextend = termgapextend;

  const  long double beta_endgapopen = exp(beta * endgapopen);
  const  long double beta_endgapextend = exp(beta * endgapextend);

    //instantiate the z matrix
    if (REVPART_FULL_MEMORY)
    {

	Ze = new long double *[sequences[1].length + 1];
	Zf = new long double *[sequences[1].length + 1];
	Zm = new long double *[sequences[1].length + 1];


	if (TRACE)
	    printf("\n\n %e %e\n", d, e);

	//DYNAMICALLY GROW 2D Zm Zf Ze MARICES (long double)
	for (i = 0; i <= sequences[1].length; i++)
	{
	    Ze[i] = new long double[sequences[0].length + 1];
	    Zf[i] = new long double[sequences[0].length + 1];
	    Zm[i] = new long double[sequences[0].length + 1];
	}
    }
    else
    {


	Zm = new long double *[2];
	Ze = new long double *[2];
	Zf = new long double *[2];
	for (i = 0; i <= 1; i++)
	{
	    Zm[i] = new long double[sequences[0].length + 1];
	    Ze[i] = new long double[sequences[0].length + 1];
	    Zf[i] = new long double[sequences[0].length + 1];
	}
      
    }

    if (TRACE)
    {
	printf("in rev partf---");
	printf("\n\n");
    }

    if (REVPART_FULL_MEMORY)
    {
	for (i = 0; i <= len1; i++)
	    for (j = 0; j <= len0; j++)
	    {
		Zm[i][j] = 0.0;
		Zf[i][j] = 0.0;
		Ze[i][j] = 0.0;
	    }
    }
    else
    {


	for (j = 0; j <= len0; j++)
	{
	    Zm[0][j] = 0;
	    Zf[0][j] = 0;
	    Ze[0][j] = 0;
	    Zf[1][j] = 0;
	    Ze[1][j] = 0;
	    Zm[1][j] = 0;
	}
    }



    //fill the probability matrix with 0s
    for (i = 0; i <= len1; i++)
	for (j = 0; j <= len0; j++)
	   ptr[j * (len1 + 1) + i] = 0;


    if (endgaps == 0)
    {
	Zm[len1][len0] = 1;
	Ze[len1][len0] = Zf[len1][len0] = 0;
	Zf[len1 - 1][len0] = Zm[len1][len0] * beta_d;
	Ze[len1][len0 - 1] = Zm[len1][len0] * beta_d;

	//>=2ND ROW INIT
	if (REVPART_FULL_MEMORY)
	{
	    for (i = len1 - 2; i >= 0; i--)
	    {
		Zf[i][len0] = Zf[i + 1][len0] * beta_e;
	    }
	}

	//>=2ND COL INIT
	if (REVPART_FULL_MEMORY)
	{
	    for (j = len0 - 2; j >= 0; j--)
	    {
		Ze[len1][j] = Ze[len1][j + 1] * beta_e;
	    }
	}
	else
	{
	    for (j = len0 - 2; j >= 0; j--)
	    {
		Ze[0][j] = Ze[0][j + 1] * beta_e;
	    }
	}
    }
    else
    {


	if (REVPART_FULL_MEMORY)
	{


	    Zm[len1][len0] = 1;
	    Ze[len1][len0] = Zf[len1][len0] = 0;
	    Zf[len1 - 1][len0] = Zm[len1][len0] * beta_endgapopen;
	    Ze[len1][len0 - 1] = Zm[len1][len0] * beta_endgapopen;

	    //>=2ND ROW INIT
	    for (i = len1 - 2; i >= 0; i--)
	    {
		Zf[i][len0] = Zf[i + 1][len0] * beta_endgapextend;
	    }

	    //M Iy= d+j*e

	    //>=2ND COL INIT
	    for (j = len0 - 2; j >= 0; j--)
	    {
		Ze[len1][j] = Ze[len1][j + 1] * beta_endgapextend;
	    }

	}
	else
	{
	    //in Zm
	    //let:
	    //  Zm(0) be the current row being filled/computed
	    //  Zm(1) be the previous row

	    Zm[1][len0] = 1;
	    Ze[0][len0] = Zf[0][len0] = 0;
	    Zf[1][len0] = Zm[1][len0] * beta_endgapopen;
	    Ze[0][len0 - 1] = Zm[1][len0] * beta_endgapopen;

	    //>=2ND COL INIT
	    for (j = len0 - 2; j >= 0; j--)
	    {
		Ze[0][j] = Ze[0][j + 1] * beta_endgapextend;
	    }

	}			//END ELSE

    }				//END FULL MEMORY and GAP enablement IF STATEMENT


    long double zz = 0;
    long double beta_scorez;

    for (i = len1 - 1; i >= 0; i--)
    {

	for (j = len0 - 1; j >= 0; j--)
	{
	    Si = subst_index[sequences[1].text[i] - 'A'];
	    Tj = subst_index[sequences[0].text[j] - 'A'];
//	    scorez = sub_matrix[Si][Tj];
            beta_scorez = scorez_matrix[Si][Tj];


	    //endgaps modification aug 10
//	    float open0, extend0, open1, extend1;

//	    open0 = open1 = d;
//	    extend0 = extend1 = e;
	    beta_open0 = beta_d;
   	    beta_extend0 = beta_e;
	    beta_open1 = beta_d;
   	    beta_extend1 = beta_e;

	    if (endgaps == 1)
	    {

		//check to see if one of the 2 sequences or both reach the end

		if (i == 0)
		{
//		    open0 = endgapopen;
//		    extend0 = endgapextend;
		    beta_open0 = beta_endgapopen;
		    beta_extend0 = beta_endgapextend;		
		}

		if (j == 0)
		{
//		    open1 = endgapopen;
//		    extend1 = endgapextend;
		    beta_open1 = beta_endgapopen;
		    beta_extend1 = beta_endgapextend;		
		}

	    }

	    if (REVPART_FULL_MEMORY)
	    {
		//z computation

             	Ze[i][j] =
		    Zm[i][j + 1] * beta_open0 + Ze[i][j +
							     1] *
		    beta_extend0;
		Zf[i][j] =
		    Zm[i + 1][j] * beta_open1 + Zf[i +
							  1][j] *
		    beta_extend1;
		Zm[i][j] =
		    (Zm[i + 1][j + 1] + Zf[i + 1][j + 1] +
		     Ze[i + 1][j + 1]) * beta_scorez;
		zz = Zm[i][j] + Zf[i][j] + Ze[i][j];

	    }
	    else
	    {

		//2 ROW zE zF ALGORITHM GOES...:
		//Ze[1][j] =Zm[i][j + 1] * exp(beta * open0) + Ze[1][j + 1] *exp(beta * extend0);
		//Zf[1][j] = Zm[i + 1][j] * exp(beta * open1) + Zf[0][j] * exp(beta * extend1);
		//Zm[i][j] = (Zm[i + 1][j + 1] + Zf[0][j + 1] + Ze[0][j + 1]) * exp(beta * scorez);
		//zz = Zm[0][j] + Zf[1][j] + Ze[1][j];

		//lowmem code for merging probability calculating module
		//Here we make use of Zm as a 2 row matrix

		Zf[1][j] =
		    Zm[1][j] * beta_open1 +
		    Zf[0][j] * beta_extend1;
		Ze[1][j] =
		    Zm[0][j + 1] * beta_open0 + Ze[1][j + 1] * beta_extend0;

		Zm[0][j] = (Zm[1][j + 1] + Zf[0][j + 1] + Ze[0][j + 1]) * beta_scorez;

		tempvar = Zfm[i + 1][j + 1] * Zm[0][j];
		//divide P(i,j) i.e. pairwise probability by denominator
		tempvar /= (beta_scorez * Zfm[0][0]);
		probability = (float) tempvar;

		//store only noticable probabilities
                //Usman Dec 1st 2010: Not doing the above anymore. Store all probabilities.
		{
		    //algorithm goes...
		    //validprob[i + 1][j + 1] = probability;
		    ptr[(j + 1) * (len1 + 1) + (i + 1)] = probability;
		}
		//lowmem code ends here


	    }


	}			//end of for


	if (REVPART_FULL_MEMORY == 0)
	{
	    for (int t = 0; t <= sequences[0].length; t++)
	    {
		Ze[0][t] = Ze[1][t];
		Ze[1][t] = 0;

		Zf[0][t] = Zf[1][t];
		Zf[1][t] = 0;

		Zm[1][t] = Zm[0][t];
		Zm[0][t] = 0;

	    }
	    Zf[0][len0] = 1;

	}


    }				//end of for

    if(TRACE)
    {
	printf("\n\nrM:....\n\n");
	if (REVPART_FULL_MEMORY)
	{
	    for (i = 0; i <= len1; i++)
	    {
		for (j = 0; j <= len0; j++)
		    printf("%.2Le ", Zm[i][j]);
		printf("\n");
	    }

	    printf("\n\nrE:....\n\n");
	    for (i = 0; i <= len1; i++)
	    {
		for (j = 0; j <= len0; j++)
		    printf("%.2Le ", Ze[i][j]);
		printf("\n");

	    }

	    printf("\n\nrF:....\n\n");
	    for (i = 0; i <= len1; i++)
	    {
		for (j = 0; j <= len0; j++)
		    printf("%.2Le ", Zf[i][j]);
		printf("\n");

	    }

	}

    }


    if (TRACE)
    {
	fprintf(fo, "\n");
	fclose(fo);
    }


    //delete unused memory

    if (REVPART_FULL_MEMORY)
    {
	for (i = 0; i <= len1; i++)
	{
	    delete(Zm[i]);
	    delete(Zf[i]);
	    delete(Ze[i]);
	}
    }
    else
    {
	delete(Zf[0]);
	delete(Ze[0]);
	delete(Zm[0]);

	delete(Zm[1]);
	delete(Zf[1]);
	delete(Ze[1]);
    }

    for (i = 0; i <= len1; i++)
    {
        delete(Zfm[i]);
    }
   if (Zf != NULL)
	delete(Zf);

    if (Ze != NULL)
	delete(Ze);


    if (Zm != NULL)
	delete(Zm);


    if (Zfm != NULL)
	delete(Zfm);
        
    posterior[0] = 0;
    return (posteriorPtr);

}


//////////////////////////////////////////////////////////////
//forward partition function
/////////////////////////////////////////////////////////////

long double **partf(float d, float e, float beta)
{

    //printf("partf\n");
    int i, j, len1, len0;
    long double **Zm = NULL, **Zf = NULL, **Ze = NULL, zz = 0;
    float endgapopen, endgapextend;

    //default:
    endgapopen = termgapopen;
    endgapextend = termgapextend;

   float open0, extend0, open1, extend1;

    open0 = open1 = d;
    extend0 = extend1 = e;

    const long double beta_d = exp(beta * d);
    const long double beta_e = exp(beta * e);

    long double beta_open0 = exp(beta * open0);
    long double beta_open1 = exp(beta * open1);
    long double beta_extend0 = exp(beta * extend0);
    long double beta_extend1 = exp(beta * extend1);

    const long double beta_endgapopen = exp(beta * endgapopen);
    const long double beta_endgapextend = exp(beta * endgapextend);

    //the flag endgaps is set at the #define section
    if (PART_FULL_MEMORY)
    {

	Zf = new long double *[sequences[1].length + 1];
	Ze = new long double *[sequences[1].length + 1];
	Zm = new long double *[sequences[1].length + 1];

	//comment
	if (TRACE)
	    printf("\nPARTF:====\n");

	//DYNAMICALLY GROW 2D M,IX,IY,PIX,PIY MARICES
	for (i = 0; i <= sequences[1].length; i++)
	{
	    Zf[i] = new long double[sequences[0].length + 1];
	    Ze[i] = new long double[sequences[0].length + 1];
	    Zm[i] = new long double[sequences[0].length + 1];
	}
    }
    else
    {

        Zm = new long double *[sequences[1].length + 1];
	Ze = new long double *[2];
	Zf = new long double *[2];
	for (i = 0; i <= sequences[1].length; i++)
	{
	    Zm[i] = new long double[sequences[0].length + 1];
	}
	Ze[0] = new long double[sequences[0].length + 1];
	Zf[0] = new long double[sequences[0].length + 1];
	Ze[1] = new long double[sequences[0].length + 1];
	Zf[1] = new long double[sequences[0].length + 1];
         }

    len0 = strlen(sequences[0].text);
    len1 = strlen(sequences[1].text);

    if (PART_FULL_MEMORY)
    {
	for (i = 0; i <= sequences[1].length; i++)
	    for (j = 0; j <= sequences[0].length; j++)
	    {
		Zm[i][j] = 0.00;
		Zf[i][j] = 0.00;
		Ze[i][j] = 0.00;
	    }
    }
    else
    {

	for (i = 0; i <= len1; i++)
	{
	    for (j = 0; j <= len0; j++)
	    {
		Zm[i][j] = 0;
	    }
	}
	for (j = 0; j <= len0; j++)
	{
	    Zf[0][j] = 0;
	    Ze[0][j] = 0;
	    Zf[1][j] = 0;
	    Ze[1][j] = 0;
	}

    }

    //INTITIALIZE THE DP 
   
   
    if (endgaps == 0)
    {
	Zm[0][0] = 1.00;

	Zf[0][0] = Ze[0][0] = 0;
	Zf[1][0] = Zm[0][0] * beta_d;
	Ze[0][1] = Zm[0][0] * beta_d;

	//>=2ND ROW INIT
	if (PART_FULL_MEMORY)
	{
	    for (i = 2; i <= sequences[1].length; i++)
	    {
		Zf[i][0] = Zf[i - 1][0] * beta_e;
	    }
	}

	//>=2ND COL INIT
	for (j = 2; j <= sequences[0].length; j++)
	{
	    Ze[0][j] = Ze[0][j - 1] * beta_e;
	}
    }
    else
    {
	//init z
	Zm[0][0] = 1.00;
	Zf[0][0] = Ze[0][0] = 0;
	Zf[1][0] = Zm[0][0] * beta_endgapopen;
	Ze[0][1] = Zm[0][0] * beta_endgapopen;

	//>=2ND ROW INIT
	if (PART_FULL_MEMORY)
	{
	    for (i = 2; i <= sequences[1].length; i++)
	    {
		Zf[i][0] = Zf[i - 1][0] * beta_endgapextend;
	    }
	}

	//>=2ND COL INIT
	for (j = 2; j <= sequences[0].length; j++)
	{
	    Ze[0][j] = Ze[0][j - 1] * beta_endgapextend;
	}
     
    }

    //1ST ROW/COL INIT

    int Si, Tj;
    long double beta_score;

    for (i = 1; i <= sequences[1].length; i++)
    {

	for (j = 1; j <= sequences[0].length; j++)
	{

	    Si = subst_index[sequences[1].text[i - 1] - 'A'];
	    Tj = subst_index[sequences[0].text[j - 1] - 'A'];

//	    score = sub_matrix[Si][Tj];
            beta_score = scorez_matrix[Si][Tj];

           beta_open0 = beta_d;
           beta_extend0 = beta_e;
           beta_open1 = beta_d;
           beta_extend1 = beta_e;      

	    if (endgaps == 1)
	    {
		//check to see if one of the 2 sequences or both reach the end

		if (i == sequences[1].length)
		{
		//    open0 = endgapopen;
		//    extend0 = endgapextend;
                  beta_open0 = beta_endgapopen;
                  beta_extend0 = beta_endgapextend;

		}

		if (j == sequences[0].length)
		{
		  //  open1 = endgapopen;
		  //  extend1 = endgapextend;
                   beta_open1 = beta_endgapopen;
                   beta_extend1 = beta_endgapextend;
		}
	    }


	    //
	    //z computation using open and extend temp vars
	    //open0 is gap open in seq0 and open1 is gap open in seq1
	    //entend0 is gap extend in seq0 and extend1 is gap extend in seq1

	    if (PART_FULL_MEMORY)
	    {
		Ze[i][j] =
		    Zm[i][j - 1] * beta_open0 + Ze[i][j - 1] *
		    beta_extend0;

		if (Ze[i][j] >= HUGE_VALL)
		{
		    printf("ERROR: huge val error for Ze\n");
		    exit(1);
		}


		Zf[i][j] =
		    Zm[i - 1][j] * beta_open1 + Zf[i - 1][j] *
		    beta_extend1;

		if (Zf[i][j] >= HUGE_VALL)
		{
		    printf("ERROR: huge val error for Zf\n");
		    exit(1);
		}


		Zm[i][j] =
		    (Zm[i - 1][j - 1] + Ze[i - 1][j - 1] +
		     Zf[i - 1][j - 1]) * beta_score;

		if (Zm[i][j] >= HUGE_VALL)
		{
		    printf("ERROR: huge val error for Zm\n");
		    exit(1);
		}

		zz = Zm[i][j] + Ze[i][j] + Zf[i][j];
	    }
	    else
	    {
		Ze[1][j] =
		    Zm[i][j - 1] * beta_open0 + Ze[1][j - 1] *
		    beta_extend0;

		if (Ze[1][j] >= HUGE_VALL)
		{
		    printf("ERROR: huge val error for zE\n");
		    exit(1);
		}


		Zf[1][j] =
		    Zm[i - 1][j] * beta_open1 +
		    Zf[0][j] * beta_extend1;

		if (Zf[1][j] >= HUGE_VALL)
		{
		    printf("ERROR: huge val error for zF\n");
		    exit(1);
		}


		Zm[i][j] = (Zm[i - 1][j - 1] + Ze[0][j - 1] + Zf[0][j - 1]) * beta_score;


		if (Zm[i][j] >= HUGE_VALL)
		{
		    printf("ERROR: huge val error for zM\n");
		    exit(1);
		}

		zz = Zm[i][j] + Ze[1][j] + Zf[1][j];
	    }


	}	
                                             		//end for


	if (!PART_FULL_MEMORY)
	{
	    for (int t = 0; t <= sequences[0].length; t++)
	    {
		Ze[0][t] = Ze[1][t];
		Ze[1][t] = 0;

		Zf[0][t] = Zf[1][t];
		Zf[1][t] = 0;
	    }

	    Zf[1][0] = 1;

	}

    }		
                                          //end for

    //store the sum of zm zf ze (m,n)s in zm's 0,0 th position
    Zm[0][0] = zz;

    if (TRACE)
    {
	//debug code aug 3 
	//print the 3 Z matrices namely Zm Zf and Ze

	printf("\n\nFINAL Zm:\n");
	for (i = 0; i <= sequences[1].length; i++)
	{
	    for (j = 0; j <= sequences[0].length; j++)
		printf("%.2Le ", Zm[i][j]);
	    printf("\n");
	}

	printf("FINAL Zf \n");
	for (i = 0; i <= sequences[1].length; i++)
	{
	    for (j = 0; j <= sequences[0].length; j++)
		printf("%.2Le ", Zf[i][j]);
	    printf("\n");
	}

	printf("FINAL Ze \n");
	for (i = 0; i <= sequences[1].length; i++)
	{
	    for (j = 0; j <= sequences[0].length; j++)
		printf("%.2Le ", Ze[i][j]);
	    printf("\n");
	}

	//end debug dump code

    }


    if (PART_FULL_MEMORY)
    {
	for (i = 0; i <= sequences[1].length; i++)
	{
	    delete(Zf[i]);
	    delete(Ze[i]);
	}
    }
    else
    {
	delete(Zf[0]);
	delete(Ze[0]);
	delete(Zf[1]);
	delete(Ze[1]);
    }

    delete(Zf);
    delete(Ze);

    return Zm;

}				//end of forward partition function


/////////////////////////////////////////////////////////////////////////////////////////
//entry point (was the main function) , returns the posterior probability safe vector
////////////////////////////////////////////////////////////////////////////////////////
VF *ComputePostProbs(int a, int b, string seq1, string seq2)
{
    //printf("probamod\n");
    float gap_open = -22, gap_ext = -1, beta = .2;
    int stock_loop = 1;
    int le = 160;

    //init and parse the arguments

    termgapopen = 0.0;
    termgapextend = 0.0;

    sequences[0].length = strlen((char *) seq1.c_str());
    sequences[0].text = (char *) seq1.c_str();
    sequences[0].title = new char[10];
    strcpy(sequences[0].title, "seq0");
    sequences[1].length = strlen((char *) seq2.c_str());
    sequences[1].text = (char *) seq2.c_str();
    sequences[1].title = new char[10];
    strcpy(sequences[1].title, "seq1");


    if (TRACE)

    {
	printf("%d %d %s\n%d %d %s\n--\n", a, sequences[0].length,
	       sequences[0].text, b, sequences[1].length,
	       sequences[1].text);
	printf("after init\n");

	FILE *dump1 = fopen("dump1", "a");
	fprintf(dump1, "%d %d %s\n%d %d %s\n--\n", a, sequences[0].length,
		sequences[0].text, b, sequences[1].length,
		sequences[1].text);
	fclose(dump1);
    }

    gap_open = argument.gapopen;
    gap_ext = argument.gapext;

    stock_loop = argument.N;
    le = argument.matrix;
    beta = argument.beta;

    if (TRACE)
	printf("%f %f %f %d\n", gap_open, gap_ext, beta, le);


    //call for calculating the posterior probabilities
    // 1. call partition function partf
    // 2. calculate revpartition using revers_parf
    // 3. calculate probabilities
    /// MODIFICATION... POPULATE SAFE VECTOR



    long double **MAT1;

    MAT1 = partf(gap_open, gap_ext, beta);

    return revers_partf(MAT1, gap_open, gap_ext, beta);
}

//end of posterior probability  module