File: Main.cc

package info (click to toggle)
probcons 1.12-15
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 664 kB
  • sloc: cpp: 7,263; xml: 567; makefile: 114; sh: 21
file content (1466 lines) | stat: -rw-r--r-- 53,159 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
/////////////////////////////////////////////////////////////////
// Main.cc
//
// Main routines for PROBCONS program.
/////////////////////////////////////////////////////////////////

#include "SafeVector.h"
#include "MultiSequence.h"
#include "Defaults.h"
#include "ScoreType.h"
#include "ProbabilisticModel.h"
#include "EvolutionaryTree.h"
#include "SparseMatrix.h"
#include <string>
#include <sstream>
#include <iomanip>
#include <iostream>
#include <list>
#include <set>
#include <algorithm>
#include <climits>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cerrno>
#include <iomanip>

string parametersInputFilename = "";
string parametersOutputFilename = "no training";
string annotationFilename = "";

bool enableTraining = false;
bool enableVerbose = false;
bool enableAllPairs = false;
bool enableAnnotation = false;
bool enableViterbi = false;
bool enableClustalWOutput = false;
bool enableTrainEmissions = false;
bool enableAlignOrder = false;
int numConsistencyReps = 2;
int numPreTrainingReps = 0;
int numIterativeRefinementReps = 100;

float cutoff = 0;
float gapOpenPenalty = 0;
float gapContinuePenalty = 0;

VF initDistrib (NumMatrixTypes);
VF gapOpen (2*NumInsertStates);
VF gapExtend (2*NumInsertStates);
VVF emitPairs (256, VF (256, 1e-10));
VF emitSingle (256, 1e-5);

string alphabet = alphabetDefault;

const int MIN_PRETRAINING_REPS = 0;
const int MAX_PRETRAINING_REPS = 20;
const int MIN_CONSISTENCY_REPS = 0;
const int MAX_CONSISTENCY_REPS = 5;
const int MIN_ITERATIVE_REFINEMENT_REPS = 0;
const int MAX_ITERATIVE_REFINEMENT_REPS = 1000;

/////////////////////////////////////////////////////////////////
// Function prototypes
/////////////////////////////////////////////////////////////////

void PrintHeading();
void PrintParameters (const char *message, const VF &initDistrib, const VF &gapOpen,
                      const VF &gapExtend, const VVF &emitPairs, const VF &emitSingle, const char *filename);
MultiSequence *DoAlign (MultiSequence *sequence, const ProbabilisticModel &model, VF &initDistrib, VF &gapOpen, VF &gapExtend,
			VVF &emitPairs, VF &emitSingle);
SafeVector<string> ParseParams (int argc, char **argv);
void ReadParameters ();
MultiSequence *ComputeFinalAlignment (const TreeNode *tree, MultiSequence *sequences,
                                      const SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices,
                                      const ProbabilisticModel &model);
MultiSequence *AlignAlignments (MultiSequence *align1, MultiSequence *align2,
                                const SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices,
                                const ProbabilisticModel &model);
SafeVector<SafeVector<SparseMatrix *> > DoRelaxation (MultiSequence *sequences, 
						      SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices);
void Relax (SparseMatrix *matXZ, SparseMatrix *matZY, VF &posterior);
void Relax1 (SparseMatrix *matXZ, SparseMatrix *matZY, VF &posterior);

set<int> GetSubtree (const TreeNode *tree);
void TreeBasedBiPartitioning (const SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices,
                              const ProbabilisticModel &model, MultiSequence* &alignment,
                              const TreeNode *tree);
void DoIterativeRefinement (const SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices,
                            const ProbabilisticModel &model, MultiSequence* &alignment);
void WriteAnnotation (MultiSequence *alignment,
		      const SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices);
int ComputeScore (const SafeVector<pair<int, int> > &active, 
		  const SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices);


/////////////////////////////////////////////////////////////////
// main()
//
// Calls all initialization routines and runs the PROBCONS
// aligner.
/////////////////////////////////////////////////////////////////

int main (int argc, char **argv){

  // print PROBCONS heading
  PrintHeading();
  
  // parse program parameters
  SafeVector<string> sequenceNames = ParseParams (argc, argv);
  ReadParameters();
  PrintParameters ("Using parameter set:", initDistrib, gapOpen, gapExtend, emitPairs, emitSingle, NULL);

  // now, we'll process all the files given as input.  If we are given
  // several filenames as input, then we'll load all of those sequences
  // simultaneously, as long as we're not training.  On the other hand,
  // if we are training, then we'll treat each file as a separate
  // training instance
  
  // if we are training
  if (enableTraining){

    // build new model for aligning
    ProbabilisticModel model (initDistrib, gapOpen, gapExtend, emitPairs, emitSingle);

    // prepare to average parameters
    for (int i = 0; i < (int) initDistrib.size(); i++) initDistrib[i] = 0;
    for (int i = 0; i < (int) gapOpen.size(); i++) gapOpen[i] = 0;
    for (int i = 0; i < (int) gapExtend.size(); i++) gapExtend[i] = 0;
    if (enableTrainEmissions){
      for (int i = 0; i < (int) emitPairs.size(); i++)
	for (int j = 0; j < (int) emitPairs[i].size(); j++) emitPairs[i][j] = 0;
      for (int i = 0; i < (int) emitSingle.size(); i++) emitSingle[i] = 0;
    }
   
    // align each file individually
    for (int i = 0; i < (int) sequenceNames.size(); i++){

      VF thisInitDistrib (NumMatrixTypes);
      VF thisGapOpen (2*NumInsertStates);
      VF thisGapExtend (2*NumInsertStates);
      VVF thisEmitPairs (256, VF (256, 1e-10));
      VF thisEmitSingle (256, 1e-5);
      
      // load sequence file
      MultiSequence *sequences = new MultiSequence(); assert (sequences);
      cerr << "Loading sequence file: " << sequenceNames[i] << endl;
      sequences->LoadMFA (sequenceNames[i], true);

      // align sequences
      DoAlign (sequences, model, thisInitDistrib, thisGapOpen, thisGapExtend, thisEmitPairs, thisEmitSingle);

      // add in contribution of the derived parameters
      for (int i = 0; i < (int) initDistrib.size(); i++) initDistrib[i] += thisInitDistrib[i];
      for (int i = 0; i < (int) gapOpen.size(); i++) gapOpen[i] += thisGapOpen[i];
      for (int i = 0; i < (int) gapExtend.size(); i++) gapExtend[i] += thisGapExtend[i];
      if (enableTrainEmissions){
	for (int i = 0; i < (int) emitPairs.size(); i++) 
	  for (int j = 0; j < (int) emitPairs[i].size(); j++) emitPairs[i][j] += thisEmitPairs[i][j];
	for (int i = 0; i < (int) emitSingle.size(); i++) emitSingle[i] += thisEmitSingle[i];
      }

      delete sequences;
    }

    // compute new parameters and print them out
    for (int i = 0; i < (int) initDistrib.size(); i++) initDistrib[i] /= (int) sequenceNames.size();
    for (int i = 0; i < (int) gapOpen.size(); i++) gapOpen[i] /= (int) sequenceNames.size();
    for (int i = 0; i < (int) gapExtend.size(); i++) gapExtend[i] /= (int) sequenceNames.size();
    if (enableTrainEmissions){
      for (int i = 0; i < (int) emitPairs.size(); i++) 
	for (int j = 0; j < (int) emitPairs[i].size(); j++) emitPairs[i][j] /= (int) sequenceNames.size();
      for (int i = 0; i < (int) emitSingle.size(); i++) emitSingle[i] /= sequenceNames.size();
    }
    
    PrintParameters ("Trained parameter set:",
                     initDistrib, gapOpen, gapExtend, emitPairs, emitSingle,
                     parametersOutputFilename.c_str());
  }

  // if we are not training, we must simply want to align some sequences
  else {

    // load all files together
    MultiSequence *sequences = new MultiSequence(); assert (sequences);
    for (int i = 0; i < (int) sequenceNames.size(); i++){
      cerr << "Loading sequence file: " << sequenceNames[i] << endl;
      sequences->LoadMFA (sequenceNames[i], true);
    }

    // do all "pre-training" repetitions first
    for (int ct = 0; ct < numPreTrainingReps; ct++){
      enableTraining = true;

      // build new model for aligning
      ProbabilisticModel model (initDistrib, gapOpen, gapExtend, 
                                emitPairs, emitSingle);

      // do initial alignments
      DoAlign (sequences, model, initDistrib, gapOpen, gapExtend, emitPairs, emitSingle);

      // print new parameters
      PrintParameters ("Recomputed parameter set:", initDistrib, gapOpen, gapExtend, emitPairs, emitSingle, NULL);

      enableTraining = false;
    }

    // now, we can perform the alignments and write them out
    MultiSequence *alignment = DoAlign (sequences,
                                        ProbabilisticModel (initDistrib, gapOpen, gapExtend,  emitPairs, emitSingle),
                                        initDistrib, gapOpen, gapExtend, emitPairs, emitSingle);
    
    if (alignment) {
      if (!enableAllPairs){
        if (enableClustalWOutput)
	  alignment->WriteALN (cout);
        else
	  alignment->WriteMFA (cout);
      }
    }
    delete alignment;
    delete sequences;
   
  }
}

/////////////////////////////////////////////////////////////////
// PrintHeading()
//
// Prints heading for PROBCONS program.
/////////////////////////////////////////////////////////////////

void PrintHeading (){
  cerr << endl
       << "PROBCONS version " << VERSION << " - align multiple protein sequences and print to standard output" << endl
       << "Written by Chuong Do" << endl
       << endl;
}

/////////////////////////////////////////////////////////////////
// PrintParameters()
//
// Prints PROBCONS parameters to STDERR.  If a filename is
// specified, then the parameters are also written to the file.
/////////////////////////////////////////////////////////////////

void PrintParameters (const char *message, const VF &initDistrib, const VF &gapOpen,
                      const VF &gapExtend, const VVF &emitPairs, const VF &emitSingle, const char *filename){

  // print parameters to the screen
  cerr << message << endl
       << "    initDistrib[] = { ";
  for (int i = 0; i < NumMatrixTypes; i++) cerr << setprecision (10) << initDistrib[i] << " ";
  cerr << "}" << endl
       << "        gapOpen[] = { ";
  for (int i = 0; i < NumInsertStates*2; i++) cerr << setprecision (10) << gapOpen[i] << " ";
  cerr << "}" << endl
       << "      gapExtend[] = { ";
  for (int i = 0; i < NumInsertStates*2; i++) cerr << setprecision (10) << gapExtend[i] << " ";
  cerr << "}" << endl
       << endl;

  /*
  for (int i = 0; i < 5; i++){
    for (int j = 0; j <= i; j++){
      cerr << emitPairs[(unsigned char) alphabet[i]][(unsigned char) alphabet[j]] << " ";
    }
    cerr << endl;
    }*/

  // if a file name is specified
  if (filename){

    // attempt to open the file for writing
    FILE *file = fopen (filename, "w");
    if (!file){
      cerr << "ERROR: Unable to write parameter file: " << filename << endl;
      exit (1);
    }

    // if successful, then write the parameters to the file
    for (int i = 0; i < NumMatrixTypes; i++) fprintf (file, "%.10f ", initDistrib[i]); fprintf (file, "\n");
    for (int i = 0; i < 2*NumInsertStates; i++) fprintf (file, "%.10f ", gapOpen[i]); fprintf (file, "\n");
    for (int i = 0; i < 2*NumInsertStates; i++) fprintf (file, "%.10f ", gapExtend[i]); fprintf (file, "\n");
    fprintf (file, "%s\n", alphabet.c_str());
    for (int i = 0; i < (int) alphabet.size(); i++){
      for (int j = 0; j <= i; j++)
	fprintf (file, "%.10f ", emitPairs[(unsigned char) alphabet[i]][(unsigned char) alphabet[j]]);
      fprintf (file, "\n");
    }
    for (int i = 0; i < (int) alphabet.size(); i++)
      fprintf (file, "%.10f ", emitSingle[(unsigned char) alphabet[i]]);
    fprintf (file, "\n");
    fclose (file);
  }
}

/////////////////////////////////////////////////////////////////
// DoAlign()
//
// First computes all pairwise posterior probability matrices.
// Then, computes new parameters if training, or a final
// alignment, otherwise.
/////////////////////////////////////////////////////////////////

MultiSequence *DoAlign (MultiSequence *sequences, const ProbabilisticModel &model, VF &initDistrib, VF &gapOpen, 
			VF &gapExtend, VVF &emitPairs, VF &emitSingle){

  assert (sequences);

  const int numSeqs = sequences->GetNumSequences();
  if (numSeqs == 0) {
    fprintf(stderr, "Zero sequences delivered to function DoAlign()\n");
    return NULL;
  }
  VVF distances (numSeqs, VF (numSeqs, 0));
  SafeVector<SafeVector<SparseMatrix *> > sparseMatrices (numSeqs, SafeVector<SparseMatrix *>(numSeqs, NULL));



  if (enableTraining){
    // prepare to average parameters
    for (int i = 0; i < (int) initDistrib.size(); i++) initDistrib[i] = 0;
    for (int i = 0; i < (int) gapOpen.size(); i++) gapOpen[i] = 0;
    for (int i = 0; i < (int) gapExtend.size(); i++) gapExtend[i] = 0;
    if (enableTrainEmissions){
      for (int i = 0; i < (int) emitPairs.size(); i++)
	for (int j = 0; j < (int) emitPairs[i].size(); j++) emitPairs[i][j] = 0;
      for (int i = 0; i < (int) emitSingle.size(); i++) emitSingle[i] = 0;
    }
  }

  // skip posterior calculations if we just want to do Viterbi alignments
  if (!enableViterbi){

    // do all pairwise alignments for posterior probability matrices
    for (int a = 0; a < numSeqs-1; a++){
      for (int b = a+1; b < numSeqs; b++){
	Sequence *seq1 = sequences->GetSequence (a);
	Sequence *seq2 = sequences->GetSequence (b);
	
	// verbose output
	if (enableVerbose)
	  cerr << "Computing posterior matrix: (" << a+1 << ") " << seq1->GetHeader() << " vs. "
	       << "(" << b+1 << ") " << seq2->GetHeader() << " -- ";
	
	// compute forward and backward probabilities
	VF *forward = model.ComputeForwardMatrix (seq1, seq2); assert (forward);
	VF *backward = model.ComputeBackwardMatrix (seq1, seq2); assert (backward);
	
	// if we are training, then we'll simply want to compute the
	// expected counts for each region within the matrix separately;
	// otherwise, we'll need to put all of the regions together and
	// assemble a posterior probability match matrix
	
	// so, if we're training
	if (enableTraining){
	  
	  // compute new parameters
	  VF thisInitDistrib (NumMatrixTypes);
	  VF thisGapOpen (2*NumInsertStates);
	  VF thisGapExtend (2*NumInsertStates);
	  VVF thisEmitPairs (256, VF (256, 1e-10));
	  VF thisEmitSingle (256, 1e-5);
	  
	  model.ComputeNewParameters (seq1, seq2, *forward, *backward, thisInitDistrib, thisGapOpen, thisGapExtend, thisEmitPairs, thisEmitSingle, enableTrainEmissions);

	  // add in contribution of the derived parameters
	  for (int i = 0; i < (int) initDistrib.size(); i++) initDistrib[i] += thisInitDistrib[i];
	  for (int i = 0; i < (int) gapOpen.size(); i++) gapOpen[i] += thisGapOpen[i];
	  for (int i = 0; i < (int) gapExtend.size(); i++) gapExtend[i] += thisGapExtend[i];
	  if (enableTrainEmissions){
	    for (int i = 0; i < (int) emitPairs.size(); i++) 
	      for (int j = 0; j < (int) emitPairs[i].size(); j++) emitPairs[i][j] += thisEmitPairs[i][j];
	    for (int i = 0; i < (int) emitSingle.size(); i++) emitSingle[i] += thisEmitSingle[i];
	  }

	  // let us know that we're done.
	  if (enableVerbose) cerr << "done." << endl;
	}
	else {

	  // compute posterior probability matrix
	  VF *posterior = model.ComputePosteriorMatrix (seq1, seq2, *forward, *backward); assert (posterior);

	  // compute sparse representations
	  sparseMatrices[a][b] = new SparseMatrix (seq1->GetLength(), seq2->GetLength(), *posterior);
	  sparseMatrices[b][a] = NULL; 
	  
	  if (!enableAllPairs){
	    // perform the pairwise sequence alignment
	    pair<SafeVector<char> *, float> alignment = model.ComputeAlignment (seq1->GetLength(),
										seq2->GetLength(),
										*posterior);
	    
	    // compute "expected accuracy" distance for evolutionary tree computation
	    float distance = alignment.second / min (seq1->GetLength(), seq2->GetLength());
	    distances[a][b] = distances[b][a] = distance;
	    
	    if (enableVerbose)
	      cerr << setprecision (10) << distance << endl;
	    
	      delete alignment.first;
	  }
	  else {
	    // let us know that we're done.
	    if (enableVerbose) cerr << "done." << endl;
	  }
	  
	  delete posterior;
	}
	
	delete forward;
	delete backward;
      }
    }
  }

  // now average out parameters derived
  if (enableTraining){

    // compute new parameters
    for (int i = 0; i < (int) initDistrib.size(); i++) initDistrib[i] /= numSeqs * (numSeqs - 1) / 2;
    for (int i = 0; i < (int) gapOpen.size(); i++) gapOpen[i] /= numSeqs * (numSeqs - 1) / 2;
    for (int i = 0; i < (int) gapExtend.size(); i++) gapExtend[i] /= numSeqs * (numSeqs - 1) / 2;

    if (enableTrainEmissions){
      for (int i = 0; i < (int) emitPairs.size(); i++)
	for (int j = 0; j < (int) emitPairs[i].size(); j++) emitPairs[i][j] /= numSeqs * (numSeqs - 1) / 2;
      for (int i = 0; i < (int) emitSingle.size(); i++) emitSingle[i] /= numSeqs * (numSeqs - 1) / 2;
    }
  }

  // see if we still want to do some alignments
  else {

    if (!enableViterbi){
      
      // perform the consistency transformation the desired number of times
      for (int r = 0; r < numConsistencyReps; r++){
	SafeVector<SafeVector<SparseMatrix *> > newSparseMatrices = DoRelaxation (sequences, sparseMatrices);

	// now replace the old posterior matrices
	for (int i = 0; i < numSeqs; i++){
	  for (int j = 0; j < numSeqs; j++){
	    delete sparseMatrices[i][j];
	    sparseMatrices[i][j] = newSparseMatrices[i][j];
	  }
	}
      }
    }

    MultiSequence *finalAlignment = NULL;

    if (enableAllPairs){
      for (int a = 0; a < numSeqs-1; a++){
	for (int b = a+1; b < numSeqs; b++){
	  Sequence *seq1 = sequences->GetSequence (a);
	  Sequence *seq2 = sequences->GetSequence (b);
	  
	  if (enableVerbose)
	    cerr << "Performing pairwise alignment: (" << a+1 << ") " << seq1->GetHeader() << " vs. "
		 << "(" << b+1 << ") " << seq2->GetHeader() << " -- ";

	  
	  // perform the pairwise sequence alignment
	  pair<SafeVector<char> *, float> alignment;
	  if (enableViterbi)
	    alignment = model.ComputeViterbiAlignment (seq1, seq2);
	  else {

	    // build posterior matrix
	    VF *posterior = sparseMatrices[a][b]->GetPosterior(); assert (posterior);
	    int length = (seq1->GetLength() + 1) * (seq2->GetLength() + 1);
	    for (int i = 0; i < length; i++) (*posterior)[i] -= cutoff;

	    alignment = model.ComputeAlignment (seq1->GetLength(), seq2->GetLength(), *posterior);
	    delete posterior;
	  }

	  // write pairwise alignments 
	  string name = seq1->GetHeader() + "-" + seq2->GetHeader() + (enableClustalWOutput ? ".aln" : ".fasta");
	  ofstream outfile (name.c_str());
	  
	  MultiSequence *result = new MultiSequence();
	  result->AddSequence (seq1->AddGaps(alignment.first, 'X'));
	  result->AddSequence (seq2->AddGaps(alignment.first, 'Y'));
	  if (enableClustalWOutput)
	    result->WriteALN (outfile);
	  else
	    result->WriteMFA (outfile);
	  
	  outfile.close();
	  
	  delete alignment.first;
	}
      }
    }
    
    // now if we still need to do a final multiple alignment
    else {
      
      if (enableVerbose)
	cerr << endl;
      
      // compute the evolutionary tree
      TreeNode *tree = TreeNode::ComputeTree (distances);
      
      tree->Print (cerr, sequences);
      cerr << endl;
      
      // make the final alignment
      finalAlignment = ComputeFinalAlignment (tree, sequences, sparseMatrices, model);
      
      // build annotation
      if (enableAnnotation){
	WriteAnnotation (finalAlignment, sparseMatrices);
      }

      delete tree;
    }

    if (!enableViterbi){
      // delete sparse matrices
      for (int a = 0; a < numSeqs-1; a++){
	for (int b = a+1; b < numSeqs; b++){
	  delete sparseMatrices[a][b];
	  delete sparseMatrices[b][a];
	}
      }
    }

    return finalAlignment;
  }

  return NULL;
}

/////////////////////////////////////////////////////////////////
// GetInteger()
//
// Attempts to parse an integer from the character string given.
// Returns true only if no parsing error occurs.
/////////////////////////////////////////////////////////////////

bool GetInteger (char *data, int *val){
  char *endPtr;
  long int retVal;

  assert (val);

  errno = 0;
  retVal = strtol (data, &endPtr, 0);
  if (retVal == 0 && (errno != 0 || data == endPtr)) return false;
  if (errno != 0 && (retVal == LONG_MAX || retVal == LONG_MIN)) return false;
  if (retVal < (long) INT_MIN || retVal > (long) INT_MAX) return false;
  *val = (int) retVal;
  return true;
}

/////////////////////////////////////////////////////////////////
// GetFloat()
//
// Attempts to parse a float from the character string given.
// Returns true only if no parsing error occurs.
/////////////////////////////////////////////////////////////////

bool GetFloat (char *data, float *val){
  char *endPtr;
  double retVal;

  assert (val);

  errno = 0;
  retVal = strtod (data, &endPtr);
  if (retVal == 0 && (errno != 0 || data == endPtr)) return false;
  if (errno != 0 && (retVal >= 1000000.0 || retVal <= -1000000.0)) return false;
  *val = (float) retVal;
  return true;
}

/////////////////////////////////////////////////////////////////
// ParseParams()
//
// Parse all command-line options.
/////////////////////////////////////////////////////////////////

SafeVector<string> ParseParams (int argc, char **argv){

  if (argc < 2){

    cerr << "PROBCONS comes with ABSOLUTELY NO WARRANTY.  This is free software, and" << endl
         << "you are welcome to redistribute it under certain conditions.  See the" << endl
         << "file COPYING.txt for details." << endl
         << endl
         << "Usage:" << endl
         << "       probcons [OPTION]... [MFAFILE]..." << endl
         << endl
         << "Description:" << endl
         << "       Align sequences in MFAFILE(s) and print result to standard output" << endl
         << endl
         << "       -clustalw" << endl
         << "              use CLUSTALW output format instead of MFA" << endl
         << endl
         << "       -c, --consistency REPS" << endl
         << "              use " << MIN_CONSISTENCY_REPS << " <= REPS <= " << MAX_CONSISTENCY_REPS
         << " (default: " << numConsistencyReps << ") passes of consistency transformation" << endl
         << endl
         << "       -ir, --iterative-refinement REPS" << endl
         << "              use " << MIN_ITERATIVE_REFINEMENT_REPS << " <= REPS <= " << MAX_ITERATIVE_REFINEMENT_REPS
         << " (default: " << numIterativeRefinementReps << ") passes of iterative-refinement" << endl
         << endl
	 << "       -pre, --pre-training REPS" << endl
	 << "              use " << MIN_PRETRAINING_REPS << " <= REPS <= " << MAX_PRETRAINING_REPS
	 << " (default: " << numPreTrainingReps << ") rounds of pretraining" << endl
	 << endl
	 << "       -pairs" << endl
         << "              generate all-pairs pairwise alignments" << endl
         << endl
	 << "       -viterbi" << endl
	 << "              use Viterbi algorithm to generate all pairs (automatically enables -pairs)" << endl
	 << endl
         << "       -v, --verbose" << endl
         << "              report progress while aligning (default: " << (enableVerbose ? "on" : "off") << ")" << endl
         << endl
         << "       -annot FILENAME" << endl
         << "              write annotation for multiple alignment to FILENAME" << endl
         << endl
         << "       -t, --train FILENAME" << endl
         << "              compute EM transition probabilities, store in FILENAME (default: "
         << parametersOutputFilename << ")" << endl
         << endl
         << "       -e, --emissions" << endl
         << "              also reestimate emission probabilities (default: "
         << (enableTrainEmissions ? "on" : "off") << ")" << endl
         << endl
	 << "       -p, --paramfile FILENAME" << endl
	 << "              read parameters from FILENAME (default: "
	 << parametersInputFilename << ")" << endl
	 << endl
	 << "       -a, --alignment-order" << endl
	 << "              print sequences in alignment order rather than input order (default: "
	 << (enableAlignOrder ? "on" : "off") << ")" << endl
	 << endl;
    //     	 << "       -go, --gap-open VALUE" << endl
    //     	 << "              gap opening penalty of VALUE <= 0 (default: " << gapOpenPenalty << ")" << endl
    //	 << endl
    //	 << "       -ge, --gap-extension VALUE" << endl
    //	 << "              gap extension penalty of VALUE <= 0 (default: " << gapContinuePenalty << ")" << endl
    //	 << endl
    //         << "       -co, --cutoff CUTOFF" << endl
    //         << "              subtract 0 <= CUTOFF <= 1 (default: " << cutoff << ") from all posterior values before final alignment" << endl
    //         << endl
    
    exit (1);
  }

  SafeVector<string> sequenceNames;
  int tempInt;
  float tempFloat;

  for (int i = 1; i < argc; i++){
    if (argv[i][0] == '-'){

      // training
      if (!strcmp (argv[i], "-t") || !strcmp (argv[i], "--train")){
        enableTraining = true;
        if (i < argc - 1)
          parametersOutputFilename = string (argv[++i]);
        else {
          cerr << "ERROR: Filename expected for option " << argv[i] << endl;
          exit (1);
        }
      }
      
      // emission training
      else if (!strcmp (argv[i], "-e") || !strcmp (argv[i], "--emissions")){
        enableTrainEmissions = true;
      }

      // parameter file
      else if (!strcmp (argv[i], "-p") || !strcmp (argv[i], "--paramfile")){
        if (i < argc - 1)
          parametersInputFilename = string (argv[++i]);
        else {
          cerr << "ERROR: Filename expected for option " << argv[i] << endl;
          exit (1);
        }
      }

      // number of consistency transformations
      else if (!strcmp (argv[i], "-c") || !strcmp (argv[i], "--consistency")){
        if (i < argc - 1){
          if (!GetInteger (argv[++i], &tempInt)){
            cerr << "ERROR: Invalid integer following option " << argv[i-1] << ": " << argv[i] << endl;
            exit (1);
          }
          else {
            if (tempInt < MIN_CONSISTENCY_REPS || tempInt > MAX_CONSISTENCY_REPS){
              cerr << "ERROR: For option " << argv[i-1] << ", integer must be between "
                   << MIN_CONSISTENCY_REPS << " and " << MAX_CONSISTENCY_REPS << "." << endl;
              exit (1);
            }
            else
              numConsistencyReps = tempInt;
          }
        }
        else {
          cerr << "ERROR: Integer expected for option " << argv[i] << endl;
          exit (1);
        }
      }

      // number of randomized partitioning iterative refinement passes
      else if (!strcmp (argv[i], "-ir") || !strcmp (argv[i], "--iterative-refinement")){
        if (i < argc - 1){
          if (!GetInteger (argv[++i], &tempInt)){
            cerr << "ERROR: Invalid integer following option " << argv[i-1] << ": " << argv[i] << endl;
            exit (1);
          }
          else {
            if (tempInt < MIN_ITERATIVE_REFINEMENT_REPS || tempInt > MAX_ITERATIVE_REFINEMENT_REPS){
              cerr << "ERROR: For option " << argv[i-1] << ", integer must be between "
                   << MIN_ITERATIVE_REFINEMENT_REPS << " and " << MAX_ITERATIVE_REFINEMENT_REPS << "." << endl;
              exit (1);
            }
            else
              numIterativeRefinementReps = tempInt;
          }
        }
        else {
          cerr << "ERROR: Integer expected for option " << argv[i] << endl;
          exit (1);
        }
      }

      // number of EM pre-training rounds
      else if (!strcmp (argv[i], "-pre") || !strcmp (argv[i], "--pre-training")){
        if (i < argc - 1){
          if (!GetInteger (argv[++i], &tempInt)){
            cerr << "ERROR: Invalid integer following option " << argv[i-1] << ": " << argv[i] << endl;
            exit (1);
          }
          else {
            if (tempInt < MIN_PRETRAINING_REPS || tempInt > MAX_PRETRAINING_REPS){
              cerr << "ERROR: For option " << argv[i-1] << ", integer must be between "
                   << MIN_PRETRAINING_REPS << " and " << MAX_PRETRAINING_REPS << "." << endl;
              exit (1);
            }
            else
              numPreTrainingReps = tempInt;
          }
        }
        else {
          cerr << "ERROR: Integer expected for option " << argv[i] << endl;
          exit (1);
        }
      }

      // gap open penalty
      else if (!strcmp (argv[i], "-go") || !strcmp (argv[i], "--gap-open")){
        if (i < argc - 1){
          if (!GetFloat (argv[++i], &tempFloat)){
            cerr << "ERROR: Invalid floating-point value following option " << argv[i-1] << ": " << argv[i] << endl;
            exit (1);
          }
          else {
            if (tempFloat > 0){
              cerr << "ERROR: For option " << argv[i-1] << ", floating-point value must not be positive." << endl;
              exit (1);
            }
            else
              gapOpenPenalty = tempFloat;
          }
        }
        else {
          cerr << "ERROR: Floating-point value expected for option " << argv[i] << endl;
          exit (1);
        }
      }

      // gap extension penalty
      else if (!strcmp (argv[i], "-ge") || !strcmp (argv[i], "--gap-extension")){
        if (i < argc - 1){
          if (!GetFloat (argv[++i], &tempFloat)){
            cerr << "ERROR: Invalid floating-point value following option " << argv[i-1] << ": " << argv[i] << endl;
            exit (1);
          }
          else {
            if (tempFloat > 0){
              cerr << "ERROR: For option " << argv[i-1] << ", floating-point value must not be positive." << endl;
              exit (1);
            }
            else
              gapContinuePenalty = tempFloat;
          }
        }
        else {
          cerr << "ERROR: Floating-point value expected for option " << argv[i] << endl;
          exit (1);
        }
      }

      // all-pairs pairwise alignments
      else if (!strcmp (argv[i], "-pairs")){
        enableAllPairs = true;
      }

      // all-pairs pairwise Viterbi alignments
      else if (!strcmp (argv[i], "-viterbi")){
        enableAllPairs = true;
	enableViterbi = true;
      }

      // annotation files
      else if (!strcmp (argv[i], "-annot")){
        enableAnnotation = true;
        if (i < argc - 1)
	  annotationFilename = argv[++i];
        else {
          cerr << "ERROR: FILENAME expected for option " << argv[i] << endl;
          exit (1);
        }
      }

      // clustalw output format
      else if (!strcmp (argv[i], "-clustalw")){
	enableClustalWOutput = true;
      }

      // cutoff
      else if (!strcmp (argv[i], "-co") || !strcmp (argv[i], "--cutoff")){
        if (i < argc - 1){
          if (!GetFloat (argv[++i], &tempFloat)){
            cerr << "ERROR: Invalid floating-point value following option " << argv[i-1] << ": " << argv[i] << endl;
            exit (1);
          }
          else {
            if (tempFloat < 0 || tempFloat > 1){
              cerr << "ERROR: For option " << argv[i-1] << ", floating-point value must be between 0 and 1." << endl;
              exit (1);
            }
            else
              cutoff = tempFloat;
          }
        }
        else {
          cerr << "ERROR: Floating-point value expected for option " << argv[i] << endl;
          exit (1);
        }
      }

      // verbose reporting
      else if (!strcmp (argv[i], "-v") || !strcmp (argv[i], "--verbose")){
        enableVerbose = true;
      }

      // alignment order
      else if (!strcmp (argv[i], "-a") || !strcmp (argv[i], "--alignment-order")){
	enableAlignOrder = true;
      }

      // bad arguments
      else {
        cerr << "ERROR: Unrecognized option: " << argv[i] << endl;
        exit (1);
      }
    }
    else {
      sequenceNames.push_back (string (argv[i]));
    }
  }

  if (enableTrainEmissions && !enableTraining){
    cerr << "ERROR: Training emissions (-e) requires training (-t)" << endl;
    exit (1);
  }

  return sequenceNames;
}

/////////////////////////////////////////////////////////////////
// ReadParameters()
//
// Read initial distribution, transition, and emission
// parameters from a file.
/////////////////////////////////////////////////////////////////

void ReadParameters (){

  ifstream data;

  emitPairs = VVF (256, VF (256, 1e-10));
  emitSingle = VF (256, 1e-5);

  // read initial state distribution and transition parameters
  if (parametersInputFilename == string ("")){
    if (NumInsertStates == 1){
      for (int i = 0; i < NumMatrixTypes; i++) initDistrib[i] = initDistrib1Default[i];
      for (int i = 0; i < 2*NumInsertStates; i++) gapOpen[i] = gapOpen1Default[i];
      for (int i = 0; i < 2*NumInsertStates; i++) gapExtend[i] = gapExtend1Default[i];
    }
    else if (NumInsertStates == 2){
      for (int i = 0; i < NumMatrixTypes; i++) initDistrib[i] = initDistrib2Default[i];
      for (int i = 0; i < 2*NumInsertStates; i++) gapOpen[i] = gapOpen2Default[i];
      for (int i = 0; i < 2*NumInsertStates; i++) gapExtend[i] = gapExtend2Default[i];
    }
    else {
      cerr << "ERROR: No default initial distribution/parameter settings exist" << endl
           << "       for " << NumInsertStates << " pairs of insert states.  Use --paramfile." << endl;
      exit (1);
    }

    alphabet = alphabetDefault;

    for (int i = 0; i < (int) alphabet.length(); i++){
      emitSingle[(unsigned char) tolower(alphabet[i])] = emitSingleDefault[i];
      emitSingle[(unsigned char) toupper(alphabet[i])] = emitSingleDefault[i];
      for (int j = 0; j <= i; j++){
	emitPairs[(unsigned char) tolower(alphabet[i])][(unsigned char) tolower(alphabet[j])] = emitPairsDefault[i][j];
	emitPairs[(unsigned char) tolower(alphabet[i])][(unsigned char) toupper(alphabet[j])] = emitPairsDefault[i][j];
	emitPairs[(unsigned char) toupper(alphabet[i])][(unsigned char) tolower(alphabet[j])] = emitPairsDefault[i][j];
	emitPairs[(unsigned char) toupper(alphabet[i])][(unsigned char) toupper(alphabet[j])] = emitPairsDefault[i][j];
	emitPairs[(unsigned char) tolower(alphabet[j])][(unsigned char) tolower(alphabet[i])] = emitPairsDefault[i][j];
	emitPairs[(unsigned char) tolower(alphabet[j])][(unsigned char) toupper(alphabet[i])] = emitPairsDefault[i][j];
	emitPairs[(unsigned char) toupper(alphabet[j])][(unsigned char) tolower(alphabet[i])] = emitPairsDefault[i][j];
	emitPairs[(unsigned char) toupper(alphabet[j])][(unsigned char) toupper(alphabet[i])] = emitPairsDefault[i][j];
      }
    }
  }
  else {
    data.open (parametersInputFilename.c_str());
    if (data.fail()){
      cerr << "ERROR: Unable to read parameter file: " << parametersInputFilename << endl;
      exit (1);
    }
    
    string line[3];
    for (int i = 0; i < 3; i++){
      if (!getline (data, line[i])){
	cerr << "ERROR: Unable to read transition parameters from parameter file: " << parametersInputFilename << endl;
	exit (1);
      }
    }
    istringstream data2;
    data2.clear(); data2.str (line[0]); for (int i = 0; i < NumMatrixTypes; i++) data2 >> initDistrib[i];
    data2.clear(); data2.str (line[1]); for (int i = 0; i < 2*NumInsertStates; i++) data2 >> gapOpen[i];
    data2.clear(); data2.str (line[2]); for (int i = 0; i < 2*NumInsertStates; i++) data2 >> gapExtend[i];

    if (!getline (data, line[0])){
      cerr << "ERROR: Unable to read alphabet from scoring matrix file: " << parametersInputFilename << endl;
      exit (1);
    }
    
    // read alphabet as concatenation of all characters on alphabet line
    alphabet = "";
    string token;
    data2.clear(); data2.str (line[0]); while (data2 >> token) alphabet += token;

    for (int i = 0; i < (int) alphabet.size(); i++){
      for (int j = 0; j <= i; j++){
	float val;
        data >> val;
	emitPairs[(unsigned char) tolower(alphabet[i])][(unsigned char) tolower(alphabet[j])] = val;
	emitPairs[(unsigned char) tolower(alphabet[i])][(unsigned char) toupper(alphabet[j])] = val;
	emitPairs[(unsigned char) toupper(alphabet[i])][(unsigned char) tolower(alphabet[j])] = val;
	emitPairs[(unsigned char) toupper(alphabet[i])][(unsigned char) toupper(alphabet[j])] = val;
	emitPairs[(unsigned char) tolower(alphabet[j])][(unsigned char) tolower(alphabet[i])] = val;
	emitPairs[(unsigned char) tolower(alphabet[j])][(unsigned char) toupper(alphabet[i])] = val;
	emitPairs[(unsigned char) toupper(alphabet[j])][(unsigned char) tolower(alphabet[i])] = val;
	emitPairs[(unsigned char) toupper(alphabet[j])][(unsigned char) toupper(alphabet[i])] = val;
      }
    }

    for (int i = 0; i < (int) alphabet.size(); i++){
      float val;
      data >> val;
      emitSingle[(unsigned char) tolower(alphabet[i])] = val;
      emitSingle[(unsigned char) toupper(alphabet[i])] = val;
    }
    data.close();
  }
}

/////////////////////////////////////////////////////////////////
// ProcessTree()
//
// Process the tree recursively.  Returns the aligned sequences
// corresponding to a node or leaf of the tree.
/////////////////////////////////////////////////////////////////

MultiSequence *ProcessTree (const TreeNode *tree, MultiSequence *sequences,
                            const SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices,
                            const ProbabilisticModel &model){
  MultiSequence *result;

  // check if this is a node of the alignment tree
  if (tree->GetSequenceLabel() == -1){
    MultiSequence *alignLeft = ProcessTree (tree->GetLeftChild(), sequences, sparseMatrices, model);
    MultiSequence *alignRight = ProcessTree (tree->GetRightChild(), sequences, sparseMatrices, model);

    assert (alignLeft);
    assert (alignRight);

    result = AlignAlignments (alignLeft, alignRight, sparseMatrices, model);
    assert (result);

    delete alignLeft;
    delete alignRight;
  }

  // otherwise, this is a leaf of the alignment tree
  else {
    result = new MultiSequence(); assert (result);
    result->AddSequence (sequences->GetSequence(tree->GetSequenceLabel())->Clone());
  }

  return result;
}

/////////////////////////////////////////////////////////////////
// ComputeFinalAlignment()
//
// Compute the final alignment by calling ProcessTree(), then
// performing iterative refinement as needed.
/////////////////////////////////////////////////////////////////

MultiSequence *ComputeFinalAlignment (const TreeNode *tree, MultiSequence *sequences,
                                      const SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices,
                                      const ProbabilisticModel &model){

  MultiSequence *alignment = ProcessTree (tree, sequences, sparseMatrices, model);

  SafeVector<int> oldOrdering;
  if (enableAlignOrder){
    for (int i = 0; i < alignment->GetNumSequences(); i++)
      oldOrdering.push_back (alignment->GetSequence(i)->GetSortLabel());
    alignment->SaveOrdering();
    enableAlignOrder = false;
  }

  // tree-based refinement
  // TreeBasedBiPartitioning (sparseMatrices, model, alignment, tree);

  // iterative refinement
  for (int i = 0; i < numIterativeRefinementReps; i++)
    DoIterativeRefinement (sparseMatrices, model, alignment);

  cerr << endl;

  if (oldOrdering.size() > 0){
    for (int i = 0; i < (int) oldOrdering.size(); i++){
      alignment->GetSequence(i)->SetSortLabel(oldOrdering[i]);
    }
  }

  // return final alignment
  return alignment;
}

/////////////////////////////////////////////////////////////////
// AlignAlignments()
//
// Returns the alignment of two MultiSequence objects.
/////////////////////////////////////////////////////////////////

MultiSequence *AlignAlignments (MultiSequence *align1, MultiSequence *align2,
                                const SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices,
                                const ProbabilisticModel &model){

  // print some info about the alignment
  if (enableVerbose){
    for (int i = 0; i < align1->GetNumSequences(); i++)
      cerr << ((i==0) ? "[" : ",") << align1->GetSequence(i)->GetLabel();
    cerr << "] vs. ";
    for (int i = 0; i < align2->GetNumSequences(); i++)
      cerr << ((i==0) ? "[" : ",") << align2->GetSequence(i)->GetLabel();
    cerr << "]: ";
  }

  VF *posterior = model.BuildPosterior (align1, align2, sparseMatrices, cutoff);
  pair<SafeVector<char> *, float> alignment;

  // choose the alignment routine depending on the "cosmetic" gap penalties used
  if (gapOpenPenalty == 0 && gapContinuePenalty == 0)
    alignment = model.ComputeAlignment (align1->GetSequence(0)->GetLength(), align2->GetSequence(0)->GetLength(), *posterior);
  else
    alignment = model.ComputeAlignmentWithGapPenalties (align1, align2,
                                                        *posterior, align1->GetNumSequences(), align2->GetNumSequences(),
                                                        gapOpenPenalty, gapContinuePenalty);

  delete posterior;

  if (enableVerbose){

    // compute total length of sequences
    int totLength = 0;
    for (int i = 0; i < align1->GetNumSequences(); i++)
      for (int j = 0; j < align2->GetNumSequences(); j++)
        totLength += min (align1->GetSequence(i)->GetLength(), align2->GetSequence(j)->GetLength());

    // give an "accuracy" measure for the alignment
    cerr << alignment.second / totLength << endl;
  }

  // now build final alignment
  MultiSequence *result = new MultiSequence();
  for (int i = 0; i < align1->GetNumSequences(); i++)
    result->AddSequence (align1->GetSequence(i)->AddGaps(alignment.first, 'X'));
  for (int i = 0; i < align2->GetNumSequences(); i++)
    result->AddSequence (align2->GetSequence(i)->AddGaps(alignment.first, 'Y'));
  if (!enableAlignOrder)
    result->SortByLabel();

  // free temporary alignment
  delete alignment.first;

  return result;
}

/////////////////////////////////////////////////////////////////
// DoRelaxation()
//
// Performs one round of the consistency transformation.  The
// formula used is:
//                     1
//    P'(x[i]-y[j]) = ---  sum   sum P(x[i]-z[k]) P(z[k]-y[j])
//                    |S| z in S  k
//
// where S = {x, y, all other sequences...}
//
/////////////////////////////////////////////////////////////////

SafeVector<SafeVector<SparseMatrix *> > DoRelaxation (MultiSequence *sequences, 
						      SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices){
  const int numSeqs = sequences->GetNumSequences();

  SafeVector<SafeVector<SparseMatrix *> > newSparseMatrices (numSeqs, SafeVector<SparseMatrix *>(numSeqs, NULL));

  // for every pair of sequences
  for (int i = 0; i < numSeqs; i++){
    for (int j = i+1; j < numSeqs; j++){
      Sequence *seq1 = sequences->GetSequence (i);
      Sequence *seq2 = sequences->GetSequence (j);

      if (enableVerbose)
        cerr << "Relaxing (" << i+1 << ") " << seq1->GetHeader() << " vs. "
             << "(" << j+1 << ") " << seq2->GetHeader() << ": ";

      // get the original posterior matrix
      VF *posteriorPtr = sparseMatrices[i][j]->GetPosterior(); assert (posteriorPtr);
      VF &posterior = *posteriorPtr;

      const int seq1Length = seq1->GetLength();
      const int seq2Length = seq2->GetLength();

      // contribution from the summation where z = x and z = y
      for (int k = 0; k < (seq1Length+1) * (seq2Length+1); k++) posterior[k] += posterior[k];

      if (enableVerbose)
        cerr << sparseMatrices[i][j]->GetNumCells() << " --> ";

      // contribution from all other sequences
      for (int k = 0; k < numSeqs; k++) if (k != i && k != j){
	if (k < i)
	  Relax1 (sparseMatrices[k][i], sparseMatrices[k][j], posterior);
	else if (k > i && k < j)
	  Relax (sparseMatrices[i][k], sparseMatrices[k][j], posterior);
	else {
	  SparseMatrix *temp = sparseMatrices[j][k]->ComputeTranspose();
	  Relax (sparseMatrices[i][k], temp, posterior);
	  delete temp;
	}
      }

      // now renormalization
      for (int k = 0; k < (seq1Length+1) * (seq2Length+1); k++) posterior[k] /= numSeqs;

      // mask out positions not originally in the posterior matrix
      SparseMatrix *matXY = sparseMatrices[i][j];
      for (int y = 0; y <= seq2Length; y++) posterior[y] = 0;
      for (int x = 1; x <= seq1Length; x++){
	SafeVector<PIF>::iterator XYptr = matXY->GetRowPtr(x);
	SafeVector<PIF>::iterator XYend = XYptr + matXY->GetRowSize(x);
	VF::iterator base = posterior.begin() + x * (seq2Length + 1);
	int curr = 0;
	while (XYptr != XYend){

	  // zero out all cells until the first filled column
	  while (curr < XYptr->first){
	    base[curr] = 0;
	    curr++;
	  }

	  // now, skip over this column
	  curr++;
	  ++XYptr;
	}
	
	// zero out cells after last column
	while (curr <= seq2Length){
	  base[curr] = 0;
	  curr++;
	}
      }

      // save the new posterior matrix
      newSparseMatrices[i][j] = new SparseMatrix (seq1->GetLength(), seq2->GetLength(), posterior);
      newSparseMatrices[j][i] = NULL;

      if (enableVerbose)
        cerr << newSparseMatrices[i][j]->GetNumCells() << " -- ";

      delete posteriorPtr;

      if (enableVerbose)
        cerr << "done." << endl;
    }
  }
  
  return newSparseMatrices;
}

/////////////////////////////////////////////////////////////////
// Relax()
//
// Computes the consistency transformation for a single sequence
// z, and adds the transformed matrix to "posterior".
/////////////////////////////////////////////////////////////////

void Relax (SparseMatrix *matXZ, SparseMatrix *matZY, VF &posterior){

  assert (matXZ);
  assert (matZY);

  int lengthX = matXZ->GetSeq1Length();
  int lengthY = matZY->GetSeq2Length();
  assert (matXZ->GetSeq2Length() == matZY->GetSeq1Length());

  // for every x[i]
  for (int i = 1; i <= lengthX; i++){
    SafeVector<PIF>::iterator XZptr = matXZ->GetRowPtr(i);
    SafeVector<PIF>::iterator XZend = XZptr + matXZ->GetRowSize(i);

    VF::iterator base = posterior.begin() + i * (lengthY + 1);

    // iterate through all x[i]-z[k]
    while (XZptr != XZend){
      SafeVector<PIF>::iterator ZYptr = matZY->GetRowPtr(XZptr->first);
      SafeVector<PIF>::iterator ZYend = ZYptr + matZY->GetRowSize(XZptr->first);
      const float XZval = XZptr->second;

      // iterate through all z[k]-y[j]
      while (ZYptr != ZYend){
        base[ZYptr->first] += XZval * ZYptr->second;
        ZYptr++;
      }
      XZptr++;
    }
  }
}

/////////////////////////////////////////////////////////////////
// Relax1()
//
// Computes the consistency transformation for a single sequence
// z, and adds the transformed matrix to "posterior".
/////////////////////////////////////////////////////////////////

void Relax1 (SparseMatrix *matZX, SparseMatrix *matZY, VF &posterior){

  assert (matZX);
  assert (matZY);

  int lengthZ = matZX->GetSeq1Length();
  int lengthY = matZY->GetSeq2Length();

  // for every z[k]
  for (int k = 1; k <= lengthZ; k++){
    SafeVector<PIF>::iterator ZXptr = matZX->GetRowPtr(k);
    SafeVector<PIF>::iterator ZXend = ZXptr + matZX->GetRowSize(k);

    // iterate through all z[k]-x[i]
    while (ZXptr != ZXend){
      SafeVector<PIF>::iterator ZYptr = matZY->GetRowPtr(k);
      SafeVector<PIF>::iterator ZYend = ZYptr + matZY->GetRowSize(k);
      const float ZXval = ZXptr->second;
      VF::iterator base = posterior.begin() + ZXptr->first * (lengthY + 1);

      // iterate through all z[k]-y[j]
      while (ZYptr != ZYend){
        base[ZYptr->first] += ZXval * ZYptr->second;
        ZYptr++;
      }
      ZXptr++;
    }
  }
}

/////////////////////////////////////////////////////////////////
// GetSubtree
//
// Returns set containing all leaf labels of the current subtree.
/////////////////////////////////////////////////////////////////

set<int> GetSubtree (const TreeNode *tree){
  set<int> s;

  if (tree->GetSequenceLabel() == -1){
    s = GetSubtree (tree->GetLeftChild());
    set<int> t = GetSubtree (tree->GetRightChild());

    for (set<int>::iterator iter = t.begin(); iter != t.end(); ++iter)
      s.insert (*iter);
  }
  else {
    s.insert (tree->GetSequenceLabel());
  }

  return s;
}

/////////////////////////////////////////////////////////////////
// TreeBasedBiPartitioning
//
// Uses the iterative refinement scheme from MUSCLE.
/////////////////////////////////////////////////////////////////

void TreeBasedBiPartitioning (const SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices,
                              const ProbabilisticModel &model, MultiSequence* &alignment,
                              const TreeNode *tree){
  // check if this is a node of the alignment tree
  if (tree->GetSequenceLabel() == -1){
    TreeBasedBiPartitioning (sparseMatrices, model, alignment, tree->GetLeftChild());
    TreeBasedBiPartitioning (sparseMatrices, model, alignment, tree->GetRightChild());

    set<int> leftSubtree = GetSubtree (tree->GetLeftChild());
    set<int> rightSubtree = GetSubtree (tree->GetRightChild());
    set<int> leftSubtreeComplement, rightSubtreeComplement;

    // calculate complement of each subtree
    for (int i = 0; i < alignment->GetNumSequences(); i++){
      if (leftSubtree.find(i) == leftSubtree.end()) leftSubtreeComplement.insert (i);
      if (rightSubtree.find(i) == rightSubtree.end()) rightSubtreeComplement.insert (i);
    }

    // perform realignments for edge to left child
    if (!leftSubtree.empty() && !leftSubtreeComplement.empty()){
      MultiSequence *groupOneSeqs = alignment->Project (leftSubtree); assert (groupOneSeqs);
      MultiSequence *groupTwoSeqs = alignment->Project (leftSubtreeComplement); assert (groupTwoSeqs);
      delete alignment;
      alignment = AlignAlignments (groupOneSeqs, groupTwoSeqs, sparseMatrices, model);
    }

    // perform realignments for edge to right child
    if (!rightSubtree.empty() && !rightSubtreeComplement.empty()){
      MultiSequence *groupOneSeqs = alignment->Project (rightSubtree); assert (groupOneSeqs);
      MultiSequence *groupTwoSeqs = alignment->Project (rightSubtreeComplement); assert (groupTwoSeqs);
      delete alignment;
      alignment = AlignAlignments (groupOneSeqs, groupTwoSeqs, sparseMatrices, model);
    }
  }
}

/////////////////////////////////////////////////////////////////
// DoIterativeRefinement()
//
// Performs a single round of randomized partionining iterative
// refinement.
/////////////////////////////////////////////////////////////////

void DoIterativeRefinement (const SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices,
                            const ProbabilisticModel &model, MultiSequence* &alignment){
  set<int> groupOne, groupTwo;

  // create two separate groups
  for (int i = 0; i < alignment->GetNumSequences(); i++){
    if (rand() % 2)
      groupOne.insert (i);
    else
      groupTwo.insert (i);
  }

  if (groupOne.empty() || groupTwo.empty()) return;

  // project into the two groups
  MultiSequence *groupOneSeqs = alignment->Project (groupOne); assert (groupOneSeqs);
  MultiSequence *groupTwoSeqs = alignment->Project (groupTwo); assert (groupTwoSeqs);
  delete alignment;

  // realign
  alignment = AlignAlignments (groupOneSeqs, groupTwoSeqs, sparseMatrices, model);

  delete groupOneSeqs;
  delete groupTwoSeqs;
}

/////////////////////////////////////////////////////////////////
// WriteAnnotation()
//
// Computes annotation for multiple alignment and write values
// to a file.
/////////////////////////////////////////////////////////////////

void WriteAnnotation (MultiSequence *alignment, 
		      const SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices){
  ofstream outfile (annotationFilename.c_str());
  
  if (outfile.fail()){
    cerr << "ERROR: Unable to write annotation file." << endl;
    exit (1);
  }

  const int alignLength = alignment->GetSequence(0)->GetLength();
  const int numSeqs = alignment->GetNumSequences();
  
  SafeVector<int> position (numSeqs, 0);
  SafeVector<SafeVector<char>::iterator> seqs (numSeqs);
  for (int i = 0; i < numSeqs; i++) seqs[i] = alignment->GetSequence(i)->GetDataPtr();
  SafeVector<pair<int,int> > active;
  active.reserve (numSeqs);

  SafeVector<int> lab;
  for (int i = 0; i < numSeqs; i++) lab.push_back(alignment->GetSequence(i)->GetSortLabel());
  
  // for every column
  for (int i = 1; i <= alignLength; i++){
    
    // find all aligned residues in this particular column
    active.clear();
    for (int j = 0; j < numSeqs; j++){
      if (seqs[j][i] != '-'){
	active.push_back (make_pair(lab[j], ++position[j]));
      }
    }
    
    sort (active.begin(), active.end());
    outfile << setw(4) << ComputeScore (active, sparseMatrices) << endl;
  }
  
  outfile.close();
}

/////////////////////////////////////////////////////////////////
// ComputeScore()
//
// Computes the annotation score for a particular column.
/////////////////////////////////////////////////////////////////

int ComputeScore (const SafeVector<pair<int, int> > &active, 
		  const SafeVector<SafeVector<SparseMatrix *> > &sparseMatrices){

  if (active.size() <= 1) return 0;
  
  // ALTERNATIVE #1: Compute the average alignment score.

  float val = 0;
  for (int i = 0; i < (int) active.size(); i++){
    for (int j = i+1; j < (int) active.size(); j++){
      val += sparseMatrices[active[i].first][active[j].first]->GetValue(active[i].second, active[j].second);
    }
  }

  return (int) (200 * val / ((int) active.size() * ((int) active.size() - 1)));
  
}