1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
/////////////////////////////////////////////////////////////////
// SparseMatrix.h
//
// Sparse matrix computations
/////////////////////////////////////////////////////////////////
#ifndef SPARSEMATRIX_H
#define SPARSEMATRIX_H
#include <iostream>
using namespace std;
const float POSTERIOR_CUTOFF = 0.01; // minimum posterior probability
// value that is maintained in the
// sparse matrix representation
typedef pair<int,float> PIF; // Sparse matrix entry type
// first --> column
// second --> value
/////////////////////////////////////////////////////////////////
// SparseMatrix
//
// Class for sparse matrix computations
/////////////////////////////////////////////////////////////////
class SparseMatrix {
int seq1Length, seq2Length; // dimensions of matrix
VI rowSize; // rowSize[i] = # of cells in row i
SafeVector<PIF> data; // data values
SafeVector<SafeVector<PIF>::iterator> rowPtrs; // pointers to the beginning of each row
/////////////////////////////////////////////////////////////////
// SparseMatrix::SparseMatrix()
//
// Private constructor.
/////////////////////////////////////////////////////////////////
SparseMatrix (){}
public:
/////////////////////////////////////////////////////////////////
// SparseMatrix::SparseMatrix()
//
// Constructor. Builds a sparse matrix from a posterior matrix.
// Note that the expected format for the posterior matrix is as
// a (seq1Length+1) x (seq2Length+1) matrix where the 0th row
// and 0th column are ignored (they should contain all zeroes).
/////////////////////////////////////////////////////////////////
SparseMatrix (int seq1Length, int seq2Length, const VF &posterior) :
seq1Length (seq1Length), seq2Length (seq2Length) {
int numCells = 0;
assert (seq1Length > 0);
assert (seq2Length > 0);
// calculate memory required; count the number of cells in the
// posterior matrix above the threshold
VF::const_iterator postPtr = posterior.begin();
for (int i = 0; i <= seq1Length; i++){
for (int j = 0; j <= seq2Length; j++){
if (*(postPtr++) >= POSTERIOR_CUTOFF){
assert (i != 0 && j != 0);
numCells++;
}
}
}
// allocate memory
data.resize(numCells);
rowSize.resize (seq1Length + 1); rowSize[0] = -1;
rowPtrs.resize (seq1Length + 1); rowPtrs[0] = data.end();
// build sparse matrix
postPtr = posterior.begin() + seq2Length + 1; // note that we're skipping the first row here
SafeVector<PIF>::iterator dataPtr = data.begin();
for (int i = 1; i <= seq1Length; i++){
postPtr++; // and skipping the first column of each row
rowPtrs[i] = dataPtr;
for (int j = 1; j <= seq2Length; j++){
if (*postPtr >= POSTERIOR_CUTOFF){
dataPtr->first = j;
dataPtr->second = *postPtr;
dataPtr++;
}
postPtr++;
}
rowSize[i] = dataPtr - rowPtrs[i];
}
}
/////////////////////////////////////////////////////////////////
// SparseMatrix::GetRowPtr()
//
// Returns the pointer to a particular row in the sparse matrix.
/////////////////////////////////////////////////////////////////
SafeVector<PIF>::iterator GetRowPtr (int row) const {
assert (row >= 1 && row <= seq1Length);
return rowPtrs[row];
}
/////////////////////////////////////////////////////////////////
// SparseMatrix::GetValue()
//
// Returns value at a particular row, column.
/////////////////////////////////////////////////////////////////
float GetValue (int row, int col){
assert (row >= 1 && row <= seq1Length);
assert (col >= 1 && col <= seq2Length);
for (int i = 0; i < rowSize[row]; i++){
if (rowPtrs[row][i].first == col) return rowPtrs[row][i].second;
}
return 0;
}
/////////////////////////////////////////////////////////////////
// SparseMatrix::GetRowSize()
//
// Returns the number of entries in a particular row.
/////////////////////////////////////////////////////////////////
int GetRowSize (int row) const {
assert (row >= 1 && row <= seq1Length);
return rowSize[row];
}
/////////////////////////////////////////////////////////////////
// SparseMatrix::GetSeq1Length()
//
// Returns the first dimension of the matrix.
/////////////////////////////////////////////////////////////////
int GetSeq1Length () const {
return seq1Length;
}
/////////////////////////////////////////////////////////////////
// SparseMatrix::GetSeq2Length()
//
// Returns the second dimension of the matrix.
/////////////////////////////////////////////////////////////////
int GetSeq2Length () const {
return seq2Length;
}
/////////////////////////////////////////////////////////////////
// SparseMatrix::GetRowPtr
//
// Returns the pointer to a particular row in the sparse matrix.
/////////////////////////////////////////////////////////////////
int GetNumCells () const {
return data.size();
}
/////////////////////////////////////////////////////////////////
// SparseMatrix::Print()
//
// Prints out a sparse matrix.
/////////////////////////////////////////////////////////////////
void Print (ostream &outfile) const {
outfile << "Sparse Matrix:" << endl;
for (int i = 1; i <= seq1Length; i++){
outfile << " " << i << ":";
for (int j = 0; j < rowSize[i]; j++){
outfile << " (" << rowPtrs[i][j].first << "," << rowPtrs[i][j].second << ")";
}
outfile << endl;
}
}
/////////////////////////////////////////////////////////////////
// SparseMatrix::ComputeTranspose()
//
// Returns a new sparse matrix containing the transpose of the
// current matrix.
/////////////////////////////////////////////////////////////////
SparseMatrix *ComputeTranspose () const {
// create a new sparse matrix
SparseMatrix *ret = new SparseMatrix();
int numCells = data.size();
ret->seq1Length = seq2Length;
ret->seq2Length = seq1Length;
// allocate memory
ret->data.resize (numCells);
ret->rowSize.resize (seq2Length + 1); ret->rowSize[0] = -1;
ret->rowPtrs.resize (seq2Length + 1); ret->rowPtrs[0] = ret->data.end();
// compute row sizes
for (int i = 1; i <= seq2Length; i++) ret->rowSize[i] = 0;
for (int i = 0; i < numCells; i++)
ret->rowSize[data[i].first]++;
// compute row ptrs
for (int i = 1; i <= seq2Length; i++){
ret->rowPtrs[i] = (i == 1) ? ret->data.begin() : ret->rowPtrs[i-1] + ret->rowSize[i-1];
}
// now fill in data
SafeVector<SafeVector<PIF>::iterator> currPtrs = ret->rowPtrs;
for (int i = 1; i <= seq1Length; i++){
SafeVector<PIF>::iterator row = rowPtrs[i];
for (int j = 0; j < rowSize[i]; j++){
currPtrs[row[j].first]->first = i;
currPtrs[row[j].first]->second = row[j].second;
currPtrs[row[j].first]++;
}
}
return ret;
}
/////////////////////////////////////////////////////////////////
// SparseMatrix::GetPosterior()
//
// Return the posterior representation of the sparse matrix.
/////////////////////////////////////////////////////////////////
VF *GetPosterior () const {
// create a new posterior matrix
VF *posteriorPtr = new VF((seq1Length+1) * (seq2Length+1)); assert (posteriorPtr);
VF &posterior = *posteriorPtr;
// build the posterior matrix
for (int i = 0; i < (seq1Length+1) * (seq2Length+1); i++) posterior[i] = 0;
for (int i = 1; i <= seq1Length; i++){
VF::iterator postPtr = posterior.begin() + i * (seq2Length+1);
for (int j = 0; j < rowSize[i]; j++){
postPtr[rowPtrs[i][j].first] = rowPtrs[i][j].second;
}
}
return posteriorPtr;
}
};
#endif
|