File: base.py

package info (click to toggle)
progressbar2 4.5.0-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 1,216 kB
  • sloc: python: 8,001; makefile: 155
file content (623 lines) | stat: -rw-r--r-- 17,290 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
from __future__ import annotations

import abc
import collections
import colorsys
import enum
import threading
from collections import defaultdict

# Ruff is being stupid and doesn't understand `ClassVar` if it comes from the
# `types` module
from typing import ClassVar

from python_utils import converters, types

from .. import (
    base as pbase,
    env,
)
from .os_specific import getch

ESC = '\x1b'


class CSI:
    _code: str
    _template = ESC + '[{args}{code}'

    def __init__(self, code: str, *default_args) -> None:
        self._code = code
        self._default_args = default_args

    def __call__(self, *args):
        return self._template.format(
            args=';'.join(map(str, args or self._default_args)),
            code=self._code,
        )

    def __str__(self):
        return self()


class CSINoArg(CSI):
    def __call__(self):
        return super().__call__()


#: Cursor Position [row;column] (default = [1,1])
CUP: CSI = CSI('H', 1, 1)

#: Cursor Up Ps Times (default = 1) (CUU)
UP: CSI = CSI('A', 1)

#: Cursor Down Ps Times (default = 1) (CUD)
DOWN: CSI = CSI('B', 1)

#: Cursor Forward Ps Times (default = 1) (CUF)
RIGHT: CSI = CSI('C', 1)

#: Cursor Backward Ps Times (default = 1) (CUB)
LEFT: CSI = CSI('D', 1)

#: Cursor Next Line Ps Times (default = 1) (CNL)
#: Same as Cursor Down Ps Times
NEXT_LINE: CSI = CSI('E', 1)

#: Cursor Preceding Line Ps Times (default = 1) (CPL)
#: Same as Cursor Up Ps Times
PREVIOUS_LINE: CSI = CSI('F', 1)

#: Cursor Character Absolute  [column] (default = [row,1]) (CHA)
COLUMN: CSI = CSI('G', 1)

#: Erase in Display (ED)
CLEAR_SCREEN: CSI = CSI('J', 0)

#: Erase till end of screen
CLEAR_SCREEN_TILL_END: CSINoArg = CSINoArg('0J')

#: Erase till start of screen
CLEAR_SCREEN_TILL_START: CSINoArg = CSINoArg('1J')

#: Erase whole screen
CLEAR_SCREEN_ALL: CSINoArg = CSINoArg('2J')

#: Erase whole screen and history
CLEAR_SCREEN_ALL_AND_HISTORY: CSINoArg = CSINoArg('3J')

#: Erase in Line (EL)
CLEAR_LINE_ALL: CSI = CSI('K')

#: Erase in Line from Cursor to End of Line (default)
CLEAR_LINE_RIGHT: CSINoArg = CSINoArg('0K')

#: Erase in Line from Cursor to Beginning of Line
CLEAR_LINE_LEFT: CSINoArg = CSINoArg('1K')

#: Erase Line containing Cursor
CLEAR_LINE: CSINoArg = CSINoArg('2K')

#: Scroll up Ps lines (default = 1) (SU)
#: Scroll down Ps lines (default = 1) (SD)
SCROLL_UP: CSI = CSI('S')
SCROLL_DOWN: CSI = CSI('T')

#: Save Cursor Position (SCP)
SAVE_CURSOR: CSINoArg = CSINoArg('s')

#: Restore Cursor Position (RCP)
RESTORE_CURSOR: CSINoArg = CSINoArg('u')

#: Cursor Visibility (DECTCEM)
HIDE_CURSOR: CSINoArg = CSINoArg('?25l')
SHOW_CURSOR: CSINoArg = CSINoArg('?25h')


#
# UP = CSI + '{n}A'  # Cursor Up
# DOWN = CSI + '{n}B'  # Cursor Down
# RIGHT = CSI + '{n}C'  # Cursor Forward
# LEFT = CSI + '{n}D'  # Cursor Backward
# NEXT = CSI + '{n}E'  # Cursor Next Line
# PREV = CSI + '{n}F'  # Cursor Previous Line
# MOVE_COLUMN = CSI + '{n}G'  # Cursor Horizontal Absolute
# MOVE = CSI + '{row};{column}H'  # Cursor Position [row;column] (default = [
# 1,1])
#
# CLEAR = CSI + '{n}J'  # Clear (part of) the screen
# CLEAR_BOTTOM = CLEAR.format(n=0)  # Clear from cursor to end of screen
# CLEAR_TOP = CLEAR.format(n=1)  # Clear from cursor to beginning of screen
# CLEAR_SCREEN = CLEAR.format(n=2)  # Clear Screen
# CLEAR_WIPE = CLEAR.format(n=3)  # Clear Screen and scrollback buffer
#
# CLEAR_LINE = CSI + '{n}K'  # Erase in Line
# CLEAR_LINE_RIGHT = CLEAR_LINE.format(n=0)  # Clear from cursor to end of line
# CLEAR_LINE_LEFT = CLEAR_LINE.format(n=1)  # Clear from cursor to beginning
# of line
# CLEAR_LINE_ALL = CLEAR_LINE.format(n=2)  # Clear Line


def clear_line(n):
    return UP(n) + CLEAR_LINE_ALL() + DOWN(n)


# Report Cursor Position (CPR), response = [row;column] as row;columnR
class _CPR(str):  # pragma: no cover
    _response_lock = threading.Lock()

    def __call__(self, stream) -> tuple[int, int]:
        res: str = ''

        with self._response_lock:
            stream.write(str(self))
            stream.flush()

            while not res.endswith('R'):
                char = getch()

                if char is not None:
                    res += char

            res_list = res[2:-1].split(';')

            res_list = tuple(
                int(item) if item.isdigit() else item for item in res_list
            )

            if len(res_list) == 1:
                return types.cast(types.Tuple[int, int], res_list[0])

            return types.cast(types.Tuple[int, int], tuple(res_list))

    def row(self, stream) -> int:
        row, _ = self(stream)
        return row

    def column(self, stream) -> int:
        _, column = self(stream)
        return column


class WindowsColors(enum.Enum):
    BLACK = 0, 0, 0
    BLUE = 0, 0, 128
    GREEN = 0, 128, 0
    CYAN = 0, 128, 128
    RED = 128, 0, 0
    MAGENTA = 128, 0, 128
    YELLOW = 128, 128, 0
    GREY = 192, 192, 192
    INTENSE_BLACK = 128, 128, 128
    INTENSE_BLUE = 0, 0, 255
    INTENSE_GREEN = 0, 255, 0
    INTENSE_CYAN = 0, 255, 255
    INTENSE_RED = 255, 0, 0
    INTENSE_MAGENTA = 255, 0, 255
    INTENSE_YELLOW = 255, 255, 0
    INTENSE_WHITE = 255, 255, 255

    @staticmethod
    def from_rgb(rgb: types.Tuple[int, int, int]) -> WindowsColors:
        """
        Find the closest WindowsColors to the given RGB color.

        >>> WindowsColors.from_rgb((0, 0, 0))
        <WindowsColors.BLACK: (0, 0, 0)>

        >>> WindowsColors.from_rgb((255, 255, 255))
        <WindowsColors.INTENSE_WHITE: (255, 255, 255)>

        >>> WindowsColors.from_rgb((0, 255, 0))
        <WindowsColors.INTENSE_GREEN: (0, 255, 0)>

        >>> WindowsColors.from_rgb((45, 45, 45))
        <WindowsColors.BLACK: (0, 0, 0)>

        >>> WindowsColors.from_rgb((128, 0, 128))
        <WindowsColors.MAGENTA: (128, 0, 128)>
        """

        def color_distance(rgb1, rgb2):
            return sum((c1 - c2) ** 2 for c1, c2 in zip(rgb1, rgb2))

        return min(
            WindowsColors,
            key=lambda color: color_distance(color.value, rgb),
        )


class WindowsColor:
    """
    Windows compatible color class for when ANSI is not supported.
    Currently a no-op because it is not possible to buffer these colors.

    >>> WindowsColor(WindowsColors.RED)('test')
    'test'
    """

    __slots__ = ('color',)

    def __init__(self, color: Color) -> None:
        self.color = color

    def __call__(self, text):
        return text
        ## In the future we might want to use this, but it requires direct
        ## printing to stdout and all of our surrounding functions expect
        ## buffered output so it's not feasible right now. Additionally,
        ## recent Windows versions all support ANSI codes without issue so
        ## there is little need.
        # from progressbar.terminal.os_specific import windows
        # windows.print_color(text, WindowsColors.from_rgb(self.color.rgb))


class RGB(collections.namedtuple('RGB', ['red', 'green', 'blue'])):
    __slots__ = ()

    def __str__(self):
        return self.rgb

    @property
    def rgb(self) -> str:
        return f'rgb({self.red}, {self.green}, {self.blue})'

    @property
    def hex(self) -> str:
        return f'#{self.red:02x}{self.green:02x}{self.blue:02x}'

    @property
    def to_ansi_16(self) -> int:
        # Using int instead of round because it maps slightly better
        red = int(self.red / 255)
        green = int(self.green / 255)
        blue = int(self.blue / 255)
        return (blue << 2) | (green << 1) | red

    @property
    def to_ansi_256(self) -> int:
        red = round(self.red / 255 * 5)
        green = round(self.green / 255 * 5)
        blue = round(self.blue / 255 * 5)
        return 16 + 36 * red + 6 * green + blue

    @property
    def to_windows(self):
        """
        Convert an RGB color (0-255 per channel) to the closest color in the
        Windows 16 color scheme.
        """
        return WindowsColors.from_rgb((self.red, self.green, self.blue))

    def interpolate(self, end: RGB, step: float) -> RGB:
        return RGB(
            int(self.red + (end.red - self.red) * step),
            int(self.green + (end.green - self.green) * step),
            int(self.blue + (end.blue - self.blue) * step),
        )


class HSL(collections.namedtuple('HSL', ['hue', 'saturation', 'lightness'])):
    """
    Hue, Saturation, Lightness color.

    Hue is a value between 0 and 360, saturation and lightness are between 0(%)
    and 100(%).

    """

    __slots__ = ()

    @classmethod
    def from_rgb(cls, rgb: RGB) -> HSL:
        """
        Convert a 0-255 RGB color to a 0-255 HLS color.
        """
        hls = colorsys.rgb_to_hls(
            rgb.red / 255,
            rgb.green / 255,
            rgb.blue / 255,
        )
        return cls(
            round(hls[0] * 360),
            round(hls[2] * 100),
            round(hls[1] * 100),
        )

    def interpolate(self, end: HSL, step: float) -> HSL:
        return HSL(
            self.hue + (end.hue - self.hue) * step,
            self.lightness + (end.lightness - self.lightness) * step,
            self.saturation + (end.saturation - self.saturation) * step,
        )


class ColorBase(abc.ABC):
    def get_color(self, value: float) -> Color:
        raise NotImplementedError()


class Color(
    collections.namedtuple(
        'Color',
        [
            'rgb',
            'hls',
            'name',
            'xterm',
        ],
    ),
    ColorBase,
):
    """
    Color base class.

    This class contains the colors in RGB (Red, Green, Blue), HSL (Hue,
    Lightness, Saturation) and Xterm (8-bit) formats. It also contains the
    color name.

    To make a custom color the only required arguments are the RGB values.
    The other values will be automatically interpolated from that if needed,
    but you can be more explicitly if you wish.
    """

    __slots__ = ()

    def __call__(self, value: str) -> str:
        return self.fg(value)

    @property
    def fg(self) -> SGRColor | WindowsColor:
        if env.COLOR_SUPPORT is env.ColorSupport.WINDOWS:
            return WindowsColor(self)
        else:
            return SGRColor(self, 38, 39)

    @property
    def bg(self) -> DummyColor | SGRColor:
        if env.COLOR_SUPPORT is env.ColorSupport.WINDOWS:
            return DummyColor()
        else:
            return SGRColor(self, 48, 49)

    @property
    def underline(self) -> DummyColor | SGRColor:
        if env.COLOR_SUPPORT is env.ColorSupport.WINDOWS:
            return DummyColor()
        else:
            return SGRColor(self, 58, 59)

    @property
    def ansi(self) -> types.Optional[str]:
        if (
            env.COLOR_SUPPORT is env.ColorSupport.XTERM_TRUECOLOR
        ):  # pragma: no branch
            return f'2;{self.rgb.red};{self.rgb.green};{self.rgb.blue}'

        if self.xterm:  # pragma: no branch
            color = self.xterm
        elif (
            env.COLOR_SUPPORT is env.ColorSupport.XTERM_256
        ):  # pragma: no branch
            color = self.rgb.to_ansi_256
        elif env.COLOR_SUPPORT is env.ColorSupport.XTERM:  # pragma: no branch
            color = self.rgb.to_ansi_16
        else:  # pragma: no branch
            return None

        return f'5;{color}'

    def interpolate(self, end: Color, step: float) -> Color:
        return Color(
            self.rgb.interpolate(end.rgb, step),
            self.hls.interpolate(end.hls, step),
            self.name if step < 0.5 else end.name,
            self.xterm if step < 0.5 else end.xterm,
        )

    def __str__(self):
        return self.name

    def __repr__(self) -> str:
        return f'{self.__class__.__name__}({self.name!r})'

    def __hash__(self) -> int:
        return hash(self.rgb)


class Colors:
    by_name: ClassVar[defaultdict[str, types.List[Color]]] = (
        collections.defaultdict(list)
    )
    by_lowername: ClassVar[defaultdict[str, types.List[Color]]] = (
        collections.defaultdict(list)
    )
    by_hex: ClassVar[defaultdict[str, types.List[Color]]] = (
        collections.defaultdict(list)
    )
    by_rgb: ClassVar[defaultdict[RGB, types.List[Color]]] = (
        collections.defaultdict(list)
    )
    by_hls: ClassVar[defaultdict[HSL, types.List[Color]]] = (
        collections.defaultdict(list)
    )
    by_xterm: ClassVar[dict[int, Color]] = dict()

    @classmethod
    def register(
        cls,
        rgb: RGB,
        hls: types.Optional[HSL] = None,
        name: types.Optional[str] = None,
        xterm: types.Optional[int] = None,
    ) -> Color:
        color = Color(rgb, hls, name, xterm)

        if name:
            cls.by_name[name].append(color)
            cls.by_lowername[name.lower()].append(color)

        if hls is None:
            hls = HSL.from_rgb(rgb)

        cls.by_hex[rgb.hex].append(color)
        cls.by_rgb[rgb].append(color)
        cls.by_hls[hls].append(color)

        if xterm is not None:
            cls.by_xterm[xterm] = color

        return color

    @classmethod
    def interpolate(cls, color_a: Color, color_b: Color, step: float) -> Color:
        return color_a.interpolate(color_b, step)


class ColorGradient(ColorBase):
    def __init__(self, *colors: Color, interpolate=Colors.interpolate) -> None:
        assert colors
        self.colors = colors
        self.interpolate = interpolate

    def __call__(self, value: float) -> Color:
        return self.get_color(value)

    def get_color(self, value: float) -> Color:
        "Map a value from 0 to 1 to a color."
        if (
            value == pbase.Undefined
            or value == pbase.UnknownLength
            or value <= 0
        ):
            return self.colors[0]
        elif value >= 1:
            return self.colors[-1]

        max_color_idx = len(self.colors) - 1
        if max_color_idx == 0:
            return self.colors[0]
        elif self.interpolate:
            if max_color_idx > 1:
                index = round(
                    converters.remap(value, 0, 1, 0, max_color_idx - 1),
                )
            else:
                index = 0

            step = converters.remap(
                value,
                index / (max_color_idx),
                (index + 1) / (max_color_idx),
                0,
                1,
            )
            color = self.interpolate(
                self.colors[index],
                self.colors[index + 1],
                float(step),
            )
        else:
            index = round(converters.remap(value, 0, 1, 0, max_color_idx))
            color = self.colors[index]

        return color


OptionalColor = types.Union[Color, ColorGradient, None]


def get_color(value: float, color: OptionalColor) -> Color | None:
    if isinstance(color, ColorGradient):
        color = color(value)
    return color


def apply_colors(
    text: str,
    percentage: float | None = None,
    *,
    fg: OptionalColor = None,
    bg: OptionalColor = None,
    fg_none: Color | None = None,
    bg_none: Color | None = None,
    **kwargs: types.Any,
) -> str:
    """Apply colors/gradients to a string depending on the given percentage.

    When percentage is `None`, the `fg_none` and `bg_none` colors will be used.
    Otherwise, the `fg` and `bg` colors will be used. If the colors are
    gradients, the color will be interpolated depending on the percentage.
    """
    if percentage is None:
        if fg_none is not None:
            text = fg_none.fg(text)
        if bg_none is not None:
            text = bg_none.bg(text)
    elif fg is not None or bg is not None:
        fg = get_color(percentage * 0.01, fg)
        bg = get_color(percentage * 0.01, bg)

        if fg is not None:  # pragma: no branch
            text = fg.fg(text)
        if bg is not None:  # pragma: no branch
            text = bg.bg(text)

    return text


class DummyColor:
    def __call__(self, text):
        return text

    def __repr__(self) -> str:
        return 'DummyColor()'


class SGR(CSI):
    _start_code: int
    _end_code: int
    _code = 'm'
    __slots__ = '_start_code', '_end_code'

    def __init__(self, start_code: int, end_code: int) -> None:
        self._start_code = start_code
        self._end_code = end_code

    @property
    def _start_template(self):
        return super().__call__(self._start_code)

    @property
    def _end_template(self):
        return super().__call__(self._end_code)

    def __call__(self, text, *args):
        return self._start_template + text + self._end_template


class SGRColor(SGR):
    __slots__ = '_color', '_start_code', '_end_code'

    def __init__(self, color: Color, start_code: int, end_code: int) -> None:
        self._color = color
        super().__init__(start_code, end_code)

    @property
    def _start_template(self):
        return CSI.__call__(self, self._start_code, self._color.ansi)


encircled: SGR = SGR(52, 54)
framed: SGR = SGR(51, 54)
overline: SGR = SGR(53, 55)
bold: SGR = SGR(1, 22)
gothic: SGR = SGR(20, 10)
italic: SGR = SGR(3, 23)
strike_through: SGR = SGR(9, 29)
fast_blink: SGR = SGR(6, 25)
slow_blink: SGR = SGR(5, 25)
underline: SGR = SGR(4, 24)
double_underline: SGR = SGR(21, 24)
faint: SGR = SGR(2, 22)
inverse: SGR = SGR(7, 27)