File: __init__.py

package info (click to toggle)
prometheus-flask-exporter 0.23.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 896 kB
  • sloc: python: 2,889; sh: 709; makefile: 4
file content (1027 lines) | stat: -rw-r--r-- 38,025 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
import functools
import inspect
import os
import re
import sys
import threading
import warnings
from timeit import default_timer

from flask import Flask, Response
from flask import request, make_response, current_app
from flask.views import MethodView
from prometheus_client import Counter, Histogram, Gauge, Summary
from prometheus_client import multiprocess as pc_multiprocess, CollectorRegistry
try:
    # prometheus-client >= 0.14.0
    from prometheus_client.exposition import choose_encoder
except ImportError:
    # prometheus-client < 0.14.0
    from prometheus_client.exposition import choose_formatter as choose_encoder

from werkzeug.serving import is_running_from_reloader

if sys.version_info[0:2] >= (3, 4):
    # Python v3.4+ has a built-in has __wrapped__ attribute
    wraps = functools.wraps
else:
    # in previous Python version we have to set the missing attribute
    def wraps(wrapped, assigned=functools.WRAPPER_ASSIGNMENTS,
              updated=functools.WRAPPER_UPDATES):
        def wrapper(f):
            f = functools.wraps(wrapped, assigned, updated)(f)
            f.__wrapped__ = wrapped
            return f

        return wrapper

try:
    # try to convert http.HTTPStatus to int status codes
    from http import HTTPStatus

    def _to_status_code(response_status):
        if isinstance(response_status, HTTPStatus):
            return response_status.value
        else:
            return response_status
except ImportError:
    # otherwise simply use the status as is
    def _to_status_code(response_status):
        return response_status

NO_PREFIX = '#no_prefix'
"""
Constant indicating that default metrics should not have any prefix applied.
It purposely uses invalid characters defined for metrics names as specified in Prometheus
documentation (see: https://prometheus.io/docs/concepts/data_model/#metric-names-and-labels)
"""


class PrometheusMetrics:
    """
    Prometheus metrics export configuration for Flask.

    The default metrics include a Histogram for HTTP request latencies
    and number of HTTP requests plus a Counter for the total number
    of HTTP requests.

    Sample usage:

        app = Flask(__name__)
        metrics = PrometheusMetrics(app)

        # static information as metric
        metrics.info('app_info', 'Application info', version='1.0.3')

        @app.route('/')
        def main():
            pass  # requests tracked by default

        @app.route('/skip')
        @metrics.do_not_track()
        def skip():
            pass  # default metrics are not collected

        @app.route('/<item_type>')
        @metrics.do_not_track()
        @metrics.counter('invocation_by_type', 'Number of invocations by type',
                 labels={'item_type': lambda: request.view_args['type']})
        def by_type(item_type):
            pass  # only the counter is collected, not the default metrics

        @app.route('/long-running')
        @metrics.gauge('in_progress', 'Long running requests in progress')
        def long_running():
            pass

        @app.route('/status/<int:status>')
        @metrics.do_not_track()
        @metrics.summary('requests_by_status', 'Request latencies by status',
                         labels={'status': lambda r: r.status_code})
        @metrics.histogram('requests_by_status_and_path', 'Request latencies by status and path',
                           labels={'status': lambda r: r.status_code, 'path': lambda: request.path})
        def echo_status(status):
            return 'Status: %s' % status, status

    Label values can be defined as callables:

        - With a single argument that will be the Flask Response object
        - Without an argument, possibly to use with the Flask `request` object
    """

    def __init__(self, app,
                 path='/metrics',
                 export_defaults=True,
                 defaults_prefix='flask',
                 group_by='path',
                 buckets=None,
                 default_latency_as_histogram=True,
                 default_labels=None,
                 response_converter=None,
                 excluded_paths=None,
                 exclude_user_defaults=True,
                 metrics_decorator=None,
                 registry=None, **kwargs):
        """
        Create a new Prometheus metrics export configuration.

        :param app: the Flask application
        :param path: the metrics path (defaults to `/metrics`)
        :param export_defaults: expose all HTTP request latencies
            and number of HTTP requests
        :param defaults_prefix: string to prefix the default exported
            metrics name with (when either `export_defaults=True` or
            `export_defaults(..)` is called) or in case you don't want
            any prefix then use `NO_PREFIX` constant
        :param group_by: group default HTTP metrics by
            this request property, like `path`, `endpoint`, `url_rule`, etc.
            (defaults to `path`)
        :param buckets: the time buckets for request latencies
            (will use the default when `None`)
        :param default_latency_as_histogram: export request latencies
            as a Histogram (defaults), otherwise use a Summary
        :param default_labels: default labels to attach to each of the
            metrics exposed by this `PrometheusMetrics` instance
        :param response_converter: a function that converts the captured
            the produced response object to a Flask friendly representation
        :param metrics_decorator: an optional decorator to apply to the
            metrics endpoint, takes a function and needs to return a function
        :param excluded_paths: regular expression(s) as a string or
            a list of strings for paths to exclude from tracking
        :param exclude_user_defaults: also apply the `excluded_paths`
            exclusions to user-defined defaults (not only built-in ones)
        :param registry: the Prometheus Registry to use
        """

        self.app = app
        self.path = path
        self._export_defaults = export_defaults
        self._defaults_prefix = defaults_prefix or 'flask'
        self._default_labels = default_labels or {}
        self._default_latency_as_histogram = default_latency_as_histogram
        self._response_converter = response_converter or make_response
        self._metrics_decorator = metrics_decorator
        self.buckets = buckets
        self.version = __version__

        if registry:
            self.registry = registry
        else:
            # load the default registry from the underlying
            # Prometheus library here for easier unit testing
            # see https://github.com/rycus86/prometheus_flask_exporter/pull/20
            from prometheus_client import REGISTRY as DEFAULT_REGISTRY
            self.registry = DEFAULT_REGISTRY

        if kwargs.get('static_labels'):
            warnings.warn(
                'The `static_labels` argument of `PrometheusMetrics` is '
                'deprecated since 0.15.0, please use the '
                'new `default_labels` argument.', DeprecationWarning
            )

            for key, value in kwargs.get('static_labels', dict()).items():
                if key not in self._default_labels:
                    self._default_labels[key] = value

        if kwargs.get('group_by_endpoint') is True:
            warnings.warn(
                'The `group_by_endpoint` argument of `PrometheusMetrics` is '
                'deprecated since 0.4.0, please use the '
                'new `group_by` argument.', DeprecationWarning
            )

            self.group_by = 'endpoint'

        elif group_by:
            self.group_by = group_by

        else:
            self.group_by = 'path'

        if excluded_paths:
            if PrometheusMetrics._is_string(excluded_paths):
                excluded_paths = [excluded_paths]

            self.excluded_paths = [
                re.compile(p) for p in excluded_paths
            ]
        else:
            self.excluded_paths = None

        self.exclude_user_defaults = exclude_user_defaults

        if app is not None:
            self.init_app(app)

    @classmethod
    def for_app_factory(cls, **kwargs):
        """
        A convenience method to create a new instance that is
        suitable for Flask "app factory" configurations. Please
        see: http://flask.pocoo.org/docs/1.0/patterns/appfactories/

        Note, that you will need to call `init_app(...)` later
        with the Flask application as its parameter.

        This method takes the same keyword arguments as the
        default constructor.
        """

        return cls(app=None, **kwargs)

    def init_app(self, app):
        """
        This callback can be used to initialize an application for the
        use with this prometheus reporter setup.

        This is usually used with a Flask "app factory" configuration.
        Please see: http://flask.pocoo.org/docs/1.0/patterns/appfactories/

        Note, that you need to use `PrometheusMetrics.for_app_factory()`
        for this mode, otherwise it is called automatically.

        :param app: the Flask application
        """

        if self.path:
            self.register_endpoint(self.path, app)

        if self._export_defaults:
            self.export_defaults(
                buckets=self.buckets, group_by=self.group_by,
                latency_as_histogram=self._default_latency_as_histogram,
                prefix=self._defaults_prefix, app=app
            )

    def register_endpoint(self, path, app=None):
        """
        Register the metrics endpoint on the Flask application.

        :param path: the path of the endpoint
        :param app: the Flask application to register the endpoint on
            (by default it is the application registered with this class)
        """

        if app is None:
            app = self.app or current_app

        if is_running_from_reloader() and not os.environ.get('DEBUG_METRICS'):
            app.logger.debug(
                'Metrics are disabled when run in the Flask development server'
                ' with reload enabled. Set the environment variable'
                ' DEBUG_METRICS=1 to enable them anyway.'
            )
            return

        @self.do_not_track()
        def prometheus_metrics():
            accept_header = request.headers.get("Accept")
            if 'name[]' in request.args:
                names = request.args.getlist('name[]')
            else:
                names = None

            generated_data, content_type = self.generate_metrics(accept_header, names)
            headers = {'Content-Type': content_type}
            return generated_data, 200, headers

        # apply any user supplied decorators, like authentication
        if self._metrics_decorator:
            prometheus_metrics = self._metrics_decorator(prometheus_metrics)

        # apply the Flask route decorator on our metrics endpoint
        app.route(path)(prometheus_metrics)

    def generate_metrics(self, accept_header=None, names=None):
        """
        Generate the metrics output for Prometheus to consume.
        This can be exposed on a dedicated server, or on the Flask app, or for
        local development you can use the shorthand method to expose it on a
        new Flask app, see `PrometheusMetrics.start_http_server()`.

        :param accept_header: The value of the HTTP Accept request header
            (default `None`)
        :param names: Names to only return samples for, must be a list of
            strings if not `None` (default `None`)
        :return: a tuple of response content and response content type
            (both `str` types)
        """

        if 'PROMETHEUS_MULTIPROC_DIR' in os.environ or 'prometheus_multiproc_dir' in os.environ:
            registry = CollectorRegistry()
        else:
            registry = self.registry

        if names:
            registry = registry.restricted_registry(names)

        if 'PROMETHEUS_MULTIPROC_DIR' in os.environ or 'prometheus_multiproc_dir' in os.environ:
            pc_multiprocess.MultiProcessCollector(registry)

        generate_latest, content_type = choose_encoder(accept_header)
        generated_content = generate_latest(registry).decode('utf-8')
        return generated_content, content_type

    def start_http_server(self, port, host='0.0.0.0', endpoint='/metrics', ssl=None):
        """
        Start an HTTP server for exposing the metrics.
        This will be an individual Flask application,
        not the one registered with this class.

        :param port: the HTTP port to expose the metrics endpoint on
        :param host: the HTTP host to listen on (default: `0.0.0.0`)
        :param endpoint: the URL path to expose the endpoint on
            (default: `/metrics`)
        :param ssl: enable SSL to http server
            It expects a dict with 2 keys: `cert` and `key` with
            certificate and key paths.
            Default: `None`
        """

        if is_running_from_reloader():
            return

        app = Flask('prometheus-flask-exporter-%d' % port)
        self.register_endpoint(endpoint, app)

        def run_app():
            if ssl is None:
                app.run(host=host, port=port)
            else:
                app.run(host=host, port=port, ssl_context=(ssl["cert"], ssl["key"]))

        thread = threading.Thread(target=run_app)
        thread.daemon = True
        thread.start()

    def export_defaults(self, buckets=None, group_by='path',
                        latency_as_histogram=True,
                        prefix='flask', app=None, **kwargs):
        """
        Export the default metrics:
            - HTTP request latencies
            - HTTP request exceptions
            - Number of HTTP requests

        :param buckets: the time buckets for request latencies
            (will use the default when `None`)
        :param group_by: group default HTTP metrics by
            this request property, like `path`, `endpoint`, `rule`, etc.
            (defaults to `path`)
        :param latency_as_histogram: export request latencies
            as a Histogram, otherwise use a Summary instead
            (defaults to `True` to export as a Histogram)
        :param prefix: prefix to start the default metrics names with
            or `NO_PREFIX` (to skip prefix)
        :param app: the Flask application
        """

        if app is None:
            app = self.app or current_app

        if not prefix:
            prefix = self._defaults_prefix or 'flask'

        if kwargs.get('group_by_endpoint') is True:
            warnings.warn(
                'The `group_by_endpoint` argument of '
                '`PrometheusMetrics.export_defaults` is deprecated since 0.4.0, '
                'please use the new `group_by` argument.', DeprecationWarning
            )

            duration_group = 'endpoint'

        elif group_by:
            duration_group = group_by

        else:
            duration_group = 'path'

        if callable(duration_group):
            duration_group_name = duration_group.__name__

        else:
            duration_group_name = duration_group

        if prefix == NO_PREFIX:
            prefix = ""
        else:
            prefix = prefix + "_"

        try:
            self.info(
                '%sexporter_info' % prefix,
                'Information about the Prometheus Flask exporter',
                version=self.version
            )
        except ValueError:
            return  # looks like we have already exported the default metrics

        labels = self._get_combined_labels(None)

        if latency_as_histogram:
            # use the default buckets from prometheus_client if not given here
            buckets_as_kwargs = {}
            if buckets is not None:
                buckets_as_kwargs['buckets'] = buckets

            request_duration_metric = Histogram(
                '%shttp_request_duration_seconds' % prefix,
                'Flask HTTP request duration in seconds',
                ('method', duration_group_name, 'status') + labels.keys(),
                registry=self.registry,
                **buckets_as_kwargs
            )

        else:
            # export as Summary instead
            request_duration_metric = Summary(
                '%shttp_request_duration_seconds' % prefix,
                'Flask HTTP request duration in seconds',
                ('method', duration_group_name, 'status') + labels.keys(),
                registry=self.registry
            )

        counter_labels = ('method', 'status') + labels.keys()
        request_total_metric = Counter(
            '%shttp_request_total' % prefix,
            'Total number of HTTP requests',
            counter_labels,
            registry=self.registry
        )

        request_exceptions_metric = Counter(
            '%shttp_request_exceptions_total' % prefix,
            'Total number of HTTP requests which resulted in an exception',
            counter_labels,
            registry=self.registry
        )

        def before_request():
            request.prom_start_time = default_timer()

        def after_request(response):
            if hasattr(request, 'prom_do_not_track') or hasattr(request, 'prom_exclude_all'):
                return response

            if self.excluded_paths:
                if any(pattern.match(request.path) for pattern in self.excluded_paths):
                    return response

            if hasattr(request, 'prom_start_time') and self._not_yet_handled('duration_reported'):
                total_time = max(default_timer() - request.prom_start_time, 0)

                if callable(duration_group):
                    group = duration_group(request)
                else:
                    group = getattr(request, duration_group)

                request_duration_labels = {
                    'method': request.method,
                    'status': _to_status_code(response.status_code),
                    duration_group_name: group
                }
                request_duration_labels.update(labels.values_for(response))

                request_duration_metric.labels(**request_duration_labels).observe(total_time)

            if self._not_yet_handled('total_reported'):
                request_total_metric.labels(
                    method=request.method, status=_to_status_code(response.status_code),
                    **labels.values_for(response)
                ).inc()

            return response

        def teardown_request(exception=None):
            if not exception or hasattr(request, 'prom_do_not_track') or hasattr(request, 'prom_exclude_all'):
                return

            if self.excluded_paths:
                if any(pattern.match(request.path) for pattern in self.excluded_paths):
                    return

            response = make_response('Exception: %s' % exception, 500)

            if callable(duration_group):
                group = duration_group(request)
            else:
                group = getattr(request, duration_group)

            request_exceptions_metric.labels(
                method=request.method, status=500,
                **labels.values_for(response)
            ).inc()

            if hasattr(request, 'prom_start_time') and self._not_yet_handled('duration_reported'):
                total_time = max(default_timer() - request.prom_start_time, 0)

                request_duration_labels = {
                    'method': request.method,
                    'status': 500,
                    duration_group_name: group
                }
                request_duration_labels.update(labels.values_for(response))

                request_duration_metric.labels(**request_duration_labels).observe(total_time)

            if self._not_yet_handled('total_reported'):
                request_total_metric.labels(
                    method=request.method, status=500,
                    **labels.values_for(response)
                ).inc()

            return

        app.before_request(before_request)
        app.after_request(after_request)
        app.teardown_request(teardown_request)

    def register_default(self, *metric_wrappers, **kwargs):
        """
        Registers metric wrappers to track all endpoints,
        similar to `export_defaults` but with user defined metrics.
        Call this function after all routes have been set up.

        Use the metric wrappers as arguments:
          - metrics.counter(..)
          - metrics.gauge(..)
          - metrics.summary(..)
          - metrics.histogram(..)

        :param metric_wrappers: one or more metric wrappers to register
            for all available endpoints
        :param app: the Flask application to register the default metric for
            (by default it is the application registered with this class)
        """

        app = kwargs.get('app')
        if app is None:
            app = self.app or current_app

        for endpoint, view_func in app.view_functions.items():
            for wrapper in metric_wrappers:
                view_func = wrapper(view_func)
                app.view_functions[endpoint] = view_func

    def histogram(self, name, description, labels=None, initial_value_when_only_static_labels=True, **kwargs):
        """
        Use a Histogram to track the execution time and invocation count
        of the method.

        :param name: the name of the metric
        :param description: the description of the metric
        :param labels: a dictionary of `{labelname: callable_or_value}` for labels
        :param initial_value_when_only_static_labels: whether to give metric an initial value
            when only static labels are present
        :param kwargs: additional keyword arguments for creating the Histogram
        """

        return self._track(
            Histogram,
            lambda metric, time: metric.observe(time),
            kwargs, name, description, labels,
            initial_value_when_only_static_labels=initial_value_when_only_static_labels,
            registry=self.registry
        )

    def summary(self, name, description, labels=None, initial_value_when_only_static_labels=True, **kwargs):
        """
        Use a Summary to track the execution time and invocation count
        of the method.

        :param name: the name of the metric
        :param description: the description of the metric
        :param labels: a dictionary of `{labelname: callable_or_value}` for labels
        :param initial_value_when_only_static_labels: whether to give metric an initial value
            when only static labels are present
        :param kwargs: additional keyword arguments for creating the Summary
        """

        return self._track(
            Summary,
            lambda metric, time: metric.observe(time),
            kwargs, name, description, labels,
            initial_value_when_only_static_labels=initial_value_when_only_static_labels,
            registry=self.registry
        )

    def gauge(self, name, description, labels=None, initial_value_when_only_static_labels=True, **kwargs):
        """
        Use a Gauge to track the number of invocations in progress
        for the method.

        :param name: the name of the metric
        :param description: the description of the metric
        :param labels: a dictionary of `{labelname: callable_or_value}` for labels
        :param initial_value_when_only_static_labels: whether to give metric an initial value
            when only static labels are present
        :param kwargs: additional keyword arguments for creating the Gauge
        """

        return self._track(
            Gauge,
            lambda metric, time: metric.dec(),
            kwargs, name, description, labels,
            initial_value_when_only_static_labels=initial_value_when_only_static_labels,
            registry=self.registry,
            before=lambda metric: metric.inc(),
            revert_when_not_tracked=lambda metric: metric.dec()
        )

    def counter(self, name, description, labels=None, initial_value_when_only_static_labels=True, **kwargs):
        """
        Use a Counter to track the total number of invocations of the method.

        :param name: the name of the metric
        :param description: the description of the metric
        :param labels: a dictionary of `{labelname: callable_or_value}` for labels
        :param initial_value_when_only_static_labels: whether to give metric an initial value
            when only static labels are present
        :param kwargs: additional keyword arguments for creating the Counter
        """

        return self._track(
            Counter,
            lambda metric, time: metric.inc(),
            kwargs,
            name,
            description,
            labels,
            initial_value_when_only_static_labels=initial_value_when_only_static_labels,
            registry=self.registry
        )

    def _track(self, metric_type, metric_call, metric_kwargs, name, description, labels,
               initial_value_when_only_static_labels, registry, before=None, revert_when_not_tracked=None):
        """
        Internal method decorator logic.

        :param metric_type: the type of the metric from the `prometheus_client` library
        :param metric_call: the invocation to execute as a callable with `(metric, time)`
        :param metric_kwargs: additional keyword arguments for creating the metric
        :param name: the name of the metric
        :param description: the description of the metric
        :param labels: a dictionary of `{labelname: callable_or_value}` for labels
        :param initial_value_when_only_static_labels: whether to give metric an initial value
            when only static labels are present
        :param registry: the Prometheus Registry to use
        :param before: an optional callable to invoke before executing the
            request handler method accepting the single `metric` argument
        :param revert_when_not_tracked: an optional callable to invoke when
            a non-tracked endpoint is being handled to undo any actions already
            done on it, accepts a single `metric` argument
        """

        if labels is not None and not isinstance(labels, dict):
            raise TypeError('labels needs to be a dictionary of {labelname: callable}')

        labels = self._get_combined_labels(labels)

        parent_metric = metric_type(
            name, description, labelnames=labels.keys(), registry=registry,
            **metric_kwargs
        )

        # When all labels are already known at this point, the metric can get an initial value.
        if initial_value_when_only_static_labels and labels.has_keys() and labels.has_only_static_values():
            parent_metric.labels(*labels.get_default_values())

        def get_metric(response):
            if labels.has_keys():
                return parent_metric.labels(**labels.values_for(response))
            else:
                return parent_metric

        def decorator(f):
            @wraps(f)
            def func(*args, **kwargs):
                if self.exclude_user_defaults and self.excluded_paths:
                    # exclude based on default excludes
                    if any(pattern.match(request.path) for pattern in self.excluded_paths):
                        return f(*args, **kwargs)

                if before:
                    metric = get_metric(None)
                    before(metric)

                else:
                    metric = None

                exception = None

                start_time = default_timer()
                try:
                    try:
                        # execute the handler function
                        response = f(*args, **kwargs)
                    except Exception as ex:
                        # let Flask decide to wrap or reraise the Exception
                        response = current_app.handle_user_exception(ex)
                except Exception as ex:
                    # if it was re-raised, treat it as an InternalServerError
                    exception = ex
                    response = make_response(f'Exception: {ex}', 500)

                if hasattr(request, 'prom_exclude_all'):
                    if metric and revert_when_not_tracked:
                        # special handling for Gauge metrics
                        revert_when_not_tracked(metric)

                    return response

                total_time = max(default_timer() - start_time, 0)

                if not metric:
                    if not isinstance(response, Response) and request.endpoint:
                        view_func = current_app.view_functions[request.endpoint]

                        # There may be decorators 'above' us,
                        # but before the function is registered with Flask
                        while view_func and view_func != f:
                            try:
                                view_func = view_func.__wrapped__
                            except AttributeError:
                                break

                        if view_func == f:
                            # we are in a request handler method
                            response = self._response_converter(response)

                        elif hasattr(view_func, 'view_class') and issubclass(view_func.view_class, MethodView):
                            # we are in a method view (for Flask-RESTful for example)
                            response = self._response_converter(response)

                    metric = get_metric(response)

                metric_call(metric, time=total_time)

                if exception:
                    try:
                        # re-raise for the Flask error handler
                        raise exception
                    except Exception as ex:
                        return current_app.handle_user_exception(ex)

                else:
                    return response

            return func

        return decorator

    def _get_combined_labels(self, labels):
        """
        Combines the given labels with static and default labels
        and wraps them into an object that can efficiently return
        the keys and values of these combined labels.
        """

        labels = labels.copy() if labels else dict()

        if self._default_labels:
            labels.update(self._default_labels.copy())

        def argspec(func):
            if hasattr(inspect, 'getfullargspec'):
                return inspect.getfullargspec(func)
            else:
                return inspect.getargspec(func)

        def label_value(f):
            if not callable(f):
                return lambda x: f
            if argspec(f).args:
                return lambda x: f(x)
            else:
                return lambda x: f()

        class CombinedLabels:
            def __init__(self, _labels):
                self.labels = _labels.items()

            def keys(self):
                return tuple(map(lambda k: k[0], self.labels))

            def has_keys(self):
                return len(self.labels) > 0

            def has_only_static_values(self):
                for key, value in self.labels:
                    if callable(value):
                        return False

                return True

            def get_default_values(self):
                return list(value for key, value in self.labels)

            def values_for(self, response):
                label_generator = tuple(
                    (key, label_value(call))
                    for key, call in self.labels
                ) if labels else tuple()

                return {key: value(response) for key, value in label_generator}

        return CombinedLabels(labels)

    @staticmethod
    def do_not_track():
        """
        Decorator to skip the default metrics collection for the method.

        *Note*: explicit metrics decorators will still collect the data
        """

        def decorator(f):
            @wraps(f)
            def func(*args, **kwargs):
                request.prom_do_not_track = True
                return f(*args, **kwargs)

            return func

        return decorator

    @staticmethod
    def exclude_all_metrics():
        """
        Decorator to skip all metrics collection for the method.
        """

        def decorator(f):
            @wraps(f)
            def func(*args, **kwargs):
                request.prom_exclude_all = True
                return f(*args, **kwargs)

            return func

        return decorator

    def info(self, name, description, labelnames=None, labelvalues=None, **labels):
        """
        Report any information as a Prometheus metric.
        This will create a `Gauge` with the initial value of 1.

        The easiest way to use it is:

            metrics = PrometheusMetrics(app)
            metrics.info(
                'app_info', 'Application info',
                version='1.0', major=1, minor=0
            )

        If the order of the labels matters:

            metrics = PrometheusMetrics(app)
            metrics.info(
                'app_info', 'Application info',
                ('version', 'major', 'minor'),
                ('1.0', 1, 0)
            )

        :param name: the name of the metric
        :param description: the description of the metric
        :param labelnames: the names of the labels
        :param labelvalues: the values of the labels
        :param labels: the names and values of the labels
        :return: the newly created `Gauge` metric
        """

        if labels and labelnames:
            raise ValueError(
                'Cannot have labels defined as `dict` '
                'and collections of names and values'
            )

        if labelnames is None and labels:
            labelnames = labels.keys()

        elif labelnames and labelvalues:
            for idx, label_name in enumerate(labelnames):
                labels[label_name] = labelvalues[idx]

        gauge = Gauge(
            name, description, labelnames or tuple(),
            registry=self.registry,
            multiprocess_mode='max'
        )

        if labels:
            gauge = gauge.labels(**labels)

        gauge.set(1)

        return gauge

    @staticmethod
    def _is_string(value):
        try:
            return isinstance(value, str)  # python3
        except NameError:
            return isinstance(value, basestring)  # python2

    @staticmethod
    def _not_yet_handled(tracking_key):
        """
        Check if the request has not handled some tracking yet,
        and mark the request if this is the first time.
        This is to avoid follow-up actions.

        :param tracking_key: a key identifying a processing step
        :return: True if this is the first time the request is
          trying to handle this processing step
        """

        key = f'prom_{tracking_key}'
        if hasattr(request, key):
            return False
        else:
            setattr(request, key, True)
            return True


class ConnexionPrometheusMetrics(PrometheusMetrics):
    """
    Specific extension for Connexion (https://connexion.readthedocs.io/)
    that makes sure responses are converted to Flask responses.
    """
    def __init__(self, app, default_mimetype='application/json', **kwargs):
        flask_app = app.app if app else None
        if 'response_converter' not in kwargs:
            kwargs['response_converter'] = self._create_response_converter(default_mimetype)

        super().__init__(flask_app, **kwargs)

    @staticmethod
    def content_type(content_type):
        """
        Force the content type of the response,
        which would be otherwise overwritten by the metrics conversion
        to application/json.

        :param content_type: the value to send in the
          Content-Type response header
        """

        def decorator(f):
            @wraps(f)
            def func(*args, **kwargs):
                request.prom_connexion_content_type = content_type
                return f(*args, **kwargs)
            return func
        return decorator

    @staticmethod
    def _create_response_converter(default_mimetype):
        def _make_response(response):
            from connexion.apis.flask_api import FlaskApi

            mimetype = default_mimetype
            if hasattr(request, 'prom_connexion_content_type'):
                mimetype = request.prom_connexion_content_type

            return FlaskApi.get_response(response, mimetype=mimetype)
        return _make_response


class RESTfulPrometheusMetrics(PrometheusMetrics):
    """
    Specific extension for Flask-RESTful (https://flask-restful.readthedocs.io/)
    that makes sure API responses are converted to Flask responses.
    """
    def __init__(self, app, api, **kwargs):
        """
        Initializes a new PrometheusMetrics instance that is appropriate
        for a Flask-RESTful application.

        :param app: the Flask application
        :param api: the Flask-RESTful API instance
        """

        if api and 'response_converter' not in kwargs:
            kwargs['response_converter'] = self._create_response_converter(api)
        super().__init__(app, **kwargs)

    @classmethod
    def for_app_factory(cls, api=None, **kwargs):
        return cls(app=None, api=api, **kwargs)

    def init_app(self, app, api=None):
        if api:
            self._response_converter = self._create_response_converter(api)
        return super().init_app(app)

    @staticmethod
    def _create_response_converter(api):
        def _make_response(response):
            if response is None:
                response = (None, 200)
            return api.make_response(*response)
        return _make_response


__version__ = '0.23.1'