1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904
|
// Copyright 2021 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package histogram
import (
"fmt"
"strings"
)
// FloatHistogram is similar to Histogram but uses float64 for all
// counts. Additionally, bucket counts are absolute and not deltas.
//
// A FloatHistogram is needed by PromQL to handle operations that might result
// in fractional counts. Since the counts in a histogram are unlikely to be too
// large to be represented precisely by a float64, a FloatHistogram can also be
// used to represent a histogram with integer counts and thus serves as a more
// generalized representation.
type FloatHistogram struct {
// Counter reset information.
CounterResetHint CounterResetHint
// Currently valid schema numbers are -4 <= n <= 8. They are all for
// base-2 bucket schemas, where 1 is a bucket boundary in each case, and
// then each power of two is divided into 2^n logarithmic buckets. Or
// in other words, each bucket boundary is the previous boundary times
// 2^(2^-n).
Schema int32
// Width of the zero bucket.
ZeroThreshold float64
// Observations falling into the zero bucket. Must be zero or positive.
ZeroCount float64
// Total number of observations. Must be zero or positive.
Count float64
// Sum of observations. This is also used as the stale marker.
Sum float64
// Spans for positive and negative buckets (see Span below).
PositiveSpans, NegativeSpans []Span
// Observation counts in buckets. Each represents an absolute count and
// must be zero or positive.
PositiveBuckets, NegativeBuckets []float64
}
// Copy returns a deep copy of the Histogram.
func (h *FloatHistogram) Copy() *FloatHistogram {
c := *h
if h.PositiveSpans != nil {
c.PositiveSpans = make([]Span, len(h.PositiveSpans))
copy(c.PositiveSpans, h.PositiveSpans)
}
if h.NegativeSpans != nil {
c.NegativeSpans = make([]Span, len(h.NegativeSpans))
copy(c.NegativeSpans, h.NegativeSpans)
}
if h.PositiveBuckets != nil {
c.PositiveBuckets = make([]float64, len(h.PositiveBuckets))
copy(c.PositiveBuckets, h.PositiveBuckets)
}
if h.NegativeBuckets != nil {
c.NegativeBuckets = make([]float64, len(h.NegativeBuckets))
copy(c.NegativeBuckets, h.NegativeBuckets)
}
return &c
}
// CopyToSchema works like Copy, but the returned deep copy has the provided
// target schema, which must be ≤ the original schema (i.e. it must have a lower
// resolution).
func (h *FloatHistogram) CopyToSchema(targetSchema int32) *FloatHistogram {
if targetSchema == h.Schema {
// Fast path.
return h.Copy()
}
if targetSchema > h.Schema {
panic(fmt.Errorf("cannot copy from schema %d to %d", h.Schema, targetSchema))
}
c := FloatHistogram{
Schema: targetSchema,
ZeroThreshold: h.ZeroThreshold,
ZeroCount: h.ZeroCount,
Count: h.Count,
Sum: h.Sum,
}
// TODO(beorn7): This is a straight-forward implementation using merging
// iterators for the original buckets and then adding one merged bucket
// after another to the newly created FloatHistogram. It's well possible
// that a more involved implementation performs much better, which we
// could do if this code path turns out to be performance-critical.
var iInSpan, index int32
for iSpan, iBucket, it := -1, -1, h.floatBucketIterator(true, 0, targetSchema); it.Next(); {
b := it.At()
c.PositiveSpans, c.PositiveBuckets, iSpan, iBucket, iInSpan = addBucket(
b, c.PositiveSpans, c.PositiveBuckets, iSpan, iBucket, iInSpan, index,
)
index = b.Index
}
for iSpan, iBucket, it := -1, -1, h.floatBucketIterator(false, 0, targetSchema); it.Next(); {
b := it.At()
c.NegativeSpans, c.NegativeBuckets, iSpan, iBucket, iInSpan = addBucket(
b, c.NegativeSpans, c.NegativeBuckets, iSpan, iBucket, iInSpan, index,
)
index = b.Index
}
return &c
}
// String returns a string representation of the Histogram.
func (h *FloatHistogram) String() string {
var sb strings.Builder
fmt.Fprintf(&sb, "{count:%g, sum:%g", h.Count, h.Sum)
var nBuckets []Bucket[float64]
for it := h.NegativeBucketIterator(); it.Next(); {
bucket := it.At()
if bucket.Count != 0 {
nBuckets = append(nBuckets, it.At())
}
}
for i := len(nBuckets) - 1; i >= 0; i-- {
fmt.Fprintf(&sb, ", %s", nBuckets[i].String())
}
if h.ZeroCount != 0 {
fmt.Fprintf(&sb, ", %s", h.ZeroBucket().String())
}
for it := h.PositiveBucketIterator(); it.Next(); {
bucket := it.At()
if bucket.Count != 0 {
fmt.Fprintf(&sb, ", %s", bucket.String())
}
}
sb.WriteRune('}')
return sb.String()
}
// ZeroBucket returns the zero bucket.
func (h *FloatHistogram) ZeroBucket() Bucket[float64] {
return Bucket[float64]{
Lower: -h.ZeroThreshold,
Upper: h.ZeroThreshold,
LowerInclusive: true,
UpperInclusive: true,
Count: h.ZeroCount,
}
}
// Scale scales the FloatHistogram by the provided factor, i.e. it scales all
// bucket counts including the zero bucket and the count and the sum of
// observations. The bucket layout stays the same. This method changes the
// receiving histogram directly (rather than acting on a copy). It returns a
// pointer to the receiving histogram for convenience.
func (h *FloatHistogram) Scale(factor float64) *FloatHistogram {
h.ZeroCount *= factor
h.Count *= factor
h.Sum *= factor
for i := range h.PositiveBuckets {
h.PositiveBuckets[i] *= factor
}
for i := range h.NegativeBuckets {
h.NegativeBuckets[i] *= factor
}
return h
}
// Add adds the provided other histogram to the receiving histogram. Count, Sum,
// and buckets from the other histogram are added to the corresponding
// components of the receiving histogram. Buckets in the other histogram that do
// not exist in the receiving histogram are inserted into the latter. The
// resulting histogram might have buckets with a population of zero or directly
// adjacent spans (offset=0). To normalize those, call the Compact method.
//
// The method reconciles differences in the zero threshold and in the schema,
// but the schema of the other histogram must be ≥ the schema of the receiving
// histogram (i.e. must have an equal or higher resolution). This means that the
// schema of the receiving histogram won't change. Its zero threshold, however,
// will change if needed. The other histogram will not be modified in any case.
//
// This method returns a pointer to the receiving histogram for convenience.
func (h *FloatHistogram) Add(other *FloatHistogram) *FloatHistogram {
otherZeroCount := h.reconcileZeroBuckets(other)
h.ZeroCount += otherZeroCount
h.Count += other.Count
h.Sum += other.Sum
// TODO(beorn7): If needed, this can be optimized by inspecting the
// spans in other and create missing buckets in h in batches.
var iInSpan, index int32
for iSpan, iBucket, it := -1, -1, other.floatBucketIterator(true, h.ZeroThreshold, h.Schema); it.Next(); {
b := it.At()
h.PositiveSpans, h.PositiveBuckets, iSpan, iBucket, iInSpan = addBucket(
b, h.PositiveSpans, h.PositiveBuckets, iSpan, iBucket, iInSpan, index,
)
index = b.Index
}
for iSpan, iBucket, it := -1, -1, other.floatBucketIterator(false, h.ZeroThreshold, h.Schema); it.Next(); {
b := it.At()
h.NegativeSpans, h.NegativeBuckets, iSpan, iBucket, iInSpan = addBucket(
b, h.NegativeSpans, h.NegativeBuckets, iSpan, iBucket, iInSpan, index,
)
index = b.Index
}
return h
}
// Sub works like Add but subtracts the other histogram.
func (h *FloatHistogram) Sub(other *FloatHistogram) *FloatHistogram {
otherZeroCount := h.reconcileZeroBuckets(other)
h.ZeroCount -= otherZeroCount
h.Count -= other.Count
h.Sum -= other.Sum
// TODO(beorn7): If needed, this can be optimized by inspecting the
// spans in other and create missing buckets in h in batches.
var iInSpan, index int32
for iSpan, iBucket, it := -1, -1, other.floatBucketIterator(true, h.ZeroThreshold, h.Schema); it.Next(); {
b := it.At()
b.Count *= -1
h.PositiveSpans, h.PositiveBuckets, iSpan, iBucket, iInSpan = addBucket(
b, h.PositiveSpans, h.PositiveBuckets, iSpan, iBucket, iInSpan, index,
)
index = b.Index
}
for iSpan, iBucket, it := -1, -1, other.floatBucketIterator(false, h.ZeroThreshold, h.Schema); it.Next(); {
b := it.At()
b.Count *= -1
h.NegativeSpans, h.NegativeBuckets, iSpan, iBucket, iInSpan = addBucket(
b, h.NegativeSpans, h.NegativeBuckets, iSpan, iBucket, iInSpan, index,
)
index = b.Index
}
return h
}
// Equals returns true if the given float histogram matches exactly.
// Exact match is when there are no new buckets (even empty) and no missing buckets,
// and all the bucket values match. Spans can have different empty length spans in between,
// but they must represent the same bucket layout to match.
func (h *FloatHistogram) Equals(h2 *FloatHistogram) bool {
if h2 == nil {
return false
}
if h.Schema != h2.Schema || h.ZeroThreshold != h2.ZeroThreshold ||
h.ZeroCount != h2.ZeroCount || h.Count != h2.Count || h.Sum != h2.Sum {
return false
}
if !spansMatch(h.PositiveSpans, h2.PositiveSpans) {
return false
}
if !spansMatch(h.NegativeSpans, h2.NegativeSpans) {
return false
}
if !bucketsMatch(h.PositiveBuckets, h2.PositiveBuckets) {
return false
}
if !bucketsMatch(h.NegativeBuckets, h2.NegativeBuckets) {
return false
}
return true
}
// addBucket takes the "coordinates" of the last bucket that was handled and
// adds the provided bucket after it. If a corresponding bucket exists, the
// count is added. If not, the bucket is inserted. The updated slices and the
// coordinates of the inserted or added-to bucket are returned.
func addBucket(
b Bucket[float64],
spans []Span, buckets []float64,
iSpan, iBucket int,
iInSpan, index int32,
) (
newSpans []Span, newBuckets []float64,
newISpan, newIBucket int, newIInSpan int32,
) {
if iSpan == -1 {
// First add, check if it is before all spans.
if len(spans) == 0 || spans[0].Offset > b.Index {
// Add bucket before all others.
buckets = append(buckets, 0)
copy(buckets[1:], buckets)
buckets[0] = b.Count
if len(spans) > 0 && spans[0].Offset == b.Index+1 {
spans[0].Length++
spans[0].Offset--
return spans, buckets, 0, 0, 0
}
spans = append(spans, Span{})
copy(spans[1:], spans)
spans[0] = Span{Offset: b.Index, Length: 1}
if len(spans) > 1 {
// Convert the absolute offset in the formerly
// first span to a relative offset.
spans[1].Offset -= b.Index + 1
}
return spans, buckets, 0, 0, 0
}
if spans[0].Offset == b.Index {
// Just add to first bucket.
buckets[0] += b.Count
return spans, buckets, 0, 0, 0
}
// We are behind the first bucket, so set everything to the
// first bucket and continue normally.
iSpan, iBucket, iInSpan = 0, 0, 0
index = spans[0].Offset
}
deltaIndex := b.Index - index
for {
remainingInSpan := int32(spans[iSpan].Length) - iInSpan
if deltaIndex < remainingInSpan {
// Bucket is in current span.
iBucket += int(deltaIndex)
iInSpan += deltaIndex
buckets[iBucket] += b.Count
return spans, buckets, iSpan, iBucket, iInSpan
}
deltaIndex -= remainingInSpan
iBucket += int(remainingInSpan)
iSpan++
if iSpan == len(spans) || deltaIndex < spans[iSpan].Offset {
// Bucket is in gap behind previous span (or there are no further spans).
buckets = append(buckets, 0)
copy(buckets[iBucket+1:], buckets[iBucket:])
buckets[iBucket] = b.Count
if deltaIndex == 0 {
// Directly after previous span, extend previous span.
if iSpan < len(spans) {
spans[iSpan].Offset--
}
iSpan--
iInSpan = int32(spans[iSpan].Length)
spans[iSpan].Length++
return spans, buckets, iSpan, iBucket, iInSpan
}
if iSpan < len(spans) && deltaIndex == spans[iSpan].Offset-1 {
// Directly before next span, extend next span.
iInSpan = 0
spans[iSpan].Offset--
spans[iSpan].Length++
return spans, buckets, iSpan, iBucket, iInSpan
}
// No next span, or next span is not directly adjacent to new bucket.
// Add new span.
iInSpan = 0
if iSpan < len(spans) {
spans[iSpan].Offset -= deltaIndex + 1
}
spans = append(spans, Span{})
copy(spans[iSpan+1:], spans[iSpan:])
spans[iSpan] = Span{Length: 1, Offset: deltaIndex}
return spans, buckets, iSpan, iBucket, iInSpan
}
// Try start of next span.
deltaIndex -= spans[iSpan].Offset
iInSpan = 0
}
}
// Compact eliminates empty buckets at the beginning and end of each span, then
// merges spans that are consecutive or at most maxEmptyBuckets apart, and
// finally splits spans that contain more consecutive empty buckets than
// maxEmptyBuckets. (The actual implementation might do something more efficient
// but with the same result.) The compaction happens "in place" in the
// receiving histogram, but a pointer to it is returned for convenience.
//
// The ideal value for maxEmptyBuckets depends on circumstances. The motivation
// to set maxEmptyBuckets > 0 is the assumption that is is less overhead to
// represent very few empty buckets explicitly within one span than cutting the
// one span into two to treat the empty buckets as a gap between the two spans,
// both in terms of storage requirement as well as in terms of encoding and
// decoding effort. However, the tradeoffs are subtle. For one, they are
// different in the exposition format vs. in a TSDB chunk vs. for the in-memory
// representation as Go types. In the TSDB, as an additional aspects, the span
// layout is only stored once per chunk, while many histograms with that same
// chunk layout are then only stored with their buckets (so that even a single
// empty bucket will be stored many times).
//
// For the Go types, an additional Span takes 8 bytes. Similarly, an additional
// bucket takes 8 bytes. Therefore, with a single separating empty bucket, both
// options have the same storage requirement, but the single-span solution is
// easier to iterate through. Still, the safest bet is to use maxEmptyBuckets==0
// and only use a larger number if you know what you are doing.
func (h *FloatHistogram) Compact(maxEmptyBuckets int) *FloatHistogram {
h.PositiveBuckets, h.PositiveSpans = compactBuckets(
h.PositiveBuckets, h.PositiveSpans, maxEmptyBuckets, false,
)
h.NegativeBuckets, h.NegativeSpans = compactBuckets(
h.NegativeBuckets, h.NegativeSpans, maxEmptyBuckets, false,
)
return h
}
// DetectReset returns true if the receiving histogram is missing any buckets
// that have a non-zero population in the provided previous histogram. It also
// returns true if any count (in any bucket, in the zero count, or in the count
// of observations, but NOT the sum of observations) is smaller in the receiving
// histogram compared to the previous histogram. Otherwise, it returns false.
//
// Special behavior in case the Schema or the ZeroThreshold are not the same in
// both histograms:
//
// - A decrease of the ZeroThreshold or an increase of the Schema (i.e. an
// increase of resolution) can only happen together with a reset. Thus, the
// method returns true in either case.
//
// - Upon an increase of the ZeroThreshold, the buckets in the previous
// histogram that fall within the new ZeroThreshold are added to the ZeroCount
// of the previous histogram (without mutating the provided previous
// histogram). The scenario that a populated bucket of the previous histogram
// is partially within, partially outside of the new ZeroThreshold, can only
// happen together with a counter reset and therefore shortcuts to returning
// true.
//
// - Upon a decrease of the Schema, the buckets of the previous histogram are
// merged so that they match the new, lower-resolution schema (again without
// mutating the provided previous histogram).
//
// Note that this kind of reset detection is quite expensive. Ideally, resets
// are detected at ingest time and stored in the TSDB, so that the reset
// information can be read directly from there rather than be detected each time
// again.
func (h *FloatHistogram) DetectReset(previous *FloatHistogram) bool {
if h.Count < previous.Count {
return true
}
if h.Schema > previous.Schema {
return true
}
if h.ZeroThreshold < previous.ZeroThreshold {
// ZeroThreshold decreased.
return true
}
previousZeroCount, newThreshold := previous.zeroCountForLargerThreshold(h.ZeroThreshold)
if newThreshold != h.ZeroThreshold {
// ZeroThreshold is within a populated bucket in previous
// histogram.
return true
}
if h.ZeroCount < previousZeroCount {
return true
}
currIt := h.floatBucketIterator(true, h.ZeroThreshold, h.Schema)
prevIt := previous.floatBucketIterator(true, h.ZeroThreshold, h.Schema)
if detectReset(currIt, prevIt) {
return true
}
currIt = h.floatBucketIterator(false, h.ZeroThreshold, h.Schema)
prevIt = previous.floatBucketIterator(false, h.ZeroThreshold, h.Schema)
return detectReset(currIt, prevIt)
}
func detectReset(currIt, prevIt BucketIterator[float64]) bool {
if !prevIt.Next() {
return false // If no buckets in previous histogram, nothing can be reset.
}
prevBucket := prevIt.At()
if !currIt.Next() {
// No bucket in current, but at least one in previous
// histogram. Check if any of those are non-zero, in which case
// this is a reset.
for {
if prevBucket.Count != 0 {
return true
}
if !prevIt.Next() {
return false
}
}
}
currBucket := currIt.At()
for {
// Forward currIt until we find the bucket corresponding to prevBucket.
for currBucket.Index < prevBucket.Index {
if !currIt.Next() {
// Reached end of currIt early, therefore
// previous histogram has a bucket that the
// current one does not have. Unlass all
// remaining buckets in the previous histogram
// are unpopulated, this is a reset.
for {
if prevBucket.Count != 0 {
return true
}
if !prevIt.Next() {
return false
}
}
}
currBucket = currIt.At()
}
if currBucket.Index > prevBucket.Index {
// Previous histogram has a bucket the current one does
// not have. If it's populated, it's a reset.
if prevBucket.Count != 0 {
return true
}
} else {
// We have reached corresponding buckets in both iterators.
// We can finally compare the counts.
if currBucket.Count < prevBucket.Count {
return true
}
}
if !prevIt.Next() {
// Reached end of prevIt without finding offending buckets.
return false
}
prevBucket = prevIt.At()
}
}
// PositiveBucketIterator returns a BucketIterator to iterate over all positive
// buckets in ascending order (starting next to the zero bucket and going up).
func (h *FloatHistogram) PositiveBucketIterator() BucketIterator[float64] {
return h.floatBucketIterator(true, 0, h.Schema)
}
// NegativeBucketIterator returns a BucketIterator to iterate over all negative
// buckets in descending order (starting next to the zero bucket and going
// down).
func (h *FloatHistogram) NegativeBucketIterator() BucketIterator[float64] {
return h.floatBucketIterator(false, 0, h.Schema)
}
// PositiveReverseBucketIterator returns a BucketIterator to iterate over all
// positive buckets in descending order (starting at the highest bucket and
// going down towards the zero bucket).
func (h *FloatHistogram) PositiveReverseBucketIterator() BucketIterator[float64] {
return newReverseFloatBucketIterator(h.PositiveSpans, h.PositiveBuckets, h.Schema, true)
}
// NegativeReverseBucketIterator returns a BucketIterator to iterate over all
// negative buckets in ascending order (starting at the lowest bucket and going
// up towards the zero bucket).
func (h *FloatHistogram) NegativeReverseBucketIterator() BucketIterator[float64] {
return newReverseFloatBucketIterator(h.NegativeSpans, h.NegativeBuckets, h.Schema, false)
}
// AllBucketIterator returns a BucketIterator to iterate over all negative,
// zero, and positive buckets in ascending order (starting at the lowest bucket
// and going up). If the highest negative bucket or the lowest positive bucket
// overlap with the zero bucket, their upper or lower boundary, respectively, is
// set to the zero threshold.
func (h *FloatHistogram) AllBucketIterator() BucketIterator[float64] {
return &allFloatBucketIterator{
h: h,
negIter: h.NegativeReverseBucketIterator(),
posIter: h.PositiveBucketIterator(),
state: -1,
}
}
// zeroCountForLargerThreshold returns what the histogram's zero count would be
// if the ZeroThreshold had the provided larger (or equal) value. If the
// provided value is less than the histogram's ZeroThreshold, the method panics.
// If the largerThreshold ends up within a populated bucket of the histogram, it
// is adjusted upwards to the lower limit of that bucket (all in terms of
// absolute values) and that bucket's count is included in the returned
// count. The adjusted threshold is returned, too.
func (h *FloatHistogram) zeroCountForLargerThreshold(largerThreshold float64) (count, threshold float64) {
// Fast path.
if largerThreshold == h.ZeroThreshold {
return h.ZeroCount, largerThreshold
}
if largerThreshold < h.ZeroThreshold {
panic(fmt.Errorf("new threshold %f is less than old threshold %f", largerThreshold, h.ZeroThreshold))
}
outer:
for {
count = h.ZeroCount
i := h.PositiveBucketIterator()
for i.Next() {
b := i.At()
if b.Lower >= largerThreshold {
break
}
count += b.Count // Bucket to be merged into zero bucket.
if b.Upper > largerThreshold {
// New threshold ended up within a bucket. if it's
// populated, we need to adjust largerThreshold before
// we are done here.
if b.Count != 0 {
largerThreshold = b.Upper
}
break
}
}
i = h.NegativeBucketIterator()
for i.Next() {
b := i.At()
if b.Upper <= -largerThreshold {
break
}
count += b.Count // Bucket to be merged into zero bucket.
if b.Lower < -largerThreshold {
// New threshold ended up within a bucket. If
// it's populated, we need to adjust
// largerThreshold and have to redo the whole
// thing because the treatment of the positive
// buckets is invalid now.
if b.Count != 0 {
largerThreshold = -b.Lower
continue outer
}
break
}
}
return count, largerThreshold
}
}
// trimBucketsInZeroBucket removes all buckets that are within the zero
// bucket. It assumes that the zero threshold is at a bucket boundary and that
// the counts in the buckets to remove are already part of the zero count.
func (h *FloatHistogram) trimBucketsInZeroBucket() {
i := h.PositiveBucketIterator()
bucketsIdx := 0
for i.Next() {
b := i.At()
if b.Lower >= h.ZeroThreshold {
break
}
h.PositiveBuckets[bucketsIdx] = 0
bucketsIdx++
}
i = h.NegativeBucketIterator()
bucketsIdx = 0
for i.Next() {
b := i.At()
if b.Upper <= -h.ZeroThreshold {
break
}
h.NegativeBuckets[bucketsIdx] = 0
bucketsIdx++
}
// We are abusing Compact to trim the buckets set to zero
// above. Premature compacting could cause additional cost, but this
// code path is probably rarely used anyway.
h.Compact(0)
}
// reconcileZeroBuckets finds a zero bucket large enough to include the zero
// buckets of both histograms (the receiving histogram and the other histogram)
// with a zero threshold that is not within a populated bucket in either
// histogram. This method modifies the receiving histogram accourdingly, but
// leaves the other histogram as is. Instead, it returns the zero count the
// other histogram would have if it were modified.
func (h *FloatHistogram) reconcileZeroBuckets(other *FloatHistogram) float64 {
otherZeroCount := other.ZeroCount
otherZeroThreshold := other.ZeroThreshold
for otherZeroThreshold != h.ZeroThreshold {
if h.ZeroThreshold > otherZeroThreshold {
otherZeroCount, otherZeroThreshold = other.zeroCountForLargerThreshold(h.ZeroThreshold)
}
if otherZeroThreshold > h.ZeroThreshold {
h.ZeroCount, h.ZeroThreshold = h.zeroCountForLargerThreshold(otherZeroThreshold)
h.trimBucketsInZeroBucket()
}
}
return otherZeroCount
}
// floatBucketIterator is a low-level constructor for bucket iterators.
//
// If positive is true, the returned iterator iterates through the positive
// buckets, otherwise through the negative buckets.
//
// If absoluteStartValue is < the lowest absolute value of any upper bucket
// boundary, the iterator starts with the first bucket. Otherwise, it will skip
// all buckets with an absolute value of their upper boundary ≤
// absoluteStartValue.
//
// targetSchema must be ≤ the schema of FloatHistogram (and of course within the
// legal values for schemas in general). The buckets are merged to match the
// targetSchema prior to iterating (without mutating FloatHistogram).
func (h *FloatHistogram) floatBucketIterator(
positive bool, absoluteStartValue float64, targetSchema int32,
) *floatBucketIterator {
if targetSchema > h.Schema {
panic(fmt.Errorf("cannot merge from schema %d to %d", h.Schema, targetSchema))
}
i := &floatBucketIterator{
baseBucketIterator: baseBucketIterator[float64, float64]{
schema: h.Schema,
positive: positive,
},
targetSchema: targetSchema,
absoluteStartValue: absoluteStartValue,
}
if positive {
i.spans = h.PositiveSpans
i.buckets = h.PositiveBuckets
} else {
i.spans = h.NegativeSpans
i.buckets = h.NegativeBuckets
}
return i
}
// reverseFloatbucketiterator is a low-level constructor for reverse bucket iterators.
func newReverseFloatBucketIterator(
spans []Span, buckets []float64, schema int32, positive bool,
) *reverseFloatBucketIterator {
r := &reverseFloatBucketIterator{
baseBucketIterator: baseBucketIterator[float64, float64]{
schema: schema,
spans: spans,
buckets: buckets,
positive: positive,
},
}
r.spansIdx = len(r.spans) - 1
r.bucketsIdx = len(r.buckets) - 1
if r.spansIdx >= 0 {
r.idxInSpan = int32(r.spans[r.spansIdx].Length) - 1
}
r.currIdx = 0
for _, s := range r.spans {
r.currIdx += s.Offset + int32(s.Length)
}
return r
}
type floatBucketIterator struct {
baseBucketIterator[float64, float64]
targetSchema int32 // targetSchema is the schema to merge to and must be ≤ schema.
origIdx int32 // The bucket index within the original schema.
absoluteStartValue float64 // Never return buckets with an upper bound ≤ this value.
}
func (i *floatBucketIterator) Next() bool {
if i.spansIdx >= len(i.spans) {
return false
}
// Copy all of these into local variables so that we can forward to the
// next bucket and then roll back if needed.
origIdx, spansIdx, idxInSpan := i.origIdx, i.spansIdx, i.idxInSpan
span := i.spans[spansIdx]
firstPass := true
i.currCount = 0
mergeLoop: // Merge together all buckets from the original schema that fall into one bucket in the targetSchema.
for {
if i.bucketsIdx == 0 {
// Seed origIdx for the first bucket.
origIdx = span.Offset
} else {
origIdx++
}
for idxInSpan >= span.Length {
// We have exhausted the current span and have to find a new
// one. We even handle pathologic spans of length 0 here.
idxInSpan = 0
spansIdx++
if spansIdx >= len(i.spans) {
if firstPass {
return false
}
break mergeLoop
}
span = i.spans[spansIdx]
origIdx += span.Offset
}
currIdx := i.targetIdx(origIdx)
if firstPass {
i.currIdx = currIdx
firstPass = false
} else if currIdx != i.currIdx {
// Reached next bucket in targetSchema.
// Do not actually forward to the next bucket, but break out.
break mergeLoop
}
i.currCount += i.buckets[i.bucketsIdx]
idxInSpan++
i.bucketsIdx++
i.origIdx, i.spansIdx, i.idxInSpan = origIdx, spansIdx, idxInSpan
if i.schema == i.targetSchema {
// Don't need to test the next bucket for mergeability
// if we have no schema change anyway.
break mergeLoop
}
}
// Skip buckets before absoluteStartValue.
// TODO(beorn7): Maybe do something more efficient than this recursive call.
if getBound(i.currIdx, i.targetSchema) <= i.absoluteStartValue {
return i.Next()
}
return true
}
// targetIdx returns the bucket index within i.targetSchema for the given bucket
// index within i.schema.
func (i *floatBucketIterator) targetIdx(idx int32) int32 {
if i.schema == i.targetSchema {
// Fast path for the common case. The below would yield the same
// result, just with more effort.
return idx
}
return ((idx - 1) >> (i.schema - i.targetSchema)) + 1
}
type reverseFloatBucketIterator struct {
baseBucketIterator[float64, float64]
idxInSpan int32 // Changed from uint32 to allow negative values for exhaustion detection.
}
func (i *reverseFloatBucketIterator) Next() bool {
i.currIdx--
if i.bucketsIdx < 0 {
return false
}
for i.idxInSpan < 0 {
// We have exhausted the current span and have to find a new
// one. We'll even handle pathologic spans of length 0.
i.spansIdx--
i.idxInSpan = int32(i.spans[i.spansIdx].Length) - 1
i.currIdx -= i.spans[i.spansIdx+1].Offset
}
i.currCount = i.buckets[i.bucketsIdx]
i.bucketsIdx--
i.idxInSpan--
return true
}
type allFloatBucketIterator struct {
h *FloatHistogram
negIter, posIter BucketIterator[float64]
// -1 means we are iterating negative buckets.
// 0 means it is time for the zero bucket.
// 1 means we are iterating positive buckets.
// Anything else means iteration is over.
state int8
currBucket Bucket[float64]
}
func (i *allFloatBucketIterator) Next() bool {
switch i.state {
case -1:
if i.negIter.Next() {
i.currBucket = i.negIter.At()
if i.currBucket.Upper > -i.h.ZeroThreshold {
i.currBucket.Upper = -i.h.ZeroThreshold
}
return true
}
i.state = 0
return i.Next()
case 0:
i.state = 1
if i.h.ZeroCount > 0 {
i.currBucket = Bucket[float64]{
Lower: -i.h.ZeroThreshold,
Upper: i.h.ZeroThreshold,
LowerInclusive: true,
UpperInclusive: true,
Count: i.h.ZeroCount,
// Index is irrelevant for the zero bucket.
}
return true
}
return i.Next()
case 1:
if i.posIter.Next() {
i.currBucket = i.posIter.At()
if i.currBucket.Lower < i.h.ZeroThreshold {
i.currBucket.Lower = i.h.ZeroThreshold
}
return true
}
i.state = 42
return false
}
return false
}
func (i *allFloatBucketIterator) At() Bucket[float64] {
return i.currBucket
}
|