File: queue_manager.go

package info (click to toggle)
prometheus 2.53.3%2Bds1-2
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 25,364 kB
  • sloc: javascript: 2,423; yacc: 758; sh: 431; makefile: 231; lex: 189
file content (1821 lines) | stat: -rw-r--r-- 60,900 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
// Copyright 2013 The Prometheus Authors
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

package remote

import (
	"context"
	"errors"
	"math"
	"strconv"
	"sync"
	"time"

	"github.com/go-kit/log"
	"github.com/go-kit/log/level"
	"github.com/gogo/protobuf/proto"
	"github.com/golang/snappy"
	"github.com/prometheus/client_golang/prometheus"
	"github.com/prometheus/common/model"
	"go.opentelemetry.io/otel"
	"go.opentelemetry.io/otel/attribute"
	semconv "go.opentelemetry.io/otel/semconv/v1.21.0"
	"go.uber.org/atomic"

	"github.com/prometheus/prometheus/config"
	"github.com/prometheus/prometheus/model/histogram"
	"github.com/prometheus/prometheus/model/labels"
	"github.com/prometheus/prometheus/model/relabel"
	"github.com/prometheus/prometheus/model/timestamp"
	"github.com/prometheus/prometheus/prompb"
	"github.com/prometheus/prometheus/scrape"
	"github.com/prometheus/prometheus/tsdb/chunks"
	"github.com/prometheus/prometheus/tsdb/record"
	"github.com/prometheus/prometheus/tsdb/wlog"
)

const (
	// We track samples in/out and how long pushes take using an Exponentially
	// Weighted Moving Average.
	ewmaWeight          = 0.2
	shardUpdateDuration = 10 * time.Second

	// Allow 30% too many shards before scaling down.
	shardToleranceFraction = 0.3

	reasonTooOld                     = "too_old"
	reasonDroppedSeries              = "dropped_series"
	reasonUnintentionalDroppedSeries = "unintentionally_dropped_series"
)

type queueManagerMetrics struct {
	reg prometheus.Registerer

	samplesTotal           prometheus.Counter
	exemplarsTotal         prometheus.Counter
	histogramsTotal        prometheus.Counter
	metadataTotal          prometheus.Counter
	failedSamplesTotal     prometheus.Counter
	failedExemplarsTotal   prometheus.Counter
	failedHistogramsTotal  prometheus.Counter
	failedMetadataTotal    prometheus.Counter
	retriedSamplesTotal    prometheus.Counter
	retriedExemplarsTotal  prometheus.Counter
	retriedHistogramsTotal prometheus.Counter
	retriedMetadataTotal   prometheus.Counter
	droppedSamplesTotal    *prometheus.CounterVec
	droppedExemplarsTotal  *prometheus.CounterVec
	droppedHistogramsTotal *prometheus.CounterVec
	enqueueRetriesTotal    prometheus.Counter
	sentBatchDuration      prometheus.Histogram
	highestSentTimestamp   *maxTimestamp
	pendingSamples         prometheus.Gauge
	pendingExemplars       prometheus.Gauge
	pendingHistograms      prometheus.Gauge
	shardCapacity          prometheus.Gauge
	numShards              prometheus.Gauge
	maxNumShards           prometheus.Gauge
	minNumShards           prometheus.Gauge
	desiredNumShards       prometheus.Gauge
	sentBytesTotal         prometheus.Counter
	metadataBytesTotal     prometheus.Counter
	maxSamplesPerSend      prometheus.Gauge
}

func newQueueManagerMetrics(r prometheus.Registerer, rn, e string) *queueManagerMetrics {
	m := &queueManagerMetrics{
		reg: r,
	}
	constLabels := prometheus.Labels{
		remoteName: rn,
		endpoint:   e,
	}

	m.samplesTotal = prometheus.NewCounter(prometheus.CounterOpts{
		Namespace:   namespace,
		Subsystem:   subsystem,
		Name:        "samples_total",
		Help:        "Total number of samples sent to remote storage.",
		ConstLabels: constLabels,
	})
	m.exemplarsTotal = prometheus.NewCounter(prometheus.CounterOpts{
		Namespace:   namespace,
		Subsystem:   subsystem,
		Name:        "exemplars_total",
		Help:        "Total number of exemplars sent to remote storage.",
		ConstLabels: constLabels,
	})
	m.histogramsTotal = prometheus.NewCounter(prometheus.CounterOpts{
		Namespace:   namespace,
		Subsystem:   subsystem,
		Name:        "histograms_total",
		Help:        "Total number of histograms sent to remote storage.",
		ConstLabels: constLabels,
	})
	m.metadataTotal = prometheus.NewCounter(prometheus.CounterOpts{
		Namespace:   namespace,
		Subsystem:   subsystem,
		Name:        "metadata_total",
		Help:        "Total number of metadata entries sent to remote storage.",
		ConstLabels: constLabels,
	})
	m.failedSamplesTotal = prometheus.NewCounter(prometheus.CounterOpts{
		Namespace:   namespace,
		Subsystem:   subsystem,
		Name:        "samples_failed_total",
		Help:        "Total number of samples which failed on send to remote storage, non-recoverable errors.",
		ConstLabels: constLabels,
	})
	m.failedExemplarsTotal = prometheus.NewCounter(prometheus.CounterOpts{
		Namespace:   namespace,
		Subsystem:   subsystem,
		Name:        "exemplars_failed_total",
		Help:        "Total number of exemplars which failed on send to remote storage, non-recoverable errors.",
		ConstLabels: constLabels,
	})
	m.failedHistogramsTotal = prometheus.NewCounter(prometheus.CounterOpts{
		Namespace:   namespace,
		Subsystem:   subsystem,
		Name:        "histograms_failed_total",
		Help:        "Total number of histograms which failed on send to remote storage, non-recoverable errors.",
		ConstLabels: constLabels,
	})
	m.failedMetadataTotal = prometheus.NewCounter(prometheus.CounterOpts{
		Namespace:   namespace,
		Subsystem:   subsystem,
		Name:        "metadata_failed_total",
		Help:        "Total number of metadata entries which failed on send to remote storage, non-recoverable errors.",
		ConstLabels: constLabels,
	})
	m.retriedSamplesTotal = prometheus.NewCounter(prometheus.CounterOpts{
		Namespace:   namespace,
		Subsystem:   subsystem,
		Name:        "samples_retried_total",
		Help:        "Total number of samples which failed on send to remote storage but were retried because the send error was recoverable.",
		ConstLabels: constLabels,
	})
	m.retriedExemplarsTotal = prometheus.NewCounter(prometheus.CounterOpts{
		Namespace:   namespace,
		Subsystem:   subsystem,
		Name:        "exemplars_retried_total",
		Help:        "Total number of exemplars which failed on send to remote storage but were retried because the send error was recoverable.",
		ConstLabels: constLabels,
	})
	m.retriedHistogramsTotal = prometheus.NewCounter(prometheus.CounterOpts{
		Namespace:   namespace,
		Subsystem:   subsystem,
		Name:        "histograms_retried_total",
		Help:        "Total number of histograms which failed on send to remote storage but were retried because the send error was recoverable.",
		ConstLabels: constLabels,
	})
	m.retriedMetadataTotal = prometheus.NewCounter(prometheus.CounterOpts{
		Namespace:   namespace,
		Subsystem:   subsystem,
		Name:        "metadata_retried_total",
		Help:        "Total number of metadata entries which failed on send to remote storage but were retried because the send error was recoverable.",
		ConstLabels: constLabels,
	})
	m.droppedSamplesTotal = prometheus.NewCounterVec(prometheus.CounterOpts{
		Namespace:   namespace,
		Subsystem:   subsystem,
		Name:        "samples_dropped_total",
		Help:        "Total number of samples which were dropped after being read from the WAL before being sent via remote write, either via relabelling, due to being too old or unintentionally because of an unknown reference ID.",
		ConstLabels: constLabels,
	}, []string{"reason"})
	m.droppedExemplarsTotal = prometheus.NewCounterVec(prometheus.CounterOpts{
		Namespace:   namespace,
		Subsystem:   subsystem,
		Name:        "exemplars_dropped_total",
		Help:        "Total number of exemplars which were dropped after being read from the WAL before being sent via remote write, either via relabelling, due to being too old or unintentionally because of an unknown reference ID.",
		ConstLabels: constLabels,
	}, []string{"reason"})
	m.droppedHistogramsTotal = prometheus.NewCounterVec(prometheus.CounterOpts{
		Namespace:   namespace,
		Subsystem:   subsystem,
		Name:        "histograms_dropped_total",
		Help:        "Total number of histograms which were dropped after being read from the WAL before being sent via remote write, either via relabelling, due to being too old or unintentionally because of an unknown reference ID.",
		ConstLabels: constLabels,
	}, []string{"reason"})
	m.enqueueRetriesTotal = prometheus.NewCounter(prometheus.CounterOpts{
		Namespace:   namespace,
		Subsystem:   subsystem,
		Name:        "enqueue_retries_total",
		Help:        "Total number of times enqueue has failed because a shards queue was full.",
		ConstLabels: constLabels,
	})
	m.sentBatchDuration = prometheus.NewHistogram(prometheus.HistogramOpts{
		Namespace:                       namespace,
		Subsystem:                       subsystem,
		Name:                            "sent_batch_duration_seconds",
		Help:                            "Duration of send calls to the remote storage.",
		Buckets:                         append(prometheus.DefBuckets, 25, 60, 120, 300),
		ConstLabels:                     constLabels,
		NativeHistogramBucketFactor:     1.1,
		NativeHistogramMaxBucketNumber:  100,
		NativeHistogramMinResetDuration: 1 * time.Hour,
	})
	m.highestSentTimestamp = &maxTimestamp{
		Gauge: prometheus.NewGauge(prometheus.GaugeOpts{
			Namespace:   namespace,
			Subsystem:   subsystem,
			Name:        "queue_highest_sent_timestamp_seconds",
			Help:        "Timestamp from a WAL sample, the highest timestamp successfully sent by this queue, in seconds since epoch.",
			ConstLabels: constLabels,
		}),
	}
	m.pendingSamples = prometheus.NewGauge(prometheus.GaugeOpts{
		Namespace:   namespace,
		Subsystem:   subsystem,
		Name:        "samples_pending",
		Help:        "The number of samples pending in the queues shards to be sent to the remote storage.",
		ConstLabels: constLabels,
	})
	m.pendingExemplars = prometheus.NewGauge(prometheus.GaugeOpts{
		Namespace:   namespace,
		Subsystem:   subsystem,
		Name:        "exemplars_pending",
		Help:        "The number of exemplars pending in the queues shards to be sent to the remote storage.",
		ConstLabels: constLabels,
	})
	m.pendingHistograms = prometheus.NewGauge(prometheus.GaugeOpts{
		Namespace:   namespace,
		Subsystem:   subsystem,
		Name:        "histograms_pending",
		Help:        "The number of histograms pending in the queues shards to be sent to the remote storage.",
		ConstLabels: constLabels,
	})
	m.shardCapacity = prometheus.NewGauge(prometheus.GaugeOpts{
		Namespace:   namespace,
		Subsystem:   subsystem,
		Name:        "shard_capacity",
		Help:        "The capacity of each shard of the queue used for parallel sending to the remote storage.",
		ConstLabels: constLabels,
	})
	m.numShards = prometheus.NewGauge(prometheus.GaugeOpts{
		Namespace:   namespace,
		Subsystem:   subsystem,
		Name:        "shards",
		Help:        "The number of shards used for parallel sending to the remote storage.",
		ConstLabels: constLabels,
	})
	m.maxNumShards = prometheus.NewGauge(prometheus.GaugeOpts{
		Namespace:   namespace,
		Subsystem:   subsystem,
		Name:        "shards_max",
		Help:        "The maximum number of shards that the queue is allowed to run.",
		ConstLabels: constLabels,
	})
	m.minNumShards = prometheus.NewGauge(prometheus.GaugeOpts{
		Namespace:   namespace,
		Subsystem:   subsystem,
		Name:        "shards_min",
		Help:        "The minimum number of shards that the queue is allowed to run.",
		ConstLabels: constLabels,
	})
	m.desiredNumShards = prometheus.NewGauge(prometheus.GaugeOpts{
		Namespace:   namespace,
		Subsystem:   subsystem,
		Name:        "shards_desired",
		Help:        "The number of shards that the queues shard calculation wants to run based on the rate of samples in vs. samples out.",
		ConstLabels: constLabels,
	})
	m.sentBytesTotal = prometheus.NewCounter(prometheus.CounterOpts{
		Namespace:   namespace,
		Subsystem:   subsystem,
		Name:        "bytes_total",
		Help:        "The total number of bytes of data (not metadata) sent by the queue after compression. Note that when exemplars over remote write is enabled the exemplars included in a remote write request count towards this metric.",
		ConstLabels: constLabels,
	})
	m.metadataBytesTotal = prometheus.NewCounter(prometheus.CounterOpts{
		Namespace:   namespace,
		Subsystem:   subsystem,
		Name:        "metadata_bytes_total",
		Help:        "The total number of bytes of metadata sent by the queue after compression.",
		ConstLabels: constLabels,
	})
	m.maxSamplesPerSend = prometheus.NewGauge(prometheus.GaugeOpts{
		Namespace:   namespace,
		Subsystem:   subsystem,
		Name:        "max_samples_per_send",
		Help:        "The maximum number of samples to be sent, in a single request, to the remote storage. Note that, when sending of exemplars over remote write is enabled, exemplars count towards this limt.",
		ConstLabels: constLabels,
	})

	return m
}

func (m *queueManagerMetrics) register() {
	if m.reg != nil {
		m.reg.MustRegister(
			m.samplesTotal,
			m.exemplarsTotal,
			m.histogramsTotal,
			m.metadataTotal,
			m.failedSamplesTotal,
			m.failedExemplarsTotal,
			m.failedHistogramsTotal,
			m.failedMetadataTotal,
			m.retriedSamplesTotal,
			m.retriedExemplarsTotal,
			m.retriedHistogramsTotal,
			m.retriedMetadataTotal,
			m.droppedSamplesTotal,
			m.droppedExemplarsTotal,
			m.droppedHistogramsTotal,
			m.enqueueRetriesTotal,
			m.sentBatchDuration,
			m.highestSentTimestamp,
			m.pendingSamples,
			m.pendingExemplars,
			m.pendingHistograms,
			m.shardCapacity,
			m.numShards,
			m.maxNumShards,
			m.minNumShards,
			m.desiredNumShards,
			m.sentBytesTotal,
			m.metadataBytesTotal,
			m.maxSamplesPerSend,
		)
	}
}

func (m *queueManagerMetrics) unregister() {
	if m.reg != nil {
		m.reg.Unregister(m.samplesTotal)
		m.reg.Unregister(m.exemplarsTotal)
		m.reg.Unregister(m.histogramsTotal)
		m.reg.Unregister(m.metadataTotal)
		m.reg.Unregister(m.failedSamplesTotal)
		m.reg.Unregister(m.failedExemplarsTotal)
		m.reg.Unregister(m.failedHistogramsTotal)
		m.reg.Unregister(m.failedMetadataTotal)
		m.reg.Unregister(m.retriedSamplesTotal)
		m.reg.Unregister(m.retriedExemplarsTotal)
		m.reg.Unregister(m.retriedHistogramsTotal)
		m.reg.Unregister(m.retriedMetadataTotal)
		m.reg.Unregister(m.droppedSamplesTotal)
		m.reg.Unregister(m.droppedExemplarsTotal)
		m.reg.Unregister(m.droppedHistogramsTotal)
		m.reg.Unregister(m.enqueueRetriesTotal)
		m.reg.Unregister(m.sentBatchDuration)
		m.reg.Unregister(m.highestSentTimestamp)
		m.reg.Unregister(m.pendingSamples)
		m.reg.Unregister(m.pendingExemplars)
		m.reg.Unregister(m.pendingHistograms)
		m.reg.Unregister(m.shardCapacity)
		m.reg.Unregister(m.numShards)
		m.reg.Unregister(m.maxNumShards)
		m.reg.Unregister(m.minNumShards)
		m.reg.Unregister(m.desiredNumShards)
		m.reg.Unregister(m.sentBytesTotal)
		m.reg.Unregister(m.metadataBytesTotal)
		m.reg.Unregister(m.maxSamplesPerSend)
	}
}

// WriteClient defines an interface for sending a batch of samples to an
// external timeseries database.
type WriteClient interface {
	// Store stores the given samples in the remote storage.
	Store(context.Context, []byte, int) error
	// Name uniquely identifies the remote storage.
	Name() string
	// Endpoint is the remote read or write endpoint for the storage client.
	Endpoint() string
}

// QueueManager manages a queue of samples to be sent to the Storage
// indicated by the provided WriteClient. Implements writeTo interface
// used by WAL Watcher.
type QueueManager struct {
	lastSendTimestamp            atomic.Int64
	buildRequestLimitTimestamp   atomic.Int64
	reshardDisableStartTimestamp atomic.Int64 // Time that reshard was disabled.
	reshardDisableEndTimestamp   atomic.Int64 // Time that reshard is disabled until.

	logger               log.Logger
	flushDeadline        time.Duration
	cfg                  config.QueueConfig
	mcfg                 config.MetadataConfig
	externalLabels       []labels.Label
	relabelConfigs       []*relabel.Config
	sendExemplars        bool
	sendNativeHistograms bool
	watcher              *wlog.Watcher
	metadataWatcher      *MetadataWatcher

	clientMtx   sync.RWMutex
	storeClient WriteClient

	seriesMtx     sync.Mutex // Covers seriesLabels, droppedSeries and builder.
	seriesLabels  map[chunks.HeadSeriesRef]labels.Labels
	droppedSeries map[chunks.HeadSeriesRef]struct{}
	builder       *labels.Builder

	seriesSegmentMtx     sync.Mutex // Covers seriesSegmentIndexes - if you also lock seriesMtx, take seriesMtx first.
	seriesSegmentIndexes map[chunks.HeadSeriesRef]int

	shards      *shards
	numShards   int
	reshardChan chan int
	quit        chan struct{}
	wg          sync.WaitGroup

	dataIn, dataDropped, dataOut, dataOutDuration *ewmaRate

	metrics              *queueManagerMetrics
	interner             *pool
	highestRecvTimestamp *maxTimestamp
}

// NewQueueManager builds a new QueueManager and starts a new
// WAL watcher with queue manager as the WriteTo destination.
// The WAL watcher takes the dir parameter as the base directory
// for where the WAL shall be located. Note that the full path to
// the WAL directory will be constructed as <dir>/wal.
func NewQueueManager(
	metrics *queueManagerMetrics,
	watcherMetrics *wlog.WatcherMetrics,
	readerMetrics *wlog.LiveReaderMetrics,
	logger log.Logger,
	dir string,
	samplesIn *ewmaRate,
	cfg config.QueueConfig,
	mCfg config.MetadataConfig,
	externalLabels labels.Labels,
	relabelConfigs []*relabel.Config,
	client WriteClient,
	flushDeadline time.Duration,
	interner *pool,
	highestRecvTimestamp *maxTimestamp,
	sm ReadyScrapeManager,
	enableExemplarRemoteWrite bool,
	enableNativeHistogramRemoteWrite bool,
) *QueueManager {
	if logger == nil {
		logger = log.NewNopLogger()
	}

	// Copy externalLabels into a slice, which we need for processExternalLabels.
	extLabelsSlice := make([]labels.Label, 0, externalLabels.Len())
	externalLabels.Range(func(l labels.Label) {
		extLabelsSlice = append(extLabelsSlice, l)
	})

	logger = log.With(logger, remoteName, client.Name(), endpoint, client.Endpoint())
	t := &QueueManager{
		logger:               logger,
		flushDeadline:        flushDeadline,
		cfg:                  cfg,
		mcfg:                 mCfg,
		externalLabels:       extLabelsSlice,
		relabelConfigs:       relabelConfigs,
		storeClient:          client,
		sendExemplars:        enableExemplarRemoteWrite,
		sendNativeHistograms: enableNativeHistogramRemoteWrite,

		seriesLabels:         make(map[chunks.HeadSeriesRef]labels.Labels),
		seriesSegmentIndexes: make(map[chunks.HeadSeriesRef]int),
		droppedSeries:        make(map[chunks.HeadSeriesRef]struct{}),
		builder:              labels.NewBuilder(labels.EmptyLabels()),

		numShards:   cfg.MinShards,
		reshardChan: make(chan int),
		quit:        make(chan struct{}),

		dataIn:          samplesIn,
		dataDropped:     newEWMARate(ewmaWeight, shardUpdateDuration),
		dataOut:         newEWMARate(ewmaWeight, shardUpdateDuration),
		dataOutDuration: newEWMARate(ewmaWeight, shardUpdateDuration),

		metrics:              metrics,
		interner:             interner,
		highestRecvTimestamp: highestRecvTimestamp,
	}

	t.watcher = wlog.NewWatcher(watcherMetrics, readerMetrics, logger, client.Name(), t, dir, enableExemplarRemoteWrite, enableNativeHistogramRemoteWrite)
	if t.mcfg.Send {
		t.metadataWatcher = NewMetadataWatcher(logger, sm, client.Name(), t, t.mcfg.SendInterval, flushDeadline)
	}
	t.shards = t.newShards()

	return t
}

// AppendMetadata sends metadata to the remote storage. Metadata is sent in batches, but is not parallelized.
func (t *QueueManager) AppendMetadata(ctx context.Context, metadata []scrape.MetricMetadata) {
	mm := make([]prompb.MetricMetadata, 0, len(metadata))
	for _, entry := range metadata {
		mm = append(mm, prompb.MetricMetadata{
			MetricFamilyName: entry.Metric,
			Help:             entry.Help,
			Type:             metricTypeToMetricTypeProto(entry.Type),
			Unit:             entry.Unit,
		})
	}

	pBuf := proto.NewBuffer(nil)
	numSends := int(math.Ceil(float64(len(metadata)) / float64(t.mcfg.MaxSamplesPerSend)))
	for i := 0; i < numSends; i++ {
		last := (i + 1) * t.mcfg.MaxSamplesPerSend
		if last > len(metadata) {
			last = len(metadata)
		}
		err := t.sendMetadataWithBackoff(ctx, mm[i*t.mcfg.MaxSamplesPerSend:last], pBuf)
		if err != nil {
			t.metrics.failedMetadataTotal.Add(float64(last - (i * t.mcfg.MaxSamplesPerSend)))
			level.Error(t.logger).Log("msg", "non-recoverable error while sending metadata", "count", last-(i*t.mcfg.MaxSamplesPerSend), "err", err)
		}
	}
}

func (t *QueueManager) sendMetadataWithBackoff(ctx context.Context, metadata []prompb.MetricMetadata, pBuf *proto.Buffer) error {
	// Build the WriteRequest with no samples.
	req, _, _, err := buildWriteRequest(t.logger, nil, metadata, pBuf, nil, nil)
	if err != nil {
		return err
	}

	metadataCount := len(metadata)

	attemptStore := func(try int) error {
		ctx, span := otel.Tracer("").Start(ctx, "Remote Metadata Send Batch")
		defer span.End()

		span.SetAttributes(
			attribute.Int("metadata", metadataCount),
			attribute.Int("try", try),
			attribute.String("remote_name", t.storeClient.Name()),
			attribute.String("remote_url", t.storeClient.Endpoint()),
		)
		// Attributes defined by OpenTelemetry semantic conventions.
		if try > 0 {
			span.SetAttributes(semconv.HTTPResendCount(try))
		}

		begin := time.Now()
		err := t.storeClient.Store(ctx, req, try)
		t.metrics.sentBatchDuration.Observe(time.Since(begin).Seconds())

		if err != nil {
			span.RecordError(err)
			return err
		}

		return nil
	}

	retry := func() {
		t.metrics.retriedMetadataTotal.Add(float64(len(metadata)))
	}
	err = t.sendWriteRequestWithBackoff(ctx, attemptStore, retry)
	if err != nil {
		return err
	}
	t.metrics.metadataTotal.Add(float64(len(metadata)))
	t.metrics.metadataBytesTotal.Add(float64(len(req)))
	return nil
}

func isSampleOld(baseTime time.Time, sampleAgeLimit time.Duration, ts int64) bool {
	if sampleAgeLimit == 0 {
		// If sampleAgeLimit is unset, then we never skip samples due to their age.
		return false
	}
	limitTs := baseTime.Add(-sampleAgeLimit)
	sampleTs := timestamp.Time(ts)
	return sampleTs.Before(limitTs)
}

func isTimeSeriesOldFilter(metrics *queueManagerMetrics, baseTime time.Time, sampleAgeLimit time.Duration) func(ts prompb.TimeSeries) bool {
	return func(ts prompb.TimeSeries) bool {
		if sampleAgeLimit == 0 {
			// If sampleAgeLimit is unset, then we never skip samples due to their age.
			return false
		}
		switch {
		// Only the first element should be set in the series, therefore we only check the first element.
		case len(ts.Samples) > 0:
			if isSampleOld(baseTime, sampleAgeLimit, ts.Samples[0].Timestamp) {
				metrics.droppedSamplesTotal.WithLabelValues(reasonTooOld).Inc()
				return true
			}
		case len(ts.Histograms) > 0:
			if isSampleOld(baseTime, sampleAgeLimit, ts.Histograms[0].Timestamp) {
				metrics.droppedHistogramsTotal.WithLabelValues(reasonTooOld).Inc()
				return true
			}
		case len(ts.Exemplars) > 0:
			if isSampleOld(baseTime, sampleAgeLimit, ts.Exemplars[0].Timestamp) {
				metrics.droppedExemplarsTotal.WithLabelValues(reasonTooOld).Inc()
				return true
			}
		default:
			return false
		}
		return false
	}
}

// Append queues a sample to be sent to the remote storage. Blocks until all samples are
// enqueued on their shards or a shutdown signal is received.
func (t *QueueManager) Append(samples []record.RefSample) bool {
	currentTime := time.Now()
outer:
	for _, s := range samples {
		if isSampleOld(currentTime, time.Duration(t.cfg.SampleAgeLimit), s.T) {
			t.metrics.droppedSamplesTotal.WithLabelValues(reasonTooOld).Inc()
			continue
		}
		t.seriesMtx.Lock()
		lbls, ok := t.seriesLabels[s.Ref]
		if !ok {
			t.dataDropped.incr(1)
			if _, ok := t.droppedSeries[s.Ref]; !ok {
				level.Info(t.logger).Log("msg", "Dropped sample for series that was not explicitly dropped via relabelling", "ref", s.Ref)
				t.metrics.droppedSamplesTotal.WithLabelValues(reasonUnintentionalDroppedSeries).Inc()
			} else {
				t.metrics.droppedSamplesTotal.WithLabelValues(reasonDroppedSeries).Inc()
			}
			t.seriesMtx.Unlock()
			continue
		}
		t.seriesMtx.Unlock()
		// Start with a very small backoff. This should not be t.cfg.MinBackoff
		// as it can happen without errors, and we want to pickup work after
		// filling a queue/resharding as quickly as possible.
		// TODO: Consider using the average duration of a request as the backoff.
		backoff := model.Duration(5 * time.Millisecond)
		for {
			select {
			case <-t.quit:
				return false
			default:
			}
			if t.shards.enqueue(s.Ref, timeSeries{
				seriesLabels: lbls,
				timestamp:    s.T,
				value:        s.V,
				sType:        tSample,
			}) {
				continue outer
			}

			t.metrics.enqueueRetriesTotal.Inc()
			time.Sleep(time.Duration(backoff))
			backoff *= 2
			// It is reasonable to use t.cfg.MaxBackoff here, as if we have hit
			// the full backoff we are likely waiting for external resources.
			if backoff > t.cfg.MaxBackoff {
				backoff = t.cfg.MaxBackoff
			}
		}
	}
	return true
}

func (t *QueueManager) AppendExemplars(exemplars []record.RefExemplar) bool {
	if !t.sendExemplars {
		return true
	}
	currentTime := time.Now()
outer:
	for _, e := range exemplars {
		if isSampleOld(currentTime, time.Duration(t.cfg.SampleAgeLimit), e.T) {
			t.metrics.droppedExemplarsTotal.WithLabelValues(reasonTooOld).Inc()
			continue
		}
		t.seriesMtx.Lock()
		lbls, ok := t.seriesLabels[e.Ref]
		if !ok {
			// Track dropped exemplars in the same EWMA for sharding calc.
			t.dataDropped.incr(1)
			if _, ok := t.droppedSeries[e.Ref]; !ok {
				level.Info(t.logger).Log("msg", "Dropped exemplar for series that was not explicitly dropped via relabelling", "ref", e.Ref)
				t.metrics.droppedExemplarsTotal.WithLabelValues(reasonUnintentionalDroppedSeries).Inc()
			} else {
				t.metrics.droppedExemplarsTotal.WithLabelValues(reasonDroppedSeries).Inc()
			}
			t.seriesMtx.Unlock()
			continue
		}
		t.seriesMtx.Unlock()
		// This will only loop if the queues are being resharded.
		backoff := t.cfg.MinBackoff
		for {
			select {
			case <-t.quit:
				return false
			default:
			}
			if t.shards.enqueue(e.Ref, timeSeries{
				seriesLabels:   lbls,
				timestamp:      e.T,
				value:          e.V,
				exemplarLabels: e.Labels,
				sType:          tExemplar,
			}) {
				continue outer
			}

			t.metrics.enqueueRetriesTotal.Inc()
			time.Sleep(time.Duration(backoff))
			backoff *= 2
			if backoff > t.cfg.MaxBackoff {
				backoff = t.cfg.MaxBackoff
			}
		}
	}
	return true
}

func (t *QueueManager) AppendHistograms(histograms []record.RefHistogramSample) bool {
	if !t.sendNativeHistograms {
		return true
	}
	currentTime := time.Now()
outer:
	for _, h := range histograms {
		if isSampleOld(currentTime, time.Duration(t.cfg.SampleAgeLimit), h.T) {
			t.metrics.droppedHistogramsTotal.WithLabelValues(reasonTooOld).Inc()
			continue
		}
		t.seriesMtx.Lock()
		lbls, ok := t.seriesLabels[h.Ref]
		if !ok {
			t.dataDropped.incr(1)
			if _, ok := t.droppedSeries[h.Ref]; !ok {
				level.Info(t.logger).Log("msg", "Dropped histogram for series that was not explicitly dropped via relabelling", "ref", h.Ref)
				t.metrics.droppedHistogramsTotal.WithLabelValues(reasonUnintentionalDroppedSeries).Inc()
			} else {
				t.metrics.droppedHistogramsTotal.WithLabelValues(reasonDroppedSeries).Inc()
			}
			t.seriesMtx.Unlock()
			continue
		}
		t.seriesMtx.Unlock()

		backoff := model.Duration(5 * time.Millisecond)
		for {
			select {
			case <-t.quit:
				return false
			default:
			}
			if t.shards.enqueue(h.Ref, timeSeries{
				seriesLabels: lbls,
				timestamp:    h.T,
				histogram:    h.H,
				sType:        tHistogram,
			}) {
				continue outer
			}

			t.metrics.enqueueRetriesTotal.Inc()
			time.Sleep(time.Duration(backoff))
			backoff *= 2
			if backoff > t.cfg.MaxBackoff {
				backoff = t.cfg.MaxBackoff
			}
		}
	}
	return true
}

func (t *QueueManager) AppendFloatHistograms(floatHistograms []record.RefFloatHistogramSample) bool {
	if !t.sendNativeHistograms {
		return true
	}
	currentTime := time.Now()
outer:
	for _, h := range floatHistograms {
		if isSampleOld(currentTime, time.Duration(t.cfg.SampleAgeLimit), h.T) {
			t.metrics.droppedHistogramsTotal.WithLabelValues(reasonTooOld).Inc()
			continue
		}
		t.seriesMtx.Lock()
		lbls, ok := t.seriesLabels[h.Ref]
		if !ok {
			t.dataDropped.incr(1)
			if _, ok := t.droppedSeries[h.Ref]; !ok {
				level.Info(t.logger).Log("msg", "Dropped histogram for series that was not explicitly dropped via relabelling", "ref", h.Ref)
				t.metrics.droppedHistogramsTotal.WithLabelValues(reasonUnintentionalDroppedSeries).Inc()
			} else {
				t.metrics.droppedHistogramsTotal.WithLabelValues(reasonDroppedSeries).Inc()
			}
			t.seriesMtx.Unlock()
			continue
		}
		t.seriesMtx.Unlock()

		backoff := model.Duration(5 * time.Millisecond)
		for {
			select {
			case <-t.quit:
				return false
			default:
			}
			if t.shards.enqueue(h.Ref, timeSeries{
				seriesLabels:   lbls,
				timestamp:      h.T,
				floatHistogram: h.FH,
				sType:          tFloatHistogram,
			}) {
				continue outer
			}

			t.metrics.enqueueRetriesTotal.Inc()
			time.Sleep(time.Duration(backoff))
			backoff *= 2
			if backoff > t.cfg.MaxBackoff {
				backoff = t.cfg.MaxBackoff
			}
		}
	}
	return true
}

// Start the queue manager sending samples to the remote storage.
// Does not block.
func (t *QueueManager) Start() {
	// Register and initialise some metrics.
	t.metrics.register()
	t.metrics.shardCapacity.Set(float64(t.cfg.Capacity))
	t.metrics.maxNumShards.Set(float64(t.cfg.MaxShards))
	t.metrics.minNumShards.Set(float64(t.cfg.MinShards))
	t.metrics.desiredNumShards.Set(float64(t.cfg.MinShards))
	t.metrics.maxSamplesPerSend.Set(float64(t.cfg.MaxSamplesPerSend))

	t.shards.start(t.numShards)
	t.watcher.Start()
	if t.mcfg.Send {
		t.metadataWatcher.Start()
	}

	t.wg.Add(2)
	go t.updateShardsLoop()
	go t.reshardLoop()
}

// Stop stops sending samples to the remote storage and waits for pending
// sends to complete.
func (t *QueueManager) Stop() {
	level.Info(t.logger).Log("msg", "Stopping remote storage...")
	defer level.Info(t.logger).Log("msg", "Remote storage stopped.")

	close(t.quit)
	t.wg.Wait()
	// Wait for all QueueManager routines to end before stopping shards, metadata watcher, and WAL watcher. This
	// is to ensure we don't end up executing a reshard and shards.stop() at the same time, which
	// causes a closed channel panic.
	t.shards.stop()
	t.watcher.Stop()
	if t.mcfg.Send {
		t.metadataWatcher.Stop()
	}

	// On shutdown, release the strings in the labels from the intern pool.
	t.seriesMtx.Lock()
	for _, labels := range t.seriesLabels {
		t.releaseLabels(labels)
	}
	t.seriesMtx.Unlock()
	t.metrics.unregister()
}

// StoreSeries keeps track of which series we know about for lookups when sending samples to remote.
func (t *QueueManager) StoreSeries(series []record.RefSeries, index int) {
	t.seriesMtx.Lock()
	defer t.seriesMtx.Unlock()
	t.seriesSegmentMtx.Lock()
	defer t.seriesSegmentMtx.Unlock()
	for _, s := range series {
		// Just make sure all the Refs of Series will insert into seriesSegmentIndexes map for tracking.
		t.seriesSegmentIndexes[s.Ref] = index

		t.builder.Reset(s.Labels)
		processExternalLabels(t.builder, t.externalLabels)
		keep := relabel.ProcessBuilder(t.builder, t.relabelConfigs...)
		if !keep {
			t.droppedSeries[s.Ref] = struct{}{}
			continue
		}
		lbls := t.builder.Labels()
		t.internLabels(lbls)

		// We should not ever be replacing a series labels in the map, but just
		// in case we do we need to ensure we do not leak the replaced interned
		// strings.
		if orig, ok := t.seriesLabels[s.Ref]; ok {
			t.releaseLabels(orig)
		}
		t.seriesLabels[s.Ref] = lbls
	}
}

// UpdateSeriesSegment updates the segment number held against the series,
// so we can trim older ones in SeriesReset.
func (t *QueueManager) UpdateSeriesSegment(series []record.RefSeries, index int) {
	t.seriesSegmentMtx.Lock()
	defer t.seriesSegmentMtx.Unlock()
	for _, s := range series {
		t.seriesSegmentIndexes[s.Ref] = index
	}
}

// SeriesReset is used when reading a checkpoint. WAL Watcher should have
// stored series records with the checkpoints index number, so we can now
// delete any ref ID's lower than that # from the two maps.
func (t *QueueManager) SeriesReset(index int) {
	t.seriesMtx.Lock()
	defer t.seriesMtx.Unlock()
	t.seriesSegmentMtx.Lock()
	defer t.seriesSegmentMtx.Unlock()
	// Check for series that are in segments older than the checkpoint
	// that were not also present in the checkpoint.
	for k, v := range t.seriesSegmentIndexes {
		if v < index {
			delete(t.seriesSegmentIndexes, k)
			t.releaseLabels(t.seriesLabels[k])
			delete(t.seriesLabels, k)
			delete(t.droppedSeries, k)
		}
	}
}

// SetClient updates the client used by a queue. Used when only client specific
// fields are updated to avoid restarting the queue.
func (t *QueueManager) SetClient(c WriteClient) {
	t.clientMtx.Lock()
	t.storeClient = c
	t.clientMtx.Unlock()
}

func (t *QueueManager) client() WriteClient {
	t.clientMtx.RLock()
	defer t.clientMtx.RUnlock()
	return t.storeClient
}

func (t *QueueManager) internLabels(lbls labels.Labels) {
	lbls.InternStrings(t.interner.intern)
}

func (t *QueueManager) releaseLabels(ls labels.Labels) {
	ls.ReleaseStrings(t.interner.release)
}

// processExternalLabels merges externalLabels into b. If b contains
// a label in externalLabels, the value in b wins.
func processExternalLabels(b *labels.Builder, externalLabels []labels.Label) {
	for _, el := range externalLabels {
		if b.Get(el.Name) == "" {
			b.Set(el.Name, el.Value)
		}
	}
}

func (t *QueueManager) updateShardsLoop() {
	defer t.wg.Done()

	ticker := time.NewTicker(shardUpdateDuration)
	defer ticker.Stop()
	for {
		select {
		case <-ticker.C:
			desiredShards := t.calculateDesiredShards()
			if !t.shouldReshard(desiredShards) {
				continue
			}
			// Resharding can take some time, and we want this loop
			// to stay close to shardUpdateDuration.
			select {
			case t.reshardChan <- desiredShards:
				level.Info(t.logger).Log("msg", "Remote storage resharding", "from", t.numShards, "to", desiredShards)
				t.numShards = desiredShards
			default:
				level.Info(t.logger).Log("msg", "Currently resharding, skipping.")
			}
		case <-t.quit:
			return
		}
	}
}

// shouldReshard returns whether resharding should occur.
func (t *QueueManager) shouldReshard(desiredShards int) bool {
	if desiredShards == t.numShards {
		return false
	}
	// We shouldn't reshard if Prometheus hasn't been able to send to the
	// remote endpoint successfully within some period of time.
	minSendTimestamp := time.Now().Add(-2 * time.Duration(t.cfg.BatchSendDeadline)).Unix()
	lsts := t.lastSendTimestamp.Load()
	if lsts < minSendTimestamp {
		level.Warn(t.logger).Log("msg", "Skipping resharding, last successful send was beyond threshold", "lastSendTimestamp", lsts, "minSendTimestamp", minSendTimestamp)
		return false
	}
	if disableTimestamp := t.reshardDisableEndTimestamp.Load(); time.Now().Unix() < disableTimestamp {
		disabledAt := time.Unix(t.reshardDisableStartTimestamp.Load(), 0)
		disabledFor := time.Until(time.Unix(disableTimestamp, 0))

		level.Warn(t.logger).Log("msg", "Skipping resharding, resharding is disabled while waiting for recoverable errors", "disabled_at", disabledAt, "disabled_for", disabledFor)
		return false
	}
	return true
}

// calculateDesiredShards returns the number of desired shards, which will be
// the current QueueManager.numShards if resharding should not occur for reasons
// outlined in this functions implementation. It is up to the caller to reshard, or not,
// based on the return value.
func (t *QueueManager) calculateDesiredShards() int {
	t.dataOut.tick()
	t.dataDropped.tick()
	t.dataOutDuration.tick()

	// We use the number of incoming samples as a prediction of how much work we
	// will need to do next iteration.  We add to this any pending samples
	// (received - send) so we can catch up with any backlog. We use the average
	// outgoing batch latency to work out how many shards we need.
	var (
		dataInRate      = t.dataIn.rate()
		dataOutRate     = t.dataOut.rate()
		dataKeptRatio   = dataOutRate / (t.dataDropped.rate() + dataOutRate)
		dataOutDuration = t.dataOutDuration.rate() / float64(time.Second)
		dataPendingRate = dataInRate*dataKeptRatio - dataOutRate
		highestSent     = t.metrics.highestSentTimestamp.Get()
		highestRecv     = t.highestRecvTimestamp.Get()
		delay           = highestRecv - highestSent
		dataPending     = delay * dataInRate * dataKeptRatio
	)

	if dataOutRate <= 0 {
		return t.numShards
	}

	var (
		// When behind we will try to catch up on 5% of samples per second.
		backlogCatchup = 0.05 * dataPending
		// Calculate Time to send one sample, averaged across all sends done this tick.
		timePerSample = dataOutDuration / dataOutRate
		desiredShards = timePerSample * (dataInRate*dataKeptRatio + backlogCatchup)
	)
	t.metrics.desiredNumShards.Set(desiredShards)
	level.Debug(t.logger).Log("msg", "QueueManager.calculateDesiredShards",
		"dataInRate", dataInRate,
		"dataOutRate", dataOutRate,
		"dataKeptRatio", dataKeptRatio,
		"dataPendingRate", dataPendingRate,
		"dataPending", dataPending,
		"dataOutDuration", dataOutDuration,
		"timePerSample", timePerSample,
		"desiredShards", desiredShards,
		"highestSent", highestSent,
		"highestRecv", highestRecv,
	)

	// Changes in the number of shards must be greater than shardToleranceFraction.
	var (
		lowerBound = float64(t.numShards) * (1. - shardToleranceFraction)
		upperBound = float64(t.numShards) * (1. + shardToleranceFraction)
	)
	level.Debug(t.logger).Log("msg", "QueueManager.updateShardsLoop",
		"lowerBound", lowerBound, "desiredShards", desiredShards, "upperBound", upperBound)

	desiredShards = math.Ceil(desiredShards) // Round up to be on the safe side.
	if lowerBound <= desiredShards && desiredShards <= upperBound {
		return t.numShards
	}

	numShards := int(desiredShards)
	// Do not downshard if we are more than ten seconds back.
	if numShards < t.numShards && delay > 10.0 {
		level.Debug(t.logger).Log("msg", "Not downsharding due to being too far behind")
		return t.numShards
	}

	switch {
	case numShards > t.cfg.MaxShards:
		numShards = t.cfg.MaxShards
	case numShards < t.cfg.MinShards:
		numShards = t.cfg.MinShards
	}
	return numShards
}

func (t *QueueManager) reshardLoop() {
	defer t.wg.Done()

	for {
		select {
		case numShards := <-t.reshardChan:
			// We start the newShards after we have stopped (the therefore completely
			// flushed) the oldShards, to guarantee we only every deliver samples in
			// order.
			t.shards.stop()
			t.shards.start(numShards)
		case <-t.quit:
			return
		}
	}
}

func (t *QueueManager) newShards() *shards {
	s := &shards{
		qm:   t,
		done: make(chan struct{}),
	}
	return s
}

type shards struct {
	mtx sync.RWMutex // With the WAL, this is never actually contended.

	qm     *QueueManager
	queues []*queue
	// So we can accurately track how many of each are lost during shard shutdowns.
	enqueuedSamples    atomic.Int64
	enqueuedExemplars  atomic.Int64
	enqueuedHistograms atomic.Int64

	// Emulate a wait group with a channel and an atomic int, as you
	// cannot select on a wait group.
	done    chan struct{}
	running atomic.Int32

	// Soft shutdown context will prevent new enqueues and deadlocks.
	softShutdown chan struct{}

	// Hard shutdown context is used to terminate outgoing HTTP connections
	// after giving them a chance to terminate.
	hardShutdown                    context.CancelFunc
	samplesDroppedOnHardShutdown    atomic.Uint32
	exemplarsDroppedOnHardShutdown  atomic.Uint32
	histogramsDroppedOnHardShutdown atomic.Uint32
}

// start the shards; must be called before any call to enqueue.
func (s *shards) start(n int) {
	s.mtx.Lock()
	defer s.mtx.Unlock()

	s.qm.metrics.pendingSamples.Set(0)
	s.qm.metrics.numShards.Set(float64(n))

	newQueues := make([]*queue, n)
	for i := 0; i < n; i++ {
		newQueues[i] = newQueue(s.qm.cfg.MaxSamplesPerSend, s.qm.cfg.Capacity)
	}

	s.queues = newQueues

	var hardShutdownCtx context.Context
	hardShutdownCtx, s.hardShutdown = context.WithCancel(context.Background())
	s.softShutdown = make(chan struct{})
	s.running.Store(int32(n))
	s.done = make(chan struct{})
	s.enqueuedSamples.Store(0)
	s.enqueuedExemplars.Store(0)
	s.enqueuedHistograms.Store(0)
	s.samplesDroppedOnHardShutdown.Store(0)
	s.exemplarsDroppedOnHardShutdown.Store(0)
	s.histogramsDroppedOnHardShutdown.Store(0)
	for i := 0; i < n; i++ {
		go s.runShard(hardShutdownCtx, i, newQueues[i])
	}
}

// stop the shards; subsequent call to enqueue will return false.
func (s *shards) stop() {
	// Attempt a clean shutdown, but only wait flushDeadline for all the shards
	// to cleanly exit. As we're doing RPCs, enqueue can block indefinitely.
	// We must be able so call stop concurrently, hence we can only take the
	// RLock here.
	s.mtx.RLock()
	close(s.softShutdown)
	s.mtx.RUnlock()

	// Enqueue should now be unblocked, so we can take the write lock.  This
	// also ensures we don't race with writes to the queues, and get a panic:
	// send on closed channel.
	s.mtx.Lock()
	defer s.mtx.Unlock()
	for _, queue := range s.queues {
		go queue.FlushAndShutdown(s.done)
	}
	select {
	case <-s.done:
		return
	case <-time.After(s.qm.flushDeadline):
	}

	// Force an unclean shutdown.
	s.hardShutdown()
	<-s.done
	if dropped := s.samplesDroppedOnHardShutdown.Load(); dropped > 0 {
		level.Error(s.qm.logger).Log("msg", "Failed to flush all samples on shutdown", "count", dropped)
	}
	if dropped := s.exemplarsDroppedOnHardShutdown.Load(); dropped > 0 {
		level.Error(s.qm.logger).Log("msg", "Failed to flush all exemplars on shutdown", "count", dropped)
	}
}

// enqueue data (sample or exemplar). If the shard is full, shutting down, or
// resharding, it will return false; in this case, you should back off and
// retry. A shard is full when its configured capacity has been reached,
// specifically, when s.queues[shard] has filled its batchQueue channel and the
// partial batch has also been filled.
func (s *shards) enqueue(ref chunks.HeadSeriesRef, data timeSeries) bool {
	s.mtx.RLock()
	defer s.mtx.RUnlock()

	shard := uint64(ref) % uint64(len(s.queues))
	select {
	case <-s.softShutdown:
		return false
	default:
		appended := s.queues[shard].Append(data)
		if !appended {
			return false
		}
		switch data.sType {
		case tSample:
			s.qm.metrics.pendingSamples.Inc()
			s.enqueuedSamples.Inc()
		case tExemplar:
			s.qm.metrics.pendingExemplars.Inc()
			s.enqueuedExemplars.Inc()
		case tHistogram, tFloatHistogram:
			s.qm.metrics.pendingHistograms.Inc()
			s.enqueuedHistograms.Inc()
		}
		return true
	}
}

type queue struct {
	// batchMtx covers operations appending to or publishing the partial batch.
	batchMtx   sync.Mutex
	batch      []timeSeries
	batchQueue chan []timeSeries

	// Since we know there are a limited number of batches out, using a stack
	// is easy and safe so a sync.Pool is not necessary.
	// poolMtx covers adding and removing batches from the batchPool.
	poolMtx   sync.Mutex
	batchPool [][]timeSeries
}

type timeSeries struct {
	seriesLabels   labels.Labels
	value          float64
	histogram      *histogram.Histogram
	floatHistogram *histogram.FloatHistogram
	timestamp      int64
	exemplarLabels labels.Labels
	// The type of series: sample, exemplar, or histogram.
	sType seriesType
}

type seriesType int

const (
	tSample seriesType = iota
	tExemplar
	tHistogram
	tFloatHistogram
)

func newQueue(batchSize, capacity int) *queue {
	batches := capacity / batchSize
	// Always create an unbuffered channel even if capacity is configured to be
	// less than max_samples_per_send.
	if batches == 0 {
		batches = 1
	}
	return &queue{
		batch:      make([]timeSeries, 0, batchSize),
		batchQueue: make(chan []timeSeries, batches),
		// batchPool should have capacity for everything in the channel + 1 for
		// the batch being processed.
		batchPool: make([][]timeSeries, 0, batches+1),
	}
}

// Append the timeSeries to the buffered batch. Returns false if it
// cannot be added and must be retried.
func (q *queue) Append(datum timeSeries) bool {
	q.batchMtx.Lock()
	defer q.batchMtx.Unlock()
	q.batch = append(q.batch, datum)
	if len(q.batch) == cap(q.batch) {
		select {
		case q.batchQueue <- q.batch:
			q.batch = q.newBatch(cap(q.batch))
			return true
		default:
			// Remove the sample we just appended. It will get retried.
			q.batch = q.batch[:len(q.batch)-1]
			return false
		}
	}
	return true
}

func (q *queue) Chan() <-chan []timeSeries {
	return q.batchQueue
}

// Batch returns the current batch and allocates a new batch.
func (q *queue) Batch() []timeSeries {
	q.batchMtx.Lock()
	defer q.batchMtx.Unlock()

	select {
	case batch := <-q.batchQueue:
		return batch
	default:
		batch := q.batch
		q.batch = q.newBatch(cap(batch))
		return batch
	}
}

// ReturnForReuse adds the batch buffer back to the internal pool.
func (q *queue) ReturnForReuse(batch []timeSeries) {
	q.poolMtx.Lock()
	defer q.poolMtx.Unlock()
	if len(q.batchPool) < cap(q.batchPool) {
		q.batchPool = append(q.batchPool, batch[:0])
	}
}

// FlushAndShutdown stops the queue and flushes any samples. No appends can be
// made after this is called.
func (q *queue) FlushAndShutdown(done <-chan struct{}) {
	for q.tryEnqueueingBatch(done) {
		time.Sleep(time.Second)
	}
	q.batch = nil
	close(q.batchQueue)
}

// tryEnqueueingBatch tries to send a batch if necessary. If sending needs to
// be retried it will return true.
func (q *queue) tryEnqueueingBatch(done <-chan struct{}) bool {
	q.batchMtx.Lock()
	defer q.batchMtx.Unlock()
	if len(q.batch) == 0 {
		return false
	}

	select {
	case q.batchQueue <- q.batch:
		return false
	case <-done:
		// The shard has been hard shut down, so no more samples can be sent.
		// No need to try again as we will drop everything left in the queue.
		return false
	default:
		// The batchQueue is full, so we need to try again later.
		return true
	}
}

func (q *queue) newBatch(capacity int) []timeSeries {
	q.poolMtx.Lock()
	defer q.poolMtx.Unlock()
	batches := len(q.batchPool)
	if batches > 0 {
		batch := q.batchPool[batches-1]
		q.batchPool = q.batchPool[:batches-1]
		return batch
	}
	return make([]timeSeries, 0, capacity)
}

func (s *shards) runShard(ctx context.Context, shardID int, queue *queue) {
	defer func() {
		if s.running.Dec() == 0 {
			close(s.done)
		}
	}()

	shardNum := strconv.Itoa(shardID)

	// Send batches of at most MaxSamplesPerSend samples to the remote storage.
	// If we have fewer samples than that, flush them out after a deadline anyways.
	var (
		max = s.qm.cfg.MaxSamplesPerSend

		pBuf = proto.NewBuffer(nil)
		buf  []byte
	)
	if s.qm.sendExemplars {
		max += int(float64(max) * 0.1)
	}

	batchQueue := queue.Chan()
	pendingData := make([]prompb.TimeSeries, max)
	for i := range pendingData {
		pendingData[i].Samples = []prompb.Sample{{}}
		if s.qm.sendExemplars {
			pendingData[i].Exemplars = []prompb.Exemplar{{}}
		}
	}

	timer := time.NewTimer(time.Duration(s.qm.cfg.BatchSendDeadline))
	stop := func() {
		if !timer.Stop() {
			select {
			case <-timer.C:
			default:
			}
		}
	}
	defer stop()

	for {
		select {
		case <-ctx.Done():
			// In this case we drop all samples in the buffer and the queue.
			// Remove them from pending and mark them as failed.
			droppedSamples := int(s.enqueuedSamples.Load())
			droppedExemplars := int(s.enqueuedExemplars.Load())
			droppedHistograms := int(s.enqueuedHistograms.Load())
			s.qm.metrics.pendingSamples.Sub(float64(droppedSamples))
			s.qm.metrics.pendingExemplars.Sub(float64(droppedExemplars))
			s.qm.metrics.pendingHistograms.Sub(float64(droppedHistograms))
			s.qm.metrics.failedSamplesTotal.Add(float64(droppedSamples))
			s.qm.metrics.failedExemplarsTotal.Add(float64(droppedExemplars))
			s.qm.metrics.failedHistogramsTotal.Add(float64(droppedHistograms))
			s.samplesDroppedOnHardShutdown.Add(uint32(droppedSamples))
			s.exemplarsDroppedOnHardShutdown.Add(uint32(droppedExemplars))
			s.histogramsDroppedOnHardShutdown.Add(uint32(droppedHistograms))
			return

		case batch, ok := <-batchQueue:
			if !ok {
				return
			}
			nPendingSamples, nPendingExemplars, nPendingHistograms := s.populateTimeSeries(batch, pendingData)
			queue.ReturnForReuse(batch)
			n := nPendingSamples + nPendingExemplars + nPendingHistograms
			s.sendSamples(ctx, pendingData[:n], nPendingSamples, nPendingExemplars, nPendingHistograms, pBuf, &buf)

			stop()
			timer.Reset(time.Duration(s.qm.cfg.BatchSendDeadline))

		case <-timer.C:
			batch := queue.Batch()
			if len(batch) > 0 {
				nPendingSamples, nPendingExemplars, nPendingHistograms := s.populateTimeSeries(batch, pendingData)
				n := nPendingSamples + nPendingExemplars + nPendingHistograms
				level.Debug(s.qm.logger).Log("msg", "runShard timer ticked, sending buffered data", "samples", nPendingSamples,
					"exemplars", nPendingExemplars, "shard", shardNum, "histograms", nPendingHistograms)
				s.sendSamples(ctx, pendingData[:n], nPendingSamples, nPendingExemplars, nPendingHistograms, pBuf, &buf)
			}
			queue.ReturnForReuse(batch)
			timer.Reset(time.Duration(s.qm.cfg.BatchSendDeadline))
		}
	}
}

func (s *shards) populateTimeSeries(batch []timeSeries, pendingData []prompb.TimeSeries) (int, int, int) {
	var nPendingSamples, nPendingExemplars, nPendingHistograms int
	for nPending, d := range batch {
		pendingData[nPending].Samples = pendingData[nPending].Samples[:0]
		if s.qm.sendExemplars {
			pendingData[nPending].Exemplars = pendingData[nPending].Exemplars[:0]
		}
		if s.qm.sendNativeHistograms {
			pendingData[nPending].Histograms = pendingData[nPending].Histograms[:0]
		}

		// Number of pending samples is limited by the fact that sendSamples (via sendSamplesWithBackoff)
		// retries endlessly, so once we reach max samples, if we can never send to the endpoint we'll
		// stop reading from the queue. This makes it safe to reference pendingSamples by index.
		pendingData[nPending].Labels = labelsToLabelsProto(d.seriesLabels, pendingData[nPending].Labels)
		switch d.sType {
		case tSample:
			pendingData[nPending].Samples = append(pendingData[nPending].Samples, prompb.Sample{
				Value:     d.value,
				Timestamp: d.timestamp,
			})
			nPendingSamples++
		case tExemplar:
			pendingData[nPending].Exemplars = append(pendingData[nPending].Exemplars, prompb.Exemplar{
				Labels:    labelsToLabelsProto(d.exemplarLabels, nil),
				Value:     d.value,
				Timestamp: d.timestamp,
			})
			nPendingExemplars++
		case tHistogram:
			pendingData[nPending].Histograms = append(pendingData[nPending].Histograms, HistogramToHistogramProto(d.timestamp, d.histogram))
			nPendingHistograms++
		case tFloatHistogram:
			pendingData[nPending].Histograms = append(pendingData[nPending].Histograms, FloatHistogramToHistogramProto(d.timestamp, d.floatHistogram))
			nPendingHistograms++
		}
	}
	return nPendingSamples, nPendingExemplars, nPendingHistograms
}

func (s *shards) sendSamples(ctx context.Context, samples []prompb.TimeSeries, sampleCount, exemplarCount, histogramCount int, pBuf *proto.Buffer, buf *[]byte) {
	begin := time.Now()
	err := s.sendSamplesWithBackoff(ctx, samples, sampleCount, exemplarCount, histogramCount, pBuf, buf)
	if err != nil {
		level.Error(s.qm.logger).Log("msg", "non-recoverable error", "count", sampleCount, "exemplarCount", exemplarCount, "err", err)
		s.qm.metrics.failedSamplesTotal.Add(float64(sampleCount))
		s.qm.metrics.failedExemplarsTotal.Add(float64(exemplarCount))
		s.qm.metrics.failedHistogramsTotal.Add(float64(histogramCount))
	}

	// These counters are used to calculate the dynamic sharding, and as such
	// should be maintained irrespective of success or failure.
	s.qm.dataOut.incr(int64(len(samples)))
	s.qm.dataOutDuration.incr(int64(time.Since(begin)))
	s.qm.lastSendTimestamp.Store(time.Now().Unix())
	// Pending samples/exemplars/histograms also should be subtracted, as an error means
	// they will not be retried.
	s.qm.metrics.pendingSamples.Sub(float64(sampleCount))
	s.qm.metrics.pendingExemplars.Sub(float64(exemplarCount))
	s.qm.metrics.pendingHistograms.Sub(float64(histogramCount))
	s.enqueuedSamples.Sub(int64(sampleCount))
	s.enqueuedExemplars.Sub(int64(exemplarCount))
	s.enqueuedHistograms.Sub(int64(histogramCount))
}

// sendSamples to the remote storage with backoff for recoverable errors.
func (s *shards) sendSamplesWithBackoff(ctx context.Context, samples []prompb.TimeSeries, sampleCount, exemplarCount, histogramCount int, pBuf *proto.Buffer, buf *[]byte) error {
	// Build the WriteRequest with no metadata.
	req, highest, lowest, err := buildWriteRequest(s.qm.logger, samples, nil, pBuf, *buf, nil)
	s.qm.buildRequestLimitTimestamp.Store(lowest)
	if err != nil {
		// Failing to build the write request is non-recoverable, since it will
		// only error if marshaling the proto to bytes fails.
		return err
	}

	reqSize := len(req)
	*buf = req

	// An anonymous function allows us to defer the completion of our per-try spans
	// without causing a memory leak, and it has the nice effect of not propagating any
	// parameters for sendSamplesWithBackoff/3.
	attemptStore := func(try int) error {
		currentTime := time.Now()
		lowest := s.qm.buildRequestLimitTimestamp.Load()
		if isSampleOld(currentTime, time.Duration(s.qm.cfg.SampleAgeLimit), lowest) {
			// This will filter out old samples during retries.
			req, _, lowest, err := buildWriteRequest(
				s.qm.logger,
				samples,
				nil,
				pBuf,
				*buf,
				isTimeSeriesOldFilter(s.qm.metrics, currentTime, time.Duration(s.qm.cfg.SampleAgeLimit)),
			)
			s.qm.buildRequestLimitTimestamp.Store(lowest)
			if err != nil {
				return err
			}
			*buf = req
		}

		ctx, span := otel.Tracer("").Start(ctx, "Remote Send Batch")
		defer span.End()

		span.SetAttributes(
			attribute.Int("request_size", reqSize),
			attribute.Int("samples", sampleCount),
			attribute.Int("try", try),
			attribute.String("remote_name", s.qm.storeClient.Name()),
			attribute.String("remote_url", s.qm.storeClient.Endpoint()),
		)

		if exemplarCount > 0 {
			span.SetAttributes(attribute.Int("exemplars", exemplarCount))
		}
		if histogramCount > 0 {
			span.SetAttributes(attribute.Int("histograms", histogramCount))
		}

		begin := time.Now()
		s.qm.metrics.samplesTotal.Add(float64(sampleCount))
		s.qm.metrics.exemplarsTotal.Add(float64(exemplarCount))
		s.qm.metrics.histogramsTotal.Add(float64(histogramCount))
		err := s.qm.client().Store(ctx, *buf, try)
		s.qm.metrics.sentBatchDuration.Observe(time.Since(begin).Seconds())

		if err != nil {
			span.RecordError(err)
			return err
		}

		return nil
	}

	onRetry := func() {
		s.qm.metrics.retriedSamplesTotal.Add(float64(sampleCount))
		s.qm.metrics.retriedExemplarsTotal.Add(float64(exemplarCount))
		s.qm.metrics.retriedHistogramsTotal.Add(float64(histogramCount))
	}

	err = s.qm.sendWriteRequestWithBackoff(ctx, attemptStore, onRetry)
	if errors.Is(err, context.Canceled) {
		// When there is resharding, we cancel the context for this queue, which means the data is not sent.
		// So we exit early to not update the metrics.
		return err
	}

	s.qm.metrics.sentBytesTotal.Add(float64(reqSize))
	s.qm.metrics.highestSentTimestamp.Set(float64(highest / 1000))

	return err
}

func (t *QueueManager) sendWriteRequestWithBackoff(ctx context.Context, attempt func(int) error, onRetry func()) error {
	backoff := t.cfg.MinBackoff
	sleepDuration := model.Duration(0)
	try := 0

	for {
		select {
		case <-ctx.Done():
			return ctx.Err()
		default:
		}

		err := attempt(try)

		if err == nil {
			return nil
		}

		// If the error is unrecoverable, we should not retry.
		var backoffErr RecoverableError
		if !errors.As(err, &backoffErr) {
			return err
		}

		sleepDuration = backoff
		switch {
		case backoffErr.retryAfter > 0:
			sleepDuration = backoffErr.retryAfter
			level.Info(t.logger).Log("msg", "Retrying after duration specified by Retry-After header", "duration", sleepDuration)
		case backoffErr.retryAfter < 0:
			level.Debug(t.logger).Log("msg", "retry-after cannot be in past, retrying using default backoff mechanism")
		}

		// We should never reshard for a recoverable error; increasing shards could
		// make the problem worse, particularly if we're getting rate limited.
		//
		// reshardDisableTimestamp holds the unix timestamp until which resharding
		// is diableld. We'll update that timestamp if the period we were just told
		// to sleep for is newer than the existing disabled timestamp.
		reshardWaitPeriod := time.Now().Add(time.Duration(sleepDuration) * 2)
		if oldTS, updated := setAtomicToNewer(&t.reshardDisableEndTimestamp, reshardWaitPeriod.Unix()); updated {
			// If the old timestamp was in the past, then resharding was previously
			// enabled. We want to track the time where it initially got disabled for
			// logging purposes.
			disableTime := time.Now().Unix()
			if oldTS < disableTime {
				t.reshardDisableStartTimestamp.Store(disableTime)
			}
		}

		select {
		case <-ctx.Done():
		case <-time.After(time.Duration(sleepDuration)):
		}

		// If we make it this far, we've encountered a recoverable error and will retry.
		onRetry()
		level.Warn(t.logger).Log("msg", "Failed to send batch, retrying", "err", err)

		backoff = sleepDuration * 2

		if backoff > t.cfg.MaxBackoff {
			backoff = t.cfg.MaxBackoff
		}

		try++
	}
}

// setAtomicToNewer atomically sets a value to the newer int64 between itself
// and the provided newValue argument. setAtomicToNewer returns whether the
// atomic value was updated and what the previous value was.
func setAtomicToNewer(value *atomic.Int64, newValue int64) (previous int64, updated bool) {
	for {
		current := value.Load()
		if current >= newValue {
			// If the current stored value is newer than newValue; abort.
			return current, false
		}

		// Try to swap the value. If the atomic value has changed, we loop back to
		// the beginning until we've successfully swapped out the value or the
		// value stored in it is newer than newValue.
		if value.CompareAndSwap(current, newValue) {
			return current, true
		}
	}
}

func buildTimeSeries(timeSeries []prompb.TimeSeries, filter func(prompb.TimeSeries) bool) (int64, int64, []prompb.TimeSeries, int, int, int) {
	var highest int64
	var lowest int64
	var droppedSamples, droppedExemplars, droppedHistograms int

	keepIdx := 0
	lowest = math.MaxInt64
	for i, ts := range timeSeries {
		if filter != nil && filter(ts) {
			if len(ts.Samples) > 0 {
				droppedSamples++
			}
			if len(ts.Exemplars) > 0 {
				droppedExemplars++
			}
			if len(ts.Histograms) > 0 {
				droppedHistograms++
			}
			continue
		}

		// At the moment we only ever append a TimeSeries with a single sample or exemplar in it.
		if len(ts.Samples) > 0 && ts.Samples[0].Timestamp > highest {
			highest = ts.Samples[0].Timestamp
		}
		if len(ts.Exemplars) > 0 && ts.Exemplars[0].Timestamp > highest {
			highest = ts.Exemplars[0].Timestamp
		}
		if len(ts.Histograms) > 0 && ts.Histograms[0].Timestamp > highest {
			highest = ts.Histograms[0].Timestamp
		}

		// Get lowest timestamp
		if len(ts.Samples) > 0 && ts.Samples[0].Timestamp < lowest {
			lowest = ts.Samples[0].Timestamp
		}
		if len(ts.Exemplars) > 0 && ts.Exemplars[0].Timestamp < lowest {
			lowest = ts.Exemplars[0].Timestamp
		}
		if len(ts.Histograms) > 0 && ts.Histograms[0].Timestamp < lowest {
			lowest = ts.Histograms[0].Timestamp
		}

		// Move the current element to the write position and increment the write pointer
		timeSeries[keepIdx] = timeSeries[i]
		keepIdx++
	}

	timeSeries = timeSeries[:keepIdx]
	return highest, lowest, timeSeries, droppedSamples, droppedExemplars, droppedHistograms
}

func buildWriteRequest(logger log.Logger, timeSeries []prompb.TimeSeries, metadata []prompb.MetricMetadata, pBuf *proto.Buffer, buf []byte, filter func(prompb.TimeSeries) bool) ([]byte, int64, int64, error) {
	highest, lowest, timeSeries,
		droppedSamples, droppedExemplars, droppedHistograms := buildTimeSeries(timeSeries, filter)

	if droppedSamples > 0 || droppedExemplars > 0 || droppedHistograms > 0 {
		level.Debug(logger).Log("msg", "dropped data due to their age", "droppedSamples", droppedSamples, "droppedExemplars", droppedExemplars, "droppedHistograms", droppedHistograms)
	}

	req := &prompb.WriteRequest{
		Timeseries: timeSeries,
		Metadata:   metadata,
	}

	if pBuf == nil {
		pBuf = proto.NewBuffer(nil) // For convenience in tests. Not efficient.
	} else {
		pBuf.Reset()
	}
	err := pBuf.Marshal(req)
	if err != nil {
		return nil, highest, lowest, err
	}

	// snappy uses len() to see if it needs to allocate a new slice. Make the
	// buffer as long as possible.
	if buf != nil {
		buf = buf[0:cap(buf)]
	}
	compressed := snappy.Encode(buf, pBuf.Bytes())
	return compressed, highest, lowest, nil
}