1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
|
(* This file is part of Proof General.
*
* © Copyright 2020 Hendrik Tews
*
* Authors: Hendrik Tews
* Maintainer: Hendrik Tews <hendrik@askra.de>
*
* SPDX-License-Identifier: GPL-3.0-or-later
*
*
* This file is part of an automatic test case for parallel background
* compilation in coq-par-compile.el. See test.el in this directory.
*)
(* The test script relies on absolute line numbers.
* DO NOT INSERT ANY LINE UNLESS YOU KNOW WHAT YOU ARE DOING.
*)
(* This is line 21 *)
Require Export b.
Require Export c.
(* This is line 24 *)
(* This is line 27 *)
Definition sum : nat := 35.
(* This is line 31 *)
Lemma x : b + c + d + e + f + g + h = sum.
Proof using.
unfold b, c, d, e, f, g, h, sum in *.
simpl.
trivial.
Qed.
(* This is line 38 *)
|