1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711
|
(*
* prooftree --- proof tree display for Proof General
*
* Copyright (C) 2011 - 2016 Hendrik Tews
*
* This file is part of "prooftree".
*
* "prooftree" is free software: you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* "prooftree" is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License in file COPYING in this or one of the parent
* directories for more details.
*
* You should have received a copy of the GNU General Public License
* along with "prooftree". If not, see <http://www.gnu.org/licenses/>.
*
* $Id: draw_tree.ml,v 1.54 2016/01/23 12:57:13 tews Exp $
*)
(** Layout and drawing of the elements of the proof tree.
Internally a proof tree is organized as an n-ary tree, where the
nodes are proof goals and proof commands and the vertices connect
them appropriately. This module is responsible for manipulating
and displaying these trees and for locating nodes (e.g., on mouse
clicks).
A real proof tree has a number of properties, about which this
module is completely ignorant. For instance, the root node is
always a proof goal; proof goal nodes have zero or more successor
nodes, all of which are proof commands; and, finally, every proof
command has precisely one proof-goal successor. These properties
are neither assumed nor checked, they hopefully hold, because the
tree is created in the right way.
The common code of both proof-goal and proof-command nodes is in
the class {!class: Draw_tree.proof_tree_element}. The class for proof goals,
{!turnstile} and the class {!class: proof_command} are derived from it.
To work around the impossible down-casts, {!proof_tree_element}
contains some virtual method hooks for stuff that is really
specific for just one of its subclasses.
The tree layout functionallity has been designed such that its
running time is independent of the size of the complete tree. When
a new node is inserted into the tree, only its direct and indirect
parent nodes need to recompute their layout data. No sibling node
must be visited. To achieve this the nodes do not store absolut
positions. Instead, nodes only store the width and height of
themselves and of their subtrees.
Adjusting the tree layout when new elements are inserted works
bottom up. Drawing the tree or looking up nodes (for mouse events)
works top down. Therefore the nodes are organized in a
doubly-linked tree, where children nodes contain a link to their
parent. The doubly-linked tree functionality is in
{!class: doubly_linked_tree}.
*)
open Util
open Configuration
open Gtk_ext
(** {2 Utility types and functions} *)
(*****************************************************************************)
(*****************************************************************************)
(** {3 Existential variables} *)
(*****************************************************************************)
(*****************************************************************************)
(** The code for marking and displaying existential variables depends
on proper sharing of these records: For each proof-tree window
there must only be one record for each existential variable. The
same existential variable in different (cloned) proof trees must
have exactly one record for each proof-tree window.
The proof-tree record ({!Proof_tree.proof_tree}) contains a hash
table containing all existential variables for a given proof.
Changing the state of an existental variable and marking one in
the proof-tree display works by side effect: All proof tree nodes
refer to the very same instance and therefore see the state
change.
Sets of existential variables are stored as lists, whoose order is
usually not important. Therefore most functions that manipulate
lists of existential variables do not preserve the order.
*)
(** Status of an existential variable. The tree of existentials is
only scanned for redisplay. Therefore, a fully instantiated
existential might have state [Partially_instantiated] until the next scan.
*)
type existential_status =
| Uninstantiated (** open, not instantiated *)
| Partially_instantiated (** instantiated, but the
instantiation uses some
existentials that are still open *)
| Fully_instantiated (** fully instantiated *)
(** Representation of existential variables. The [status] field is
lazily updated in {!Proof_tree.update_existential_status}.
Therefore, a fully instantiated existential might have status
{!existential_status.Partially_instantiated} for some time.
*)
type existential_variable = {
existential_name : string; (** The name *)
mutable status : existential_status; (** instantiation status *)
mutable existential_mark : bool; (** [true] if this existential should
be marked in the proof-tree
display *)
mutable dependencies : existential_variable list;
(** The list of evars that are used
in the instantiation,
if instantiated *)
}
(** Filter the non-instantiated existentials from the argument.
*)
let filter_uninstantiated exl =
list_filter_rev (fun ex -> ex.status = Uninstantiated) exl
(** Filter the partially instantiated existentials from the argument *)
let filter_partially_instantiated exl =
list_filter_rev (fun ex -> ex.status = Partially_instantiated) exl
(** Derive the existential status for drawing a node or a connection
line in the proof tree.
*)
let combine_existential_status_for_tree exl =
if List.for_all (fun ex -> ex.status = Fully_instantiated) exl
then Fully_instantiated
else if List.exists (fun ex -> ex.status = Uninstantiated) exl
then Uninstantiated
else Partially_instantiated
(** Convert a set of existential variables into a single string for
display purposes.
*)
let string_of_existential_list exl =
String.concat " " (List.map (fun ex -> ex.existential_name) exl)
(*****************************************************************************)
(*****************************************************************************)
(** {3 Misc types} *)
(*****************************************************************************)
(*****************************************************************************)
(** Kind of nodes in the proof-tree display. The two kinds correspond
to the two subclasses {!proof_command} and {!turnstile} of
{!proof_tree_element}.
*)
type node_kind =
| Proof_command (** proof command *)
| Turnstile (** sequent *)
(** Proof state of a node in the proof-tree display. *)
type branch_state_type =
| Unproven (** no finished yet *)
| CurrentNode (** current sequent in prover *)
| Current (** on the path from the current
sequent to the root of the tree *)
| Cheated (** proved, but with a cheating
command *)
| Proven (** proved *)
(*
* write doc when used
* let string_of_branch_state = function
* | Unproven -> "Unproven"
* | CurrentNode -> "CurrentNode"
* | Current -> "Current"
* | Cheated -> "Cheated"
* | Proven -> "Proven"
*)
(*****************************************************************************)
(*****************************************************************************)
(** {3 Graphics context color manipulations} *)
(*****************************************************************************)
(*****************************************************************************)
(** The following functions implement a simple save/restore feature
for the forground color of the graphics context. A saved state is
a color option. The value [None] means that the foreground color
has not been changed and that there is therefore no need to
restore it.
*)
(** Save the current foreground color in a value suitable for
{!restore_gc}.
*)
let save_gc drawable =
Some drawable#get_foreground
(** Restore the saved foreground color. Do nothing if the foreground
color has not been changed.
*)
let restore_gc drawable fc_opt = match fc_opt with
| None -> ()
| Some fc -> drawable#set_foreground (`COLOR fc)
(** [save_and_set_gc drawable state existentials] sets the foreground
color to one of the configured colors, depending on [state] and
[existentials]. The function returns a value suitable for
{!restore_gc} to restore the old foreground color.
*)
let save_and_set_gc drawable state existentials =
(*
* if List.exists (fun e -> e.existential_mark) existentials
* then begin
* let res = save_gc drawable in
* drawable#set_foreground (`COLOR !mark_subtree_gdk_color);
* res
* end else
*)
match state with
| Unproven -> None
| CurrentNode
| Current ->
let res = save_gc drawable in
drawable#set_foreground (`COLOR !current_gdk_color);
res
| Proven ->
let res = save_gc drawable in
let color = match combine_existential_status_for_tree existentials with
| Fully_instantiated -> !proved_complete_gdk_color
| Partially_instantiated -> !proved_partial_gdk_color
| Uninstantiated -> !proved_incomplete_gdk_color
in
drawable#set_foreground (`COLOR color);
res
| Cheated ->
let res = save_gc drawable in
drawable#set_foreground (`COLOR !cheated_gdk_color);
res
(*****************************************************************************)
(*****************************************************************************)
(** {3 Double linked trees} *)
(*****************************************************************************)
(*****************************************************************************)
(** The proof trees in the proof-tree display are organized as
doubly-linked trees, where children contain a link to their parent
nodes. This is needed, because, for efficiency, the tree layout
computation starts at the last inserted child and walks upwards to
the root of the tree.
*)
(** Abstract base class for doubly linked trees. Because of
type-checking problems the functionality for setting and clearing
children nodes is not inside the class but outside, in the
functions {!Draw_tree.set_children} and
{!Draw_tree.clear_children}.
*)
class virtual ['a] doubly_linked_tree =
object
(** The parent link. *)
val mutable parent = None
(** The childrens list. *)
val mutable children = []
(** Accessor method for the parent field. *)
method parent = parent
(** Low-level setter for the {!parent} field. To insert child nodes
into the tree, use {!Draw_tree.set_children}.
*)
method set_parent (p : 'a) = parent <- Some p
(** Another low-level setter for the parent field. To delete nodes
from the tree, use {!Draw_tree.clear_children} on the parent.
*)
method clear_parent = parent <- None
(** Accessor for the children field. *)
method children = children
(** Low-level setter for the children field. To insert child nodes
into the tree, use {!Draw_tree.set_children}.
*)
method set_children (cs : 'a list) =
children <- cs
(** Method to be called when the children list has been changed. *)
method virtual children_changed : unit
end
(** [set_children parent children] correctly insert [children] into
the doubly linked tree as children of node [parent]. After the
change {!doubly_linked_tree.children_changed} is called on
[parent]. Asserts that the children list of [parent] is empty.
*)
let set_children parent children =
assert(parent#children = []);
parent#set_children children;
List.iter (fun c -> c#set_parent parent) children;
parent#children_changed
(** [clear_children parent] removes all children from [parent] from
the doubly linked tree. After the change
{!doubly_linked_tree.children_changed} is called on [parent].
*)
let clear_children parent =
List.iter (fun c -> c#clear_parent) parent#children;
parent#set_children [];
parent#children_changed
(*
* let add_child parent child =
* parent#set_children (parent#children @ [child]);
* child#set_parent parent;
* parent#children_changed
*)
(*
* let remove_child child =
* match child#parent with
* | None -> ()
* | Some p ->
* p#set_children (List.filter (fun c -> c <> child) p#children);
* child#clear_parent;
* p#children_changed
*)
(*****************************************************************************)
(*****************************************************************************)
(** {3 Tree layer interface} *)
(*****************************************************************************)
(*****************************************************************************)
(** Abstract interface for {!class: Tree_layers.tree_layer} and
{!class: Tree_layers.tree_layer_stack}. Root nodes of proof trees and
layers contain a pointer to the layer or layer stack containing
them. This pointer is used to invalidate the size information in
these structures and to query location information. This class
type breaks the mutual dependency between root nodes and layers
and layers and the layer stack. The type parameter stands for the
structure containing the upward pointer, because it passes [self]
as first argument to {!child_offsets}.
*)
class type ['a] abstract_tree_container =
object
(** Invalidate the size information in this container and all bigger
structures containing it.
*)
method clear_size_cache : unit
(** Compute the left and top offset of this container relative to
the upper-left corner of the complete display.
*)
method left_top_offset : int * int
(** Compute the x and y offset of one child relative to the upper
left corner of this container.
*)
method child_offsets : 'a -> int * int
end
(*****************************************************************************)
(*****************************************************************************)
(** {3 External window interface} *)
(*****************************************************************************)
(*****************************************************************************)
(** Abstract class type for external {!class: Node_window.node_window}'s
containing just those methods that are needed here. This class
type is used to break the circular dependency between {!Draw_tree}
and {!Node_window}. All {!proof_tree_element}'s keep a list of
their external windows to update them. External node windows have
a pointer to proof-tree elements to deregister themselves when
they get deleted or orphaned. Before external node windows are
passed to functions in this module, they must be cast to this
class type.
*)
class type external_node_window =
object
(** Number of this node window. Used to correlate node windows with
the proof-tree display.
*)
method window_number : string
(** Update the content in the text buffer of this node window. The
argument is the updated {!proof_tree_element.sequent_text_history}.
*)
method update_content : string list -> unit
(** Reconfigure and redraw the node window. Needs to be called when
the configuration has been changed. Actually only the font of
the buffer text is changed.
*)
method configuration_updated : unit
(** Delete this node window if it is not sticky. Needs to be called
when the corresponding element in the proof-tree display is
deleted.
*)
method delete_attached_node_window : unit
end
(*****************************************************************************)
(*****************************************************************************)
(** {2 Generic tree element} *)
(*****************************************************************************)
(*****************************************************************************)
(** Abstract base class for turnstiles and proof commands. Contains
the code for (relativ) layout, (absolute) coordinates, locating
mouse button clicks, marking branches and the general drawing
functions.
Argument undo_state saves the undo state for the current proof.
It's value is arbitrary for cloned proof trees.
*)
class virtual proof_tree_element drawable
undo_state debug_name inst_existentials fresh_existentials =
object (self)
inherit [proof_tree_element] doubly_linked_tree
(***************************************************************************)
(***************************************************************************)
(** {2 Internal State Fields} *)
(***************************************************************************)
(***************************************************************************)
(** ID for debugging purposes *)
method debug_name = (debug_name : string)
(** The kind of this element. *)
method virtual node_kind : node_kind
(** The existentials created for this element. Only non-nil when
this is a proof command.
*)
method fresh_existentials = fresh_existentials
(** The existentials instantiated by this element. Only non-nil when
this is a proof command.
*)
method inst_existentials : existential_variable list = inst_existentials
(** Return the state for this sequent. *)
method undo_state = (undo_state : int)
(** The {!class: Gtk_ext.better_drawable} into which this element
draws itself.
*)
val drawable = drawable
(***************** inside proof_tree_element *)
(** The width of this node alone in pixels. Set in the initializer
of the heirs. *)
val mutable width = 0
(** The height of this node alone in pixels. Set in the initializer
of the heirs. *)
val mutable height = 0
(** The total width in pixels of the subtree which has this node as
root. Computed in
{!Draw_tree.proof_tree_element.update_subtree_size}. *)
val mutable subtree_width = 0
(** The x-offset of the left border of the first child. Or, in other
words, the distance (in pixels) between the left border of the
subtree which has this node as root and the the left border of
the subtree which has the first child as root. Always
non-negative. Zero if this node has no children. Usually zero,
non-zero only in unusual cases, for instance if the {!width} of
this node is larger than the total width of all children.
*)
val mutable first_child_offset = 0
(** The x-offset of the centre of this node. In other words the
distance (in pixels) between the left border of this node's
subtree and the x-coordinate of this node.
*)
val mutable x_offset = 0
(***************** inside proof_tree_element *)
(** The height of this nodes subtree, counted in tree levels. At
least 1, because this element occupies already some level.
*)
val mutable subtree_levels = 0
(** The proof state of this node. *)
val mutable branch_state = Unproven
(** [true] if this node is selected and displayed in the sequent
area of the proof-tree window.
*)
val mutable selected = false
(** The list of external node windows. *)
val mutable external_windows : external_node_window list = []
(** The set of all existentials for this node. *)
val mutable existential_variables = fresh_existentials
(** Upward pointer to the layer containing this proof tree. Must be
set for root nodes.
*)
val mutable tree_layer =
(None : proof_tree_element abstract_tree_container option)
(** This field is really used only inside {!turnstile}. In a
turnstile element, it holds the list of all previous versions of
the sequent text without existential information, except for the
head, with contains the current sequent {b with} existential
info. For uniform treatment of external node windows, the
reference is also used for proof commands. There, it holds just
one element, the proof command with existentials info.
The existential info is omitted from old versions of the sequent
text, because this info is incorrect for sequents that get
updated. The problem is that the exisitentials change already
with {!Proof_tree.add_new_goal}, which happens long before
{!Proof_tree.update_sequent}. A fix for this would require a
protocol change, which is a bit too much for this little
feature.
*)
val mutable sequent_text_history = []
(***************************************************************************)
(***************************************************************************)
(** {2 Accessors / Setters} *)
(***************************************************************************)
(***************************************************************************)
(***************** inside proof_tree_element *)
(** Accessor method of {!attribute: width}. *)
method width = width
(** Accessor method of {!attribute: height}. *)
method height = height
(** Accessor method of {!attribute: subtree_width}. *)
method subtree_width = subtree_width
(** Accessor method of {!attribute: subtree_levels}. *)
method subtree_levels = subtree_levels
(** Accessor method of {!attribute: x_offset}. *)
method x_offset = x_offset
(** Accessor method of {!attribute: branch_state}. *)
method branch_state = branch_state
(** Modification method of {!attribute: branch_state}. *)
method set_branch_state s = branch_state <- s
(** Accessor method of {!attribute: selected}. *)
method is_selected = selected
(** Modification method of {!attribute: selected}. *)
method selected b = selected <- b
(***************** inside proof_tree_element *)
(** Accessor method of {!attribute: existential_variables}. *)
method existential_variables = existential_variables
(** [inherit_existentials exl] sets this nodes {!attribute:
existential_variables} as union of {!fresh_existentials} and
[exl].
*)
method inherit_existentials existentials =
existential_variables <- List.rev_append fresh_existentials existentials
(** The original text content associated with this element. For
turnstiles this is the sequent text and for proof commands this is the
complete proof command.
*)
method virtual content : string
(** [true] if the proof command is abbreviated in the display.
Always [false] for turnstiles. Used to decide whether to display
tooltips for proof commands.
*)
method virtual content_shortened : bool
(** Return the sequent ID for turnstiles and the empty string for
proof commands. For turnstiles the sequent ID is used as
{!debug_name}. *)
method virtual id : string
(** Register the proof tree layer containing this root node. *)
method register_tree_layer tl =
assert(tree_layer = None);
tree_layer <- Some tl
(** Make {!sequent_text_history} accessible for cloning and for
reattaching external node windows.
*)
method sequent_text_history = sequent_text_history
(** This method is only used inside {!turnstile} but declared here to
avoid downcasting during cloning. Set the sequent text history,
used when cloning. *)
method set_sequent_text_history history =
sequent_text_history <- history
(***************************************************************************)
(***************************************************************************)
(** {2 Children Iterators} *)
(***************************************************************************)
(***************************************************************************)
(***************** inside proof_tree_element *)
(** General iterator for all children. [iter_children left y a f]
successively computes the [left] and [y] value of each child and
calls [f left y c a] for each child [c] (starting with the
leftmost child) until [f] returns [false]. The [a] value is an
accumulator. The returned [a] is passed to the invocation of [f]
for the next child. The last returned [a] is the result of the
total call of this function.
*)
method private iter_children :
'a . int -> int -> 'a ->
(int -> int -> 'a -> proof_tree_element -> ('a * bool)) -> 'a =
fun left y a f ->
let left = left + first_child_offset in
let y = y + !current_config.level_distance in
let rec doit left a = function
| [] -> a
| c::cs ->
let (na, cont) = f left y a c in
if cont
then doit (left + c#subtree_width) na cs
else na
in
doit left a children
(** Unit iterator for all children. Calls [f left y c] for each
child [c]. *)
method private iter_all_children_unit left y
(f : int -> int -> proof_tree_element -> unit) =
self#iter_children left y ()
(fun left y () c -> f left y c; ((), true))
(***************************************************************************)
(***************************************************************************)
(** {2 Layout and Size Computation} *)
(***************************************************************************)
(***************************************************************************)
(***************** inside proof_tree_element *)
(** Compute the height of the subtree of this element in pixels. *)
method subtree_height =
(subtree_levels - 1) * !current_config.level_distance +
2 * !current_config.turnstile_radius +
2 * !current_config.turnstile_line_width
(** Sets the {!width} and {!height} fields. Called in the
initializer of the heirs and when the configuration has been
updated.
*)
method private virtual set_node_size : unit
(** (Re-)compute all (relative) layout information for this node.
Computes and sets {!attribute: subtree_levels}, {!attribute:
subtree_width}, {!attribute: x_offset} and
{!first_child_offset}. *)
method private update_subtree_size =
let (children_width, max_levels, last_child) =
List.fold_left
(fun (sum_width, max_levels, _last_child) c ->
(*
* (if parent = None || (match parent with Some p -> p#parent = None)
* then Printf.fprintf (debugc())
* "USS child width %d\n%!" c#subtree_width);
*)
(sum_width + c#subtree_width,
(if c#subtree_levels > max_levels
then c#subtree_levels
else max_levels),
Some c))
(0, 0, None)
children
in
(***************** inside proof_tree_element *)
subtree_levels <- max_levels + 1;
subtree_width <- children_width;
x_offset <-
(match children with
| [] -> 0
| [c] -> c#x_offset
| first :: _ -> match last_child with
| None -> assert false
| Some last ->
let last_x_offset =
subtree_width - last#subtree_width + last#x_offset
in
(first#x_offset + last_x_offset) / 2
);
(*
* Printf.fprintf (debugc())
* "USS %s childrens width %d first x_offset %d\n%!"
* self#debug_name
* children_width
* x_offset;
*)
(* Now x_offset is nicely in the middle of all children nodes and
* subtree_width holds the width of all children nodes.
* However, the width of this node might be larger than all the
* children together, or it may be placed asymmetrically. In both
* cases it can happen that some part of this node is outside the
* boundaries of all the children. In this case we must increase
* the width of subtree and adjust the x_offset.
*)
if x_offset < width / 2
then begin
(* part of this node is left of leftmost child *)
first_child_offset <- width / 2 - x_offset;
x_offset <- x_offset + first_child_offset;
subtree_width <- subtree_width + first_child_offset;
end else begin
(* this node's left side is right of the left margin of the first child *)
first_child_offset <- 0;
end;
(***************** inside proof_tree_element *)
(* The real condition for the next if is
* subtree_width - x_offset < width / 2
* but it has rounding issues when width is odd.
*)
if 2 * (subtree_width - x_offset) < width
then begin
(* Part of this node is right of rightmost child.
* Need to increase subtree_width about the outside part,
* which is width / 2 - (subtree_width - x_offset).
* Now
* subtree_width + width / 2 - (subtree_width - x_offset) =
* x_offset + width / 2
*)
subtree_width <- x_offset + (width + 1) / 2;
end else begin
(* This node's right side is left of right margin of last child.
* Nothing to do.
*)
end;
(*
* Printf.fprintf (debugc())
* "USS %s END subtree width %d x_offset %d \
* first_child_offset %d height %d\n%!"
* self#debug_name
* subtree_width
* x_offset
* first_child_offset
* subtree_levels;
*)
(***************** inside proof_tree_element *)
(** Do {!update_subtree_size} in this element and all parent
elements up to the root of the tree.
*)
method update_sizes_in_branch =
(*
* let old_subtree_width = subtree_width in
* let old_x_offset = x_offset in
*)
self#update_subtree_size;
(*
* if x_offset <> old_x_offset || subtree_width <> old_subtree_width
* then
*)
match parent with
| None ->
(match tree_layer with
| None ->
(* during bottom-up clone copy there is no parent and the
* tree_layer will be installed later
*)
()
| Some sco -> sco#clear_size_cache
)
| Some p -> p#update_sizes_in_branch
(***************************************************************************)
(***************************************************************************)
(** {2 Coordinates} *)
(***************************************************************************)
(***************************************************************************)
(***************** inside proof_tree_element *)
(** Computes the left offset of [child] relative to the bounding box
of its parent, which must be this node. *)
method child_offset child =
self#iter_children 0 0 0 (fun left _y _a oc -> (left, child <> oc))
(** Computes the pair [(left_off, y_off)]. [left_off] is the offset
of the left hand side of the bounding box of this node's
subtree. [y_off] is the offset of the y-coordinate of this node.
The offsets are relative to the left and top of the layer stack,
respectively.
*)
method left_y_offsets =
match parent with
| None ->
(match tree_layer with
| None -> assert false
| Some tl ->
let (tl_left, tl_top) = tl#left_top_offset in
let (me_left, me_top) =
tl#child_offsets (self :> proof_tree_element) in
(tl_left + me_left, tl_top + me_top + height / 2)
)
| Some p ->
let (parent_left, parent_y) = p#left_y_offsets in
let y_off = parent_y + !current_config.level_distance in
let left_off =
parent_left + p#child_offset (self :> proof_tree_element)
in
(left_off, y_off)
(***************** inside proof_tree_element *)
(** Computes the bounding box (that is a 4-tuple [(x_low, x_high,
y_low, y_high)]) relative to the upper-left corner of the
complete display.
*)
method bounding_box_offsets =
let (left, y) = self#left_y_offsets in
let x = self#get_x_coordinate left in
(*
* Printf.fprintf (debugc())
* "BBO %s\n%!"
* self#debug_name;
*)
(*
* Printf.fprintf (debugc())
* "BBO left %d width %d height %d | x %d-%d y %d-%d\n%!"
* left width height
* left (left + width) (y - height / 2) (y + height / 2);
*)
(x - width / 2, x + width / 2, y - height / 2, y + height / 2)
(** [bounding_box left top] computes the bounding box (that is a
4-tuple [(x_low, x_high, y_low, y_high)]) of this node in
absolute values as floats. Arguments [left] and [top] specify
the upper left corner of the root node of the proof tree.
*)
method bounding_box left top =
let (x_l, x_u, y_l, y_u) = self#bounding_box_offsets in
(float_of_int (x_l + left),
float_of_int (x_u + left),
float_of_int (y_l + top),
float_of_int (y_u + top))
(***************** inside proof_tree_element *)
(** Computes the x-coordinate of this node. Argument [left] must be
the x-coordinate of the left side of the bounding box of this
node's subtree.
*)
method get_x_coordinate left = left + x_offset
(***************************************************************************)
(***************************************************************************)
(** {2 Drawing} *)
(***************************************************************************)
(***************************************************************************)
(** Draw just this element (without connecting lines) at the
indicated position. First argument [left] is the left border,
second argument [y] is the y-coordinate.
*)
method private virtual draw : int -> int -> unit
(** [line_offset inverse_slope] computes the start offset (as
[(x_off, y_off)]) for drawing a line that start or ends in this
node with inverse slope [inverse_slope]. These offsets are
needed to avoid overdrawing elements with connecting lines. The
parameter is the inverse slope, because it is always defined,
because we never draw horizontal lines. Vertical lines do
appear, for them the real slope is infinite.
*)
method virtual line_offset : float -> (int * int)
(***************** inside proof_tree_element *)
(** Draw the lines from this node to all its children.
@param left x-coordinate of the left side of the bounding box of
this node's subtree
@param y y-coordinate of this node
*)
method private draw_lines left y =
let x = self#get_x_coordinate left in
self#iter_all_children_unit left y
(fun left cy child ->
let cx = child#get_x_coordinate left in
let slope = float_of_int(cx - x) /. float_of_int(cy - y) in
let (d_x, d_y) = self#line_offset slope in
let (c_d_x, c_d_y) = child#line_offset slope in
let gc_opt =
save_and_set_gc drawable
child#branch_state child#existential_variables
in
drawable#line ~x:(x + d_x) ~y:(y + d_y)
~x:(cx - c_d_x) ~y:(cy - c_d_y);
restore_gc drawable gc_opt)
(***************** inside proof_tree_element *)
(** Draw this element's subtree given the left side of the bounding box
and the y-coordinate of this node. This is the internal draw method
that iterates through the tree.
@param left x-coordinate of the left side of the bounding box of
this node's subtree
@param y y-coordinate of this node
*)
method draw_subtree left y =
(*
* Printf.fprintf (debugc())
* "DST %s parent %s childs %s width %d tree_width %d\n%!"
* self#debug_name
* (match parent with
* | None -> "None"
* | Some p -> p#debug_name)
* (String.concat ", " (List.map (fun c -> c#debug_name) children))
* width
* subtree_width;
*)
let gc_opt = save_and_set_gc drawable branch_state existential_variables in
self#draw left y;
restore_gc drawable gc_opt;
self#draw_lines left y;
self#iter_all_children_unit left y
(fun left y child -> child#draw_subtree left y)
(***************** inside proof_tree_element *)
(** Draw this node's subtree given the left and top side of the
bounding box. This is the external draw method that is called
from the outside for the root of the tree.
@param left x-coordinate of the left side of the bounding box of
this node's subtree
@param top y-coordinate of the top side of the bounding box of this
node's subtree
*)
method draw_tree_root left top =
self#draw_subtree left (top + height / 2)
(***************************************************************************)
(***************************************************************************)
(** {2 Locate Mouse Button Clicks} *)
(***************************************************************************)
(***************************************************************************)
(***************** inside proof_tree_element *)
(** Iterate over the proof tree to determine the node that contains
the point [(bx, by)]. Returns [None] if there is no node that
contains this point. (If [bx] and [by] are the coordinates of a
mouse click, then this method returns the node that was
clicked.)
@param left x-coordinate of the left side of the bounding box of
this node's subtree
@param y y-coordinate of this node
@param bx x-coordinate of point
@param by y-coordinate of point
*)
method find_node_for_point left y bx by =
let top = y - height / 2 in
if bx >= left && bx <= left + subtree_width &&
by >= top && by <= top + self#subtree_height
then
let x = self#get_x_coordinate left in
if bx >= x - width/2 && bx <= x + width/2 &&
by >= y - height/2 && by <= y + height/2
then
Some (self :> proof_tree_element)
else
self#iter_children left y None
(fun left y _a child ->
let cres = child#find_node_for_point left y bx by in
(cres, cres = None))
else
None
(***************** inside proof_tree_element *)
(** Iterate over the proof tree to determine the node that contains
the point [(bx, by)]. Returns [None] if there is no node that
contains this point. This is the external version that is called
from the outside to determine nodes for mouse clicks.
@param left x-coordinate of the left side of the bounding box of
this node's subtree
@param top y-coordinate of the top side of the bounding box of
this node's subtree
@param bx x-coordinate of point
@param by y-coordinate of point
*)
method find_node_for_point_root left top bx by =
self#find_node_for_point left (top + height/2) bx by
(***************************************************************************)
(***************************************************************************)
(** {2 Mark Branches and Nodes} *)
(***************************************************************************)
(***************************************************************************)
(** Apply (the marking function) [f] on this node and all parent
nodes until [f] returns [false] or the root is reached.
*)
method mark_branch (f : proof_tree_element -> bool) =
if f (self :> proof_tree_element) then
match parent with
| Some p -> p#mark_branch f
| None -> ()
(***************** inside proof_tree_element *)
(** Mark this element as [CurrentNode] and all the parent nodes as
[Current] branch, see {!branch_state_type}. Relies on the
invariant that the parent of a [Current] element is also marked
[Current].
*)
method mark_current =
self#mark_branch
(fun (self : proof_tree_element) ->
if self#branch_state = Current
then false
else
(self#set_branch_state Current; true));
branch_state <- CurrentNode
(** Mark this element as [Proven] and mark all parents [Proven]
until one parent has an unproven child, see
{!branch_state_type}.
*)
method mark_proved =
self#mark_branch
(fun (self : proof_tree_element) ->
if (List.for_all (fun c -> c#branch_state = Proven) self#children)
then (self#set_branch_state Proven;
(*
* Printf.fprintf (debugc())
* "Mark %s proven\n%!" self#debug_name;
*)
true)
else false
)
(***************** inside proof_tree_element *)
(** Mark this node as [Cheated] and mark all parents that have only
[Cheated] children as [Cheated] as well, see
{!branch_state_type}.
*)
method mark_cheated =
self#mark_branch
(fun (self : proof_tree_element) ->
if (List.for_all (fun c -> c#branch_state = Cheated) self#children)
then (self#set_branch_state Cheated; true)
else false
)
(** Remove the [Current] and [CurrentNode] marking for the current
branch up to the root and set the marking of these nodes to
[Unproven], see {!branch_state_type}.
*)
method unmark_current =
self#mark_branch
(fun (self : proof_tree_element) ->
match self#branch_state with
| CurrentNode
| Current ->
self#set_branch_state Unproven; true
| Unproven -> false
| Proven
| Cheated -> assert false
)
(***************** inside proof_tree_element *)
(** Remove the [Proved] or [Cheated] mark of this element and all
parent elements until an [Unproven] or [Current] element is met,
see {!branch_state_type}.
*)
method unmark_proved_or_cheated =
self#mark_branch
(fun (self : proof_tree_element) ->
match self#branch_state with
| Cheated
| Proven -> self#set_branch_state Unproven; true
| Unproven
| CurrentNode
| Current -> false
)
(** Set all [Current] and [CurrentNode] markings in the subtree of
this element to [Unproven], see {!branch_state_type}. Used when
the proof-tree window gets disconnected from the current
proof.
*)
method disconnect_proof =
(match branch_state with
| Current
| CurrentNode -> branch_state <- Unproven
| Unproven
| Proven
| Cheated -> ()
);
List.iter (fun c -> c#disconnect_proof) children;
(***************************************************************************)
(***************************************************************************)
(** {2 Misc} *)
(***************************************************************************)
(***************************************************************************)
(***************** inside proof_tree_element *)
(** Return the displayed text for proof-tree elements, which
contains additional information about uninstantiated and
partially instantiated existentials.
*)
method displayed_text =
let uninst_ex = filter_uninstantiated existential_variables in
let partial_ex = filter_partially_instantiated existential_variables in
if uninst_ex = [] && partial_ex = []
then self#content
else
self#content
^ "\n\n"
^ (if uninst_ex <> []
then "Open Existentials: "
^ (string_of_existential_list uninst_ex)
else "")
^ (if uninst_ex <> [] && partial_ex <> []
then "; "
else "")
^ (if partial_ex <> []
then "Partially instantiated: "
^ (string_of_existential_list partial_ex)
else "")
(** Register an external window for this element. *)
method register_external_window win =
external_windows <- win :: external_windows
(** Delete an external window from the list of registered external
windows.
*)
method delete_external_window win =
external_windows <- List.filter (fun w -> w <> win) external_windows
(***************** inside proof_tree_element *)
(** Delete all non-sticky external node windows of this node.
*)
method delete_non_sticky_external_windows =
List.iter (fun w -> w#delete_attached_node_window) external_windows
(** Propagate this nodes existentials to all its children. This
method is not recursive. It is used during normal operation,
where newly added children have themselves no children.
*)
method private set_children_existentials =
List.iter (fun c -> c#inherit_existentials existential_variables)
children
(** Propagate existentials recursively down to all children in the
complete subtree of this element. Necessary after proof-tree
cloning, because cloning works bottom-up.
*)
method propagate_existentials =
self#set_children_existentials;
List.iter (fun c -> c#propagate_existentials) children
(** Update the list of existential variables in displayed sequent
text and proof commands in the whole subtree of this element.
This needs to be called when some existential got instantiated
or when an undo uninstantiates some existential.
*)
method update_existentials_info =
(match sequent_text_history with
| [] -> ()
| _ :: history ->
sequent_text_history <- self#displayed_text :: history
);
(if external_windows <> [] && existential_variables <> []
then
List.iter (fun ew -> ew#update_content sequent_text_history)
external_windows
);
List.iter (fun c -> c#update_existentials_info) children
(***************** inside proof_tree_element *)
(** Hook to be called when the list of children has been changed.
Adjusts the relative layout information of this element and all its
parents and (non-recursively) propagates the existentials to all
children.
*)
method children_changed =
(* prerr_endline("CHILDS at " ^ self#debug_name ^ " CHANGED"); *)
self#update_sizes_in_branch;
self#set_children_existentials
(* prerr_endline "END CHILD CHANGED" *)
(** Adjust layout and size information after the configuration has
been changed.
*)
method configuration_updated =
List.iter (fun c -> c#configuration_updated) children;
List.iter (fun ex -> ex#configuration_updated) external_windows;
self#set_node_size;
self#update_subtree_size
end
(*****************************************************************************)
(*****************************************************************************)
(** {3 The tree element for sequents} *)
(*****************************************************************************)
(*****************************************************************************)
(** Specific element class for sequents, which draw themselves as
turnstile symbols. This class specializes the abstract
{!proof_tree_element} class for sequent nodes in the proof tree.
Argument undo_state saves the undo state for the current proof.
It's value is arbitrary for cloned proof trees.
*)
class turnstile (drawable : better_drawable)
undo_state sequent_id sequent_text_option =
object (self)
inherit proof_tree_element drawable undo_state sequent_id [] [] as super
(** The pure sequent text. *)
val mutable sequent_text =
match sequent_text_option with
| Some t -> t
| None -> "waiting for sequent text"
(** Pango layout for rendering text. Only created if an ID for
an external window must be put into the display.
*)
val mutable layout = None
(** This is a [Turnstile] node. *)
method node_kind = Turnstile
(** Return the pure sequent text as content. *)
method content = sequent_text
(** This method is not relevant for sequent elements. Return always
false.
*)
method content_shortened = false
(** Make the sequent ID accessible, which is used as debugging name
for sequent elements.
*)
method id = sequent_id
(***************** inside turnstile *)
(** Update the sequent text to a new version. *)
method update_sequent new_text =
(match sequent_text_history with
| [] -> ()
| _ :: old -> sequent_text_history <- sequent_text :: old
);
sequent_text <- new_text;
sequent_text_history <- self#displayed_text :: sequent_text_history;
List.iter (fun ew -> ew#update_content sequent_text_history)
external_windows
(** Restore the previous version of the sequent text. *)
method undo_update_sequent =
(match sequent_text_history with
| [] -> assert false
| _ :: [] ->
(* This happens when undoing the initial update sequent
* command for additional subgoals.
*)
sequent_text_history <- [];
sequent_text <- "no sequent text available"
| _ :: old :: rest ->
sequent_text <- old;
sequent_text_history <- self#displayed_text :: rest
);
List.iter (fun ew -> ew#update_content sequent_text_history)
external_windows
(** Return the pango layout object of {!layout}. Create one if there
is none.
*)
method private get_layout =
match layout with
| None ->
drawable#pango_context#set_font_description !proof_tree_font_desc;
let l = drawable#pango_context#create_layout
in
layout <- Some l;
l
| Some l -> l
(** Update fonts, sizes and layout after the configuration has been
changed.
*)
method configuration_updated =
layout <- None;
super#configuration_updated
(***************** inside turnstile *)
(** Draw the turnstile symbol for this sequent at the indicated
coordinates.
*)
method private draw_turnstile x y =
let radius = !current_config.turnstile_radius in
if branch_state = CurrentNode
then
drawable#arc ~x:(x - radius) ~y:(y - radius)
~width:(2 * radius) ~height:(2 * radius) ();
(if selected
then
let wh_2 = radius + !current_config.turnstile_line_width in
drawable#rectangle
~x:(x - wh_2) ~y:(y - wh_2) ~width:(2 * wh_2) ~height:(2 * wh_2) ();
);
drawable#line
~x:(x + !current_config.turnstile_left_bar_x_offset)
~y:(y - !current_config.turnstile_left_bar_y_offset)
~x:(x + !current_config.turnstile_left_bar_x_offset)
~y:(y + !current_config.turnstile_left_bar_y_offset);
drawable#line
~x:(x + !current_config.turnstile_left_bar_x_offset)
~y
~x:(x + !current_config.turnstile_horiz_bar_x_offset)
~y;
(match external_windows with
| [] -> ()
| win::_ ->
let layout = self#get_layout in
Pango.Layout.set_text layout win#window_number;
let (w, h) = Pango.Layout.get_pixel_size layout in
drawable#put_layout
~x:(x + !current_config.turnstile_number_x_offset - w)
~y:(y - h / 2)
layout
)
(***************** inside turnstile *)
(** Draw this turnstile node.
@param left x-coordinate of the left side of the bounding box of
this node's subtree
@param y y-coordinate of this node
*)
method private draw left y =
let x = self#get_x_coordinate left in
(*
* Printf.fprintf (debugc()) "DRAW TURN %s l %d t %d x %d y %d\n%!"
* self#debug_name left top x y;
*)
self#draw_turnstile x y
(** Compute the line offsets for sequent nodes, see
{!proof_tree_element.line_offset}
*)
method line_offset slope =
let radius = !current_config.turnstile_radius + !current_config.line_sep in
let d_y = sqrt(float_of_int(radius * radius) /. (slope *. slope +. 1.0)) in
let d_x = slope *. d_y in
(int_of_float(d_x +. 0.5), int_of_float(d_y +. 0.5))
(** Set width and height of this node. *)
method private set_node_size =
width <-
2 * !current_config.turnstile_radius +
2 * !current_config.turnstile_line_width +
!current_config.subtree_sep;
height <-
2 * !current_config.turnstile_radius +
2 * !current_config.turnstile_line_width
(***************** inside turnstile *)
initializer
self#set_node_size;
(*
* Printf.fprintf (debugc()) "INIT %s width %d height %d\n%!"
* self#debug_name width height;
*)
self#update_subtree_size;
(match sequent_text_option with
| None -> ()
| Some _ ->
sequent_text_history <- [self#displayed_text]
);
()
end
(*****************************************************************************)
(*****************************************************************************)
(** {3 The tree element for proof commands} *)
(*****************************************************************************)
(*****************************************************************************)
(** Create a new layout with fonts from the current configuration.
This function exists, because (I)
Pango.Layout.set_font_description is missing in Debian Squeeze and
(II) one cannot call a method in the initializer of the instance
variable layout.
*)
let make_layout context =
context#set_font_description !proof_tree_font_desc;
context#create_layout
(** Specific element class for proof commands. This class specializes
the generic and abstract {!proof_tree_element} for proof-command
nodes.
Argument undo_state saves the undo state for the current proof.
It's value is arbitrary for cloned proof trees.
*)
class proof_command (drawable_arg : better_drawable)
undo_state command debug_name inst_existentials fresh_existentials =
object (self)
inherit proof_tree_element drawable_arg undo_state debug_name
inst_existentials fresh_existentials
as super
(** The part of the proof command that is displayed inside the tree.
Maybe shorter than {!command}.
*)
val mutable displayed_command = ""
(** The original proof command. If it exceeds the length specified
in field [proof_command_length] (see {!Configuration.t} and
{!Configuration.current_config}) then only a part of it is
displayed in the tree display. *)
val command = command
(** Flag to indicate that only a part of the proof command is
displayed inside the proof-tree display. Used to decide whether to
display tool-tips for this proof command.
*)
val mutable content_shortened = false
(* XXX Pango.Layout.set_font_description is missing in debian
* squeeze. Have to use Pango.Context.set_font_description and
* create new layout objects on every font change.
*)
(** The pango layout for rendering the proof command text. *)
val mutable layout = make_layout drawable_arg#pango_context
(** Width (in pixels) of the rendered proof command text. *)
val mutable layout_width = 0
(** Height (in pixels) of the rendered proof command text. *)
val mutable layout_height = 0
(***************** inside proof_command_length *)
(** This is a [Proof_command] element, see {!node_kind}. *)
method node_kind = Proof_command
(** Return the original complete proof command as content. *)
method content = command
(** Return whether the proof command has been shortend in the
display. Used to decide whether to display tool-tips for this
proof command.
*)
method content_shortened = content_shortened
(** This method is not relevant for proof commands. Return the empty
string.
*)
method id = ""
(** Render the proof command in the pango layout. *)
method private render_proof_command =
let layout_text =
match external_windows with
| [] -> displayed_command
| w :: _ -> w#window_number ^ ": " ^ displayed_command
in
Pango.Layout.set_text layout layout_text;
let (w,h) = Pango.Layout.get_pixel_size layout in
layout_width <- w;
layout_height <- h
(***************** inside proof_command_length *)
(** Set {!displayed_command}. Called from the initializer and when
the configuration has been changed.
*)
method private set_displayed_command =
if Util.utf8_string_length command <= !current_config.proof_command_length
then begin
content_shortened <- false;
displayed_command <- replace_char command '\n' ' '
end else begin
content_shortened <- true;
displayed_command <-
(replace_char
(Util.utf8_string_sub command
(!current_config.proof_command_length - 1))
'\n' ' ')
^ "\226\128\166" (* append horizontal ellipsis *)
end
(** Set {!proof_tree_element.width} and {!proof_tree_element.height}
after rendering the proof command.
*)
method private set_node_size =
self#render_proof_command;
width <- layout_width + !current_config.subtree_sep;
height <- layout_height
(** Update fonts, the displayed command, the size and layout
information after the configuration has been updated.
*)
method configuration_updated =
self#set_displayed_command;
layout <- make_layout drawable_arg#pango_context;
super#configuration_updated
(***************** inside proof_command_length *)
(** Override {!proof_tree_element.register_external_window} because
the displayed proof command must be rerendered when an external
window is registered.
*)
method register_external_window win =
super#register_external_window win;
self#render_proof_command
(** Override {!proof_tree_element.delete_external_window} because
the displayed proof command must be rerendered when an external
window is deleted.
*)
method delete_external_window win =
super#delete_external_window win;
self#render_proof_command
(***************** inside proof_command_length *)
(** Draw just this command node.
@param left x-coordinate of the left side of the bounding box of
this node's subtree
@param y y-coordinate of this node
*)
method private draw left y =
let x = self#get_x_coordinate left in
(*
* Printf.fprintf (debugc()) "DRAW TURN %s l %d t %d x %d y %d\n%!"
* self#debug_name left top x y;
*)
let crea = List.exists (fun e -> e.existential_mark) fresh_existentials in
let inst = List.exists (fun e -> e.existential_mark) inst_existentials in
if crea || inst
then begin
let w = layout_width + 1 * !current_config.subtree_sep in
let h = layout_height + 2 * !current_config.subtree_sep in
let gc = save_gc drawable in
if crea
then drawable#set_foreground (`COLOR !existential_create_gdk_color)
else drawable#set_foreground (`COLOR !existential_instantiate_gdk_color);
drawable#arc ~x:(x - w/2) ~y:(y - h/2)
~width:w ~height:h ~filled:true ();
restore_gc drawable gc
end;
drawable#put_layout ~x:(x - layout_width/2) ~y:(y - layout_height/2) layout;
if selected
then
let w = layout_width + !current_config.turnstile_line_width in
let h = layout_height + !current_config.turnstile_line_width in
drawable#rectangle
~x:(x - w/2) ~y:(y - h/2) ~width:w ~height:h ();
(***************** inside proof_command_length *)
(** Compute the line offsets for proof-command nodes, see
{!proof_tree_element.line_offset}
*)
method line_offset slope =
let sign = if slope >= 0.0 then 1 else -1 in
let line_sep = !current_config.line_sep in
let corner_slope = (float_of_int width) /. (float_of_int height) in
(* slope and corner_slope are actually inverse slopes:
* they are d_x / d_y. This is because d_y is guaranteed to be non_zero,
* while d_x is not.
*)
if (abs_float slope) <= corner_slope
then (* intersect with top or bottom *)
(int_of_float(slope *. (float_of_int (height/2 + line_sep)) +. 0.5),
height/2 + line_sep)
else (* intersect with left or right side *)
((width/2 + line_sep) * sign,
int_of_float(float_of_int(width/2 + line_sep) /. slope +. 0.5) * sign)
initializer
self#set_displayed_command;
self#set_node_size;
(*
* Printf.fprintf (debugc()) "INIT %s w %d width %d height %d\n%!"
* self#debug_name w width height;
*)
self#update_subtree_size;
sequent_text_history <- [self#displayed_text];
(* Printf.fprintf (debugc()) "INIT PC %s done\n%!" self#debug_name; *)
()
end
(*****************************************************************************)
(*****************************************************************************)
(** {2 Cloning} *)
(*****************************************************************************)
(*****************************************************************************)
(** Helper for {!clone_tree_node} for cloning the existential
variables. Uses the hash to lookup variables, such that for each
variable only one {!existential_variable} record is created.
*)
let rec clone_existentials ex_hash ex =
try Hashtbl.find ex_hash ex.existential_name
with
| Not_found ->
let deps = List.map (clone_existentials ex_hash) ex.dependencies in
let nex = { existential_name = ex.existential_name;
status = ex.status;
existential_mark = false;
dependencies = deps;
}
in
Hashtbl.add ex_hash ex.existential_name nex;
nex
(** Recursively clone all nodes in the given subtree, updating the
reference for the selected node, if the old selected node is contained
in the subtree.
*)
let rec clone_tree_node new_pc new_seq ex_hash
old_selected cloned_selected node =
let cloned_children =
List.map
(clone_tree_node new_pc new_seq ex_hash old_selected cloned_selected)
node#children in
let clone = match node#node_kind with
| Proof_command ->
(new_pc node#content
(List.map (clone_existentials ex_hash) node#inst_existentials)
(List.map (clone_existentials ex_hash) node#fresh_existentials)
: proof_command :> proof_tree_element)
| Turnstile ->
let ts = new_seq node#id (Some node#content)
in
ts#set_sequent_text_history node#sequent_text_history;
(ts : turnstile :> proof_tree_element)
in
if Some node = old_selected
then cloned_selected := Some clone;
set_children clone cloned_children;
(match node#branch_state with
| Cheated
| Proven -> clone#set_branch_state node#branch_state
| Unproven
| CurrentNode
| Current -> ()
);
clone
(** Clone a complete proof tree. *)
let clone_proof_tree new_pc new_seq ex_hash old_selected cloned_selected root =
let cloned_root =
clone_tree_node new_pc new_seq ex_hash old_selected cloned_selected root in
cloned_root#propagate_existentials;
cloned_root
|