1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
|
#!/usr/bin/env python2.7
from __future__ import print_function
import argparse
import json
import uuid
import httplib2
from apiclient import discovery
from apiclient.errors import HttpError
from oauth2client.client import GoogleCredentials
# 30 days in milliseconds
_EXPIRATION_MS = 30 * 24 * 60 * 60 * 1000
NUM_RETRIES = 3
def create_big_query():
"""Authenticates with cloud platform and gets a BiqQuery service object
"""
creds = GoogleCredentials.get_application_default()
return discovery.build(
'bigquery', 'v2', credentials=creds, cache_discovery=False)
def create_dataset(biq_query, project_id, dataset_id):
is_success = True
body = {
'datasetReference': {
'projectId': project_id,
'datasetId': dataset_id
}
}
try:
dataset_req = biq_query.datasets().insert(
projectId=project_id, body=body)
dataset_req.execute(num_retries=NUM_RETRIES)
except HttpError as http_error:
if http_error.resp.status == 409:
print('Warning: The dataset %s already exists' % dataset_id)
else:
# Note: For more debugging info, print "http_error.content"
print('Error in creating dataset: %s. Err: %s' % (dataset_id,
http_error))
is_success = False
return is_success
def create_table(big_query, project_id, dataset_id, table_id, table_schema,
description):
fields = [{
'name': field_name,
'type': field_type,
'description': field_description
} for (field_name, field_type, field_description) in table_schema]
return create_table2(big_query, project_id, dataset_id, table_id, fields,
description)
def create_partitioned_table(big_query,
project_id,
dataset_id,
table_id,
table_schema,
description,
partition_type='DAY',
expiration_ms=_EXPIRATION_MS):
"""Creates a partitioned table. By default, a date-paritioned table is created with
each partition lasting 30 days after it was last modified.
"""
fields = [{
'name': field_name,
'type': field_type,
'description': field_description
} for (field_name, field_type, field_description) in table_schema]
return create_table2(big_query, project_id, dataset_id, table_id, fields,
description, partition_type, expiration_ms)
def create_table2(big_query,
project_id,
dataset_id,
table_id,
fields_schema,
description,
partition_type=None,
expiration_ms=None):
is_success = True
body = {
'description': description,
'schema': {
'fields': fields_schema
},
'tableReference': {
'datasetId': dataset_id,
'projectId': project_id,
'tableId': table_id
}
}
if partition_type and expiration_ms:
body["timePartitioning"] = {
"type": partition_type,
"expirationMs": expiration_ms
}
try:
table_req = big_query.tables().insert(
projectId=project_id, datasetId=dataset_id, body=body)
res = table_req.execute(num_retries=NUM_RETRIES)
print('Successfully created %s "%s"' % (res['kind'], res['id']))
except HttpError as http_error:
if http_error.resp.status == 409:
print('Warning: Table %s already exists' % table_id)
else:
print('Error in creating table: %s. Err: %s' % (table_id,
http_error))
is_success = False
return is_success
def patch_table(big_query, project_id, dataset_id, table_id, fields_schema):
is_success = True
body = {
'schema': {
'fields': fields_schema
},
'tableReference': {
'datasetId': dataset_id,
'projectId': project_id,
'tableId': table_id
}
}
try:
table_req = big_query.tables().patch(
projectId=project_id,
datasetId=dataset_id,
tableId=table_id,
body=body)
res = table_req.execute(num_retries=NUM_RETRIES)
print('Successfully patched %s "%s"' % (res['kind'], res['id']))
except HttpError as http_error:
print('Error in creating table: %s. Err: %s' % (table_id, http_error))
is_success = False
return is_success
def insert_rows(big_query, project_id, dataset_id, table_id, rows_list):
is_success = True
body = {'rows': rows_list}
try:
insert_req = big_query.tabledata().insertAll(
projectId=project_id,
datasetId=dataset_id,
tableId=table_id,
body=body)
res = insert_req.execute(num_retries=NUM_RETRIES)
if res.get('insertErrors', None):
print('Error inserting rows! Response: %s' % res)
is_success = False
except HttpError as http_error:
print('Error inserting rows to the table %s' % table_id)
is_success = False
return is_success
def sync_query_job(big_query, project_id, query, timeout=5000):
query_data = {'query': query, 'timeoutMs': timeout}
query_job = None
try:
query_job = big_query.jobs().query(
projectId=project_id,
body=query_data).execute(num_retries=NUM_RETRIES)
except HttpError as http_error:
print('Query execute job failed with error: %s' % http_error)
print(http_error.content)
return query_job
# List of (column name, column type, description) tuples
def make_row(unique_row_id, row_values_dict):
"""row_values_dict is a dictionary of column name and column value.
"""
return {'insertId': unique_row_id, 'json': row_values_dict}
|