1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01//EN">
<html>
<head>
<title>Prover9 Manual: Arithmetic for Mace4</title>
<link rel="stylesheet" href="manual.css">
</head>
<body>
<hr>
<table width="100%">
<tr>
<colgroup>
<col width="33%">
<col width="34%">
<col width="33%">
</colgroup>
<td align="left"><i>Prover9 Manual</i>
<td align="center"><img src="prover9-5a-256t.gif">
<td align="right"><i>Version 2009-02A</i>
</table>
<hr>
<!-- Main content -->
<h1>Arithmetic for Mace4</h1>
The command <tt>set(arithmetic)</tt> builds some integer arithmetic
into Mace4.
It tells Mace4 to interpret several function and predicate symbols
as operations and relations over the integers.
<p>
The following tables list the supported symbols for integer arithmetic.
<table align="center" cellspacing="20">
<tr><th>Operations <th>Relations
<tr><td>
<table "border" cellpadding="5">
<tr><th>Symbol <th> Meaning
<tr><td><tt>+</tt> <td> Sum
<tr><td><tt>*</tt> <td> Product
<tr><td><tt>-</tt> <td> Negation
<tr><td><tt>/</tt> <td> Integer Division
<tr><td><tt>mod</tt> <td> modulus operator*
<tr><td><tt>min</tt> <td> Minimum
<tr><td><tt>max</tt> <td> Maximum
<tr><td><tt>abs</tt> <td> Absolute Value
</table>
<td valign="top">
<table "border" cellpadding="5">
<tr><th>Symbol <th> Meaning
<tr><td><tt>=</tt> <td> Equal
<tr><td><tt><</tt> <td> Less than
<tr><td><tt><=</tt> <td> Less than or equal
<tr><td><tt>></tt> <td> Greater than
<tr><td><tt>>=</tt> <td> Greater than or equal
</table>
</table>
*The modulus operation is different from C's remainder operation "%"
when either of the operands is negative. In fact, C's "%"
operation is not defined for negative operands. In Mace4,
<tt>(-14 mod 5) = 1</tt>, <tt>(14 mod -5) = -1</tt>, and
<tt>(-14 mod -5) = -4</tt>.
<p>
Note that <tt>-</tt> cannot be used as a binary subtraction operation
(because LADR does not allow arity-overloading of symbols). Instead of
<tt>x-y</tt>, one must write <tt>x+ -y</tt>.
<p>
Recall that when Mace4 is searching for a model of size <i>n</i>,
it is using the set {0,1,...,<i>n</i>-1} as the underlying domain
of the model. When <tt>set(arithmetic)</tt> is in effect,
the integer operations and relations are applied to the elements
of the domain. However, when evaluating integer expressions,
Mace4 is free to go outside of the domain, including negative integers.
For example, the constraint <tt>A+ -B = C+ -D</tt> has <tt>A=C=1, B=D=3</tt>
as a solution (among many others), and the constraint <tt>A + B = 10</tt>
is valid for domain sizes less than 10.
<p>
However, when assigning possible values to uninterpreted functions
and constants (e.g., unknowns <tt>A</tt> and <tt>B</tt>), Mace4
will use members of the domain only. For example,
given the constraint <tt>A + B = 10</tt> with a domain size of 8, Mace4
will not give the solution <tt>A=9, B=1</tt>.
<h2>Division by Zero</h2>
Mace4 cannot simply fail (i.e., backtrack and try other values) when
it comes to an expression involving division (or mod) by zero,
because such expressions can be valid and lead to solutions.
<p>
Case 1: some other subexpression validates a formula; for example,
<tt>3/0 = 2 | 1+4=5</tt> is valid.
<p>
Case 2: instances of <tt>x = x</tt>; for example, <tt>3/0 = 3/0</tt>
is valid. Given an arithmetic equality <tt>alpha = beta</tt>
involving division by zero, Mace4 will simplify it by using ring
theory identities, and if <tt>simplify(alpha)</tt> is identical to
<tt>simplify(beta)</tt>, the equation evaluates to TRUE. The
simplification procedure is
<i>not</i> guaranteed to produce a unique canonical form such that
the simplified expressions are identical if <tt>alpha = beta</tt>.
Thus, Mace4 can be incompelte for constraints involving division
by zero; that is, it might say that there are no solutions when
there are valid solutions.
However, we believe that Mace4 is sound; that is, all solutions
that it gives are valid.
<h2>Arithmetic Changes Parse/Print Properties</h2>
When <tt>set(arithmetic)</tt> is in effect, Mace4 automatically
changes the parse/print properties of the arithmetic operations
so that arithmetic expressions can be written in a more conventional
way. The properties are changed as follows.
<pre class="my_file">
op(490, infix_right, "+").
op(470, infix_right, "*").
op(460, infix, "/").
op(460, infix, "mod").
op(390, prefix, "-").
</pre>
These declarations allow, for example, the expression <tt>(a * (b * c)) + (d + e)</tt>
to be written as <tt>a * b * c + d + e</tt>. When in doubt, include parentheses
and observe how Mace4 echoes the formulas in the output file.
<h2>Examples</h2>
<pre class="my_job">
mace4 -n8 -f <a href="queens1.in">queens1.in</a> > <a href="queens1.out">queens1.out</a>
</pre>
<pre class="my_job">
mace4 -n8 -f <a href="queens2.in">queens2.in</a> > <a href="queens2.out">queens2.out</a>
</pre>
<pre class="my_job">
mace4 -f <a href="send-money.in">send-money.in</a> > <a href="send-money.out">send-money.out</a>
</pre>
<pre class="my_job">
mace4 -f <a href="zebra2.in">zebra2.in</a> > <a href="zebra2.out">zebra2.out</a>
</pre>
<pre class="my_job">
mace4 -f <a href="kenken6.in">kenken6.in</a> > <a href="kenken6.out">kenken6.out</a>
</pre>
<hr>
Next Section:
<a href="m4-interpformat.html">Interpformat</a>
</body>
</html>
|