1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
|
%
% Psi Programmer's Manual
%
% files in psi
%
% Brian Kellogg, 02/02/96 (groundhog day!)
Psi uses several text files to store certain types of information. Storing
information in text files makes it much easier for users to inspect
and manipulate that
information, provided that the user understands the format of that file.
In the following file format descriptions, I will use the notation
${ x_i, y_i,}$ and ${z_i}$ to denote the x, y and z coordinates of nucleus i,
respectively,
${\eta_{ i}}$ will denote the ${i^{\rm th}}$ internal coordinate, and
E will denote the sum of the electronic energy and nuclear repulsion energy.
\begin{verbatim}
geom.dat
\end{verbatim}
A vectorized format which is appropriate for the routines in libipv1 or
iomr is employed in \geomdat\
Generally, the first line of \geomdat\ is
\begin{verbatim}
%%
\end{verbatim}
Though this does not affect the parsing routines in libipv1, or
any of the common programs which read \geomdat\
(i.e. \module{rgeom} or \module{ugeom}), some \PSItwo\ modules (\module{bmat}, etc.)
expected this line and
would muddle up \geomdat\ if it is not present. \geomdat\ will
frequently have several entries, with the topmost being the most recent
addition by bmat.
format: {\em n} = number of atoms.
\begin{eqnarray}
\begin{array}{lcccr}
{\tt geometry = (}\\
{\tt (} &x_1 \hspace{0.8in} &y_1 \hspace{0.8in} &z_1 \hspace{0.8in} &{\tt )} \\
{\tt (} &x_2 \hspace{0.8in} &y_2 \hspace{0.8in} &z_2 \hspace{0.8in} &{\tt )} \\
&\vdots\hspace{0.8in}&\vdots\hspace{0.8in}&\vdots\hspace{0.8in}&\\
{\tt (} &x_n \hspace{0.8in} &y_n \hspace{0.8in} &z_n \hspace{0.8in} &{\tt )} \\
\ \ {\tt )}
\end{array}
\end{eqnarray}
Other geometries of the same format may follow.
\begin{verbatim}
fconst.dat
\end{verbatim}
This file contains the force constant matrix produced by \module{optking} or
\module{intder95}. Because the force constant matrix is symmetric, only the lower diagonal is stored
here. The force constant matrix may be represented in either cartesian or
internal coordinates, depending upon what flags were used when \module{intder95} was
run to produce \fconstdat . \module{optking} is the program which uses
\file{fconst.dat} most frequently, and it assumes that the force constant
matrix will be in terms of the internal coordinates as defined in
\inputdat\ or \intcodat. For this reason, it is best to have
\module{intder95} produce a \fconstdat\ in internal coordinates. The order of
internal coordinates is determined by the order set up in \inputdat\ or
\intcodat . The totally symmetric coordinates always come first,
followed by all asymmetric coordinates.
In the following format, ${f_{\eta_i}}$ is the force constant for internal
coordinate ${\eta_i}$ and ${f_{\eta_i,\eta_j}}$ is the force constant for
the mixed displacement of internal coordinates i and j.
format: {n = total number of internal coordinates in \intcodat\
or \inputdat .
\begin{eqnarray}
\begin{array}{lllll}
f_{\eta_1} \\
f_{\eta_2,\eta_1} & f_{\eta_2} \\
f_{\eta_3,\eta_1} & f_{\eta_3,\eta_2} & f_{\eta_3} \\
\vdots & \vdots & \vdots \\
f_{\eta_{n},{\eta}_1} & f_{\eta_{n},\eta_2} & f_{\eta_{n},\eta_3} & \cdots
& f_{\eta_{n}} \\
\end{array}
\end{eqnarray}
If the force constant matrix is stored in cartesian coordinates, however,
the format, using a similar notation, with {\em n} now equal to the total
number of atoms, is as follows:
\begin{eqnarray}
\begin{array}{llllll}
f_{x_1} \\
f_{y_1,x_1} & f_{y_1} \\
f_{z_1,x_1} & f_{z_1,y_1} &f_{z_1} \\
f_{x_2,x_1} & f_{x_2,y_1} & f_{x_2,z_1} &f_{x_2} \\
\vdots & \vdots & \vdots & \vdots \\
f_{z_n,x_1} & f_{z_n,y_1} & f_{z_n,z_1} & f_{z_n,x_2} & \cdots & f_{z_n} \\
\end{array}
\end{eqnarray}
\begin{verbatim}
file11.dat
\end{verbatim}
The number of atoms ({\em n}), total energy
as predicted by the final wavefunction,
cartesian geometry, cartesian gradients, atomic charges ({\em Z$_i$})
and a label are all contained in \FILE{11}. The exact nature of the label
depends upon the type of wavefunction for which the gradient was calculated.
The first part of the label is determined by the label keyword in input.dat.
If an SCF gradient is run, then the calculation type ({\em calctype}), and
derivative type ({\em dertype}) will also appear.
If a correlated gradient has been run, {\em calctype}
[CI, CCSD, or CCSD(T)] and derivative type (FIRST) appear.
\FILE{11} will
frequently have several entries, with the last entry being the latest
addition by \module{cints --deriv1}.
format:
\begin{eqnarray}
\begin{array}{l}
label\hspace{0.5in} calctype \hspace{0.5in} dertype \hspace{0.7in} \\
n \hspace{0.5in} E \\
\begin{array}{cccc}
\hspace{0.3in}Z_1 \hspace{0.3in}& \hspace{0.4in}x_1\hspace{0.4in} &
\hspace{0.4in} y_1 \hspace{0.4in} & \hspace{0.4in} z_1 \hspace{0.4in} \\
Z_2 & x_2 & y_2 & z_2 \\
\vdots & \vdots & \vdots & \vdots \\
Z_n & x_n & y_n & z_n \\
\vspace{0.02in}
& \frac{\delta E}{\delta x_1} & \frac{\delta E}{\delta y_1}
& \frac{\delta E}{\delta z_1} \\
& \frac{\delta E}{\delta x_2} & \frac{\delta E}{\delta y_2}
& \frac{\delta E}{\delta z_2} \\
& \vdots & \vdots & \vdots \\
& \frac{\delta E}{\delta x_n} & \frac{\delta E}{\delta y_n}
& \frac{\delta E}{\delta z_n} \\
\end{array}
\end{array}
\end{eqnarray}
\begin{verbatim}
file12.dat
\end{verbatim}
Internal coordinate values and gradients, the number of atoms ({\em n}), and
the total energy ({\em E}) may be found in \FILE{12}. \FILE{12} is produced
by \module{intder95}, which can convert cartesian
gradients into internal gradients.
Generally,
\FILE{12} will have several entries, with each entry corresponding to an
entry in the \FILE{11} of interest.
format:
\begin{equation}
\begin{array}{l}
n\hspace{1.5in} E \\
\begin{array}{cc}
\vspace{0.02in}
\hspace{0.5in} \eta_1 \hspace{0.5in}
& \hspace{1.2in} \frac{\delta E}{\delta \eta_1} \hspace{1.2in}\\
\hspace{0.5in} \eta_2 \hspace{0.5in}
& \hspace{1.2in} \frac{\delta E}{\delta \eta_2} \hspace{1.2in} \\
\vdots & \vdots \\
\hspace{0.5in} \eta_n \hspace{0.5in}
& \hspace{1.2in} \frac{\delta E}{\delta \eta_n}
\hspace{1.2in}\\
\end{array}
\end{array}
\end{equation}
\begin{verbatim}
file12a.dat
\end{verbatim}
In order to calculate second derivatives from gradients taken at geometries
finitely displaced from a particular geometry, \module{intdif} requires a
\FILE{12a}. This file contains essentially the same information as
\FILE{12}, but each entry also has information concerning which
internal coordinate ({\em numintco}) was displaced in the gradient
calculation and by how much ({\em disp}) it was displaced.
format:
\begin{equation}
\begin{array}{l}
numintco\hspace{0.5in}disp\hspace{1.5in}E \\
\begin{array}{cc}
\vspace{0.02in}
\hspace{0.5in} \eta_1 \hspace{0.5in}
& \hspace{0.8in} \frac{\delta E}{\delta \eta_1} \hspace{0.8in}\\
\hspace{0.5in} \eta_2 \hspace{0.5in}
& \hspace{0.8in} \frac{\delta E}{\delta \eta_2} \hspace{0.8in} \\
\vdots & \vdots \\
\hspace{0.5in} \eta_n \hspace{0.5in}
& \hspace{0.8in} \frac{\delta E}{\delta \eta_n} \hspace{0.8in}\\
\end{array}
\end{array}
\end{equation}
\begin{verbatim}
file15.dat
\end{verbatim}
The cartesian Hessian matrix is found in \FILE{15}. The first line of
this file gives the number of atoms ({\em n})
and, in case you are curious, six times the number of atoms
({\em sixtimesn}).
format:
\begin{equation}
\begin{array}{l}
n\hspace{0.4in}sixtimesn \\
\begin{array}{ccc}
\vspace{0.02in}
\hspace{0.3in}\frac{\delta^2 E}{\delta^2 x_1} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta^2 E}{\delta x_1\delta y_1} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta^2 E}{\delta x_1\delta z_1} \hspace{0.3in}\\
\hspace{0.3in}\frac{\delta^2 E}{\delta x_1\delta x_2} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta^2 E}{\delta x_1\delta y_2} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta^2 E}{\delta x_1\delta z_2} \hspace{0.3in}\\
\vdots & \vdots & \vdots \\
\vspace{0.02in}
\hspace{0.3in}\frac{\delta^2 E}{\delta z_1\delta x_n} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta^2 E}{\delta z_1\delta y_n} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta^2 E}{\delta z_1\delta z_n} \hspace{0.3in}\\
\hspace{0.3in}\frac{\delta^2 E}{\delta x_2\delta x_1} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta^2 E}{\delta x_2\delta y_1} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta^2 E}{\delta x_2\delta z_1} \hspace{0.3in}\\
\vdots & \vdots & \vdots \\
\hspace{0.3in}\frac{\delta^2 E}{\delta z_n\delta x_n} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta^2 E}{\delta z_n\delta y_n} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta^2 E}{\delta^2 z_n} \hspace{0.3in}\\
\end{array}
\end{array}
\end{equation}
\begin{verbatim}
file16.dat
\end{verbatim}
The second derivatives of the total energy with respect to the internal
coordinates are found in \FILE{16}.
As in \FILE{15}, the number of
atoms ({\em n}) and six times that number ({\em sixtimesn}) are given.
format:
\begin{equation}
\begin{array}{l}
n\hspace{0.4in}sixtimesn \\
\begin{array}{ccc}
\vspace{0.02in}
\hspace{0.3in}\frac{\delta^2 E}{\delta^2 \eta_1} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta^2 E}{\delta \eta_1\delta \eta_2} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta^2 E}{\delta \eta_1\delta \eta_3} \hspace{0.3in}\\
\vdots & \vdots & \vdots \\
\hspace{0.3in}\frac{\delta^2 E}{\delta \eta_1\delta \eta_{n-2}} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta^2 E}{\delta \eta_1\delta \eta_{n-1}} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta^2 E}{\delta \eta_1\delta \eta_n} \hspace{0.3in}\\
\vdots & \vdots & \vdots \\
\vspace{0.02in}
\hspace{0.3in}\frac{\delta^2 E}{\delta \eta_n\delta \eta_{n-2}} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta^2 E}{\delta \eta_n\delta \eta_{n-1}} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta^2 E}{\delta^2 \eta_n} \hspace{0.3in}\\
\end{array}
\end{array}
\end{equation}
\begin{verbatim}
file17.dat
\end{verbatim}
First derivatives of the cartesian dipole moments (${\mu_x,\mu_y,\mu_z}$)
with respect to the
cartesian nuclear coordinates may be found in \FILE{17}. The first
line and subsequent format are similar to that of \FILE{15}.
format:
\begin{equation}
\begin{array}{l}
n\hspace{0.4in}threetimesn \\
\begin{array}{ccc}
\vspace{0.02in}
\hspace{0.3in}\frac{\delta \mu_x}{\delta x_1} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta \mu_x}{\delta y_1} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta \mu_x}{\delta z_1} \hspace{0.3in}\\
\hspace{0.3in}\frac{\delta \mu_x}{\delta x_2} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta \mu_x}{\delta y_2} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta \mu_x}{\delta z_2} \hspace{0.3in}\\
\vdots & \vdots & \vdots \\
\vspace{0.02in}
\hspace{0.3in}\frac{\delta \mu_x}{\delta x_n} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta \mu_x}{\delta y_n} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta \mu_x}{\delta z_n} \hspace{0.3in}\\
\hspace{0.3in}\frac{\delta \mu_y}{\delta x_1} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta \mu_y}{\delta y_1} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta \mu_y}{\delta z_1} \hspace{0.3in}\\
\vdots & \vdots & \vdots \\
\hspace{0.3in}\frac{\delta \mu_z}{\delta x_n} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta \mu_z}{\delta y_n} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta \mu_z}{\delta z_n} \hspace{0.3in}\\
\end{array}
\end{array}
\end{equation}
\begin{verbatim}
file18.dat
\end{verbatim}
First derivatives of the cartesian dipole moments (${\mu_x,\mu_y,\mu_z}$)
with respect to the
internal nuclear coordinates may be found in \FILE{18}.
format:
\begin{equation}
\begin{array}{l}
n\hspace{0.4in}threetimesn \\
\begin{array}{ccc}
\vspace{0.02in}
\hspace{0.3in}\frac{\delta \mu_x}{\delta \eta_1} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta \mu_x}{\delta \eta_2} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta \mu_x}{\delta \eta_3} \hspace{0.3in}\\
\hspace{0.3in}\frac{\delta \mu_x}{\delta \eta_4} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta \mu_x}{\delta \eta_5} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta \mu_x}{\delta \eta_6} \hspace{0.3in}\\
\vdots & \vdots & \vdots \\
\hspace{0.3in}\frac{\delta \mu_z}{\delta \eta_{n-2}} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta \mu_z}{\delta \eta_{n-1}} \hspace{0.3in}&
\hspace{0.3in}\frac{\delta \mu_z}{\delta \eta_{n}} \hspace{0.3in}\\
\end{array}
\end{array}
\end{equation}
|