File: input.tex

package info (click to toggle)
psicode 3.4.0-6
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, bullseye, buster, stretch
  • size: 46,416 kB
  • ctags: 18,563
  • sloc: cpp: 291,425; ansic: 12,788; fortran: 10,489; perl: 3,206; sh: 2,702; makefile: 2,205; ruby: 2,178; yacc: 110; lex: 53
file content (751 lines) | stat: -rw-r--r-- 26,243 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
\section{\PSIthree\ Input Files} \label{input}

\subsection{Syntax} \label{syntax}
\PSIthree\ input files are case-insensitive and free-format, with
a grammar designed for maximum flexibility and relative simplicity.
Input values are assigned using the structure:
\begin{verbatim}
keyword = value
\end{verbatim}
where {\tt keyword} is the parameter chosen (e.g., {\tt convergence})
and {\tt value} has one of the following data types:
\begin{itemize}
\item string: A character sequence surrounded by double-quotes.
  Example: {\tt basis = "cc-pVDZ"}
\item integer: Any positive or negative number (or zero) with no
  decimal point.  Example: {\tt maxiter = 100}
\item real: Any floating-point number.  Example: {\tt omega = 0.077357}
\item boolean: {\tt true}, {\tt false}, {\tt yes}, {\tt no}, {\tt 1},
  {\tt 0}.
\item array: a parenthetical list of values of the above data types.
  Example: {\tt docc = (3 0 1 1)}.  
\end{itemize}
Note that the input parsing system is general enough to allow
multidimensional arrays, with elements of more than one data type.  A
good example is the z-matrix keyword:
\begin{verbatim}
zmat = (
  (O)
  (H 1 r)
  (H 1 r 2 a)
)
\end{verbatim}
For z-matrices, z-matrix variables, and Cartesian coordinates, 
it is also possible to discard the inner parentheses.
The following is equivalent in this case:
\begin{verbatim}
zmat = (
  O
  H 1 r
  H 1 r 2 a
)
\end{verbatim}

Keywords must grouped together in blocks, based on the module or
modules that require them.  The default block is labelled {\tt psi:},
and most users will require only a {\tt psi:} block when using
\PSIthree.  For example, the following is a simple input file for a
single-point CCSD energy calculation on H$_2$O:
\begin{verbatim}
psi: (
  label = "6-31G**/CCSD H2O"
  wfn = ccsd
  reference = rhf
  jobtype = sp
  basis = "6-31G**"
  zmat = (
     O
     H 1 r 
     H 1 r 2 a 
  )
  zvars = (
     r 1.0 
     a 104.5 
  )
)
\end{verbatim}
In this example, the {\tt psi:} identifier collects all the keywords
(of varying types) together.  Every \PSIthree\ module will have access
to every keyword in the {\tt psi:} block by default.  One may use
other identifiers (e.g., {\tt ccenergy:}) to separate certain keywords
to be used only by selected modules.  For example, consider the
keyword {\tt convergence}, which is used by several \PSIthree\ modules
to determine the convergence criteria for constructing various types
of wave functions.  If one wanted to use a high convergence cutoff for the
\PSIthree\ SCF module but a lower cutoff for the coupled cluster
module, one could modify the above input:
\begin{verbatim}
psi: (
  ...
  convergence = 7
)
scf:convergence = 12
\end{verbatim}
Note that, since we have only one keyword associated with the {\tt
  scf:} block, we do not need to enclose it parentheses.

Some additional aspects of the \PSIthree\ grammar to keep in mind:
\begin{itemize}
\item The ``\%'' character denotes a comment line, i.e. any
  information following the ``\%'' up to the next linebreak is ignored
  by the program.
\item Anything in between double quotes (i.e. strings) is case-sensitive.
\item Multiple spaces are treated as a single space.
\end{itemize}

\subsection{Specifying the Type of Computation}
The most important keywords in a \PSIthree\ input file are those which
tell the program what type of computation are to be performed.  
They \keyword{jobtype} keyword tells the \PSIdriver\ program whether
this is a single-point computation, a geometry optimization, a 
vibrational frequency calculation, etc.  The \keyword{reference} 
keyword specifies whether an RHF, ROHF, UHF, etc., reference is
to be used for the SCF wavefunction.  The \keyword{wfn} specifies 
what theoretical method is to be used, either SCF, determinant-based
CI, coupled-cluster, etc.  Also of critical importance are the charge
and multiplicity of the molecule, the molecular geometry, and the
basis set to be used.  The latter two topics are discussed below
in sections \ref{geom-spec} and \ref{basis-spec}.
General keywords determining the general type of computation to be performed 
are described below.

\begin{description}
\item[LABEL = string]\mbox{}\\
This is a character string to be included in the output to help keep track
of what computation has been run.  It is not otherwise used by the program.
There is no default.
\item[JOBTYPE = string]\mbox{}\\
This tells the program whether to run a single-point energy calculation
(SP), a geometry optimization (OPT), a series of calculations at 
different displaced geometries (DISP), a frequency calculation (FREQ),
frequencies only for symmetric vibrational modes (SYMM\_FREQ), 
a Diagonal Born-Oppenheimer Correction (DBOC) energy computation,
or certain response properties (RESPONSE).
The default is SP.
\item[WFN = string]\mbox{}\\
This specifies the wavefunction type.  Possible values are:\\ 
SCF, MP2, MP2R12, CIS, DETCI, CASSCF, RASSCF, CCSD, CCSD\_T, BCCD, BCCD\_T,
EOM\_CCSD, ZAPTN. 
\item[REFERENCE = string]\mbox{}\\
This specifies the type of SCF calculation one wants to do.  It
can be one of RHF (for a closed  shell  singlet), ROHF (for
a restricted open shell calculation), UHF (for an unrestricted
open shell calculation), or TWOCON (for a two configuration
singlet).  The default is RHF.
\item[MULTP = integer]\mbox{}\\
Specifies the multiplicity of the molecule, i.e., 2S+1.  Default
is 1 (singlet).
\item[CHARGE = integer]\mbox{}\\
Specifies the charge of the molecule.  Default is 0.
\item[DERTYPE = string]\mbox{}\\
This specifies the order of the derivative that is to be obtained.
The default is NONE (energy only).
\item[DOCC = integer vector]\mbox{}\\
This gives the number of doubly occupied orbitals in each irreducible
representation.  There is no default.  If this is not given, 
\PSIcscf\  will attempt to guess at the occupations.
\item[SOCC = integer vector]\mbox{} \\
This gives the number of singly occupied orbitals in each irreducible 
representation. There is no default.  If this is not given,
\PSIcscf\ will attempt to guess at the occupations.
\item[FREEZE\_CORE = string]\mbox{} \\
\PSIthree\ can automatically freeze core orbitals. Core orbitals are
defined as follows:  
\begin{verbatim}
 H-Be  no core 
 B-Ne  1s 
Na-Ar  small: 1s2s
       large: 1s2s2p
\end{verbatim}
YES or TRUE will freeze the core orbitals, SMALL or LARGE are for elements 
Na-Ar. The default is NO or FALSE. Always check to make sure that the 
occupations are correct!
\end{description}

\subsection{Geometry Specification} \label{geom-spec}
The molecular geometry may be specified using either Cartesian a
Z-matrix coordinates.  Cartesian coordinates are specified via the
keyword \keyword{geometry}:
\begin{verbatim}
  geometry = (
     atomname1 x1 y1 z1 
     atomname2 x2 y2 z2 
     atomname3 x3 y3 z3 
             ...
     atomnameN xN yN zN 
  )
\end{verbatim}
where \keyword{atomname$i$} can take the following values:
\begin{itemize}
\item The element symbol: H, He, Li, Be, B, etc.
\item The full element name: hydrogen, helium, lithium, etc.
\item As a {\em ghost} atom with the symbol, G, or name, ghost. A
ghost atom has a formal charge 0.0, and can be useful to specify the
location of the off-nucleus basis functions.
\item As a {\em dummy} atom with the symbol, X.  Dummy atoms can be
useful only to specify Z-matrix coordinates of proper symmetry or
which contain linear fragments.
\end{itemize}
Hence the following two examples are equivalent to one another:
\begin{verbatim}
  geometry = (
     H 0.0 0.0 0.0 
     f 1.0 0.0 0.0 
     Li 3.0 0.0 0.0 
     BE 6.0 0.0 0.0 
  )
\end{verbatim}
\begin{verbatim}
  geometry = (
     hydrogen  0.0 0.0 0.0 
     FLUORINE  1.0 0.0 0.0 
     Lithium   3.0 0.0 0.0 
     beryllium 6.0 0.0 0.0 
  )
\end{verbatim}
It is also possible to include an inner set 
of parentheses around each line containing {\tt atomname1 x1 y1 z1}.

The keyword \keyword{units} specifies the units for the coordinates:
\begin{itemize}
\item \keyword{units = angstrom} -- angstroms (\AA), default;
\item \keyword{units = bohr} -- atomic units (Bohr);
\end{itemize}

\noindent
Z-matrix coordinates are specified using the keyword \keyword{zmat}:
\begin{verbatim}
  zmat = (
     atomname1
     atomname2 ref21 bond_dist2
     atomname3 ref31 bond_dist3 ref32 bond_angle3 
     atomname4 ref41 bond_dist4 ref42 bond_angle4 ref43 tors_angle4 
     atomname5 ref51 bond_dist5 ref52 bond_angle5 ref53 tors_angle5 
                             ...                
     atomnameN refN1 bond_distN refN2 bond_angleN refN3 tors_angleN 
  )
\end{verbatim}
where
\begin{itemize}
\item \keyword{bond\_dist$i$} is the distance (in units specified by
keyword \keyword{units}) from nucleus number $i$ to
nucleus number \keyword{ref$i$1}. The units 
\item \keyword{bond\_angle$i$} is the angle formed by nuclei $i$,
\keyword{ref$i$1}, and \keyword{ref$i$2};
\item \keyword{tors\_angle$i$} is the torsion angle formed by nuclei $i$,
\keyword{ref$i$1}, \keyword{ref$i$2}, and \keyword{ref$i$3};
\end{itemize}
%%
%% I'm commenting this part out, since the redundant internal coordinate
%% structure implemented by RAK in 08/03 takes care of many dummy-atom
%% problems.  If user's really want z-matrix coords, we may have to deal
%% with this again.
%%   -TDC, 08/31/03
%Some care has to be taken when constructing a Z-matrix for a molecule
%which contains linear fragments. For example, an appropriate Z-matrix
%for a linear conformation of HNCO must include dummy atoms: The first
%three atoms (HNC) can be specified as is, but the fourth atom (O)
%poses a problem -- the torsional angle cannot be defined with respect
%to the linear HNC fragment. The solution is to add 2 dummy atoms to
%the definition:
%\begin{verbatim}
%  zmat = (
%    h
%    n 1 1.012
%    x 2 1.000 1  90.0
%    c 2 1.234 3  90.0 1 180.0
%    x 4 1.000 2  90.0 3 180.0
%    o 4 1.114 5  90.0 2 180.0
%  )
%\end{verbatim}
%Alternatively, one could use, for example, only a single dummy atom above the
%nitrogen and specify ``bond lengths'' relative to the latter.

\subsection{Molecular Symmetry} \label{symm-spec}
\PSIthree\ can determine automatically the largest Abelian point group
for a valid framework of centers (including ghost atoms, but dummy
atoms are ignored).  It will then use the symmetry properties of the
system in computing the energy, forces, and other properties.
However, in certain instances it is desirable to use less than the
full symmetry of the molecule. The keyword \keyword{subgroup} is used
to specify a subgroup of the full molecular point group. The allowed
values are \keyword{c2v}, \keyword{c2h}, \keyword{d2}, \keyword{c2},
\keyword{cs}, \keyword{ci}, and \keyword{c1}. For certain combinations
of a group and its subgroup there is no unique way to determine which
subgroup is implied. For example, $D_{\rm 2h}$ has 3 non-equivalent
$C_{\rm 2v}$ subgroups, e.g. $C_{\rm 2v}(X)$ consists of symmetry
operations $\hat{E}$, $\hat{C}_2(x)$, $\hat{\sigma}_{xy}$, and
$\hat{\sigma_{xz}}$.  To specify such subgroups precisely one has to
use the keyword \keyword{unique\_axis}.  For example, the following
input will specify the $C_{\rm 2v}(X)$ subgroup of $D_{\rm 2h}$ to be
the computational point group:
\begin{verbatim}
  psi: (
    ...
    geometry = (
         ...
    )
    units = angstrom
    subgroup = c2v
    unique_axis = x
  )
\end{verbatim}

\begin{table}[h]
%\caption{Standard Cotton Ordering in \PSIthree}
\begin{center}
\begin{tabular}{ll}
\hline
\hline
Point Group & Cotton Ordering of Irreps \\
\hline
C$_1$       & A                                    \\
C$_i$       & A$_g$ A$_u$                          \\
C$_2$       & A B                                  \\
C$_s$       & A' A''                               \\
C$_{2h}$    & A$_g$ B$_g$ A$_u$ B$_u$              \\
C$_{2v}$    & A$_1$ A$_2$ B$_1$ B$_2$              \\
D$_2$       & A B$_1$ B$_2$ B$_3$                  \\
D$_{2h}$    & A$_g$ B$_{1g}$ B$_{2g}$ B$_{3g}$ A$_u$ B$_{1u}$ B$_{2u}$ B$_{3u}$ \\
\hline
\hline
\end{tabular}
\end{center}
\end{table}

\subsection{Specifying Scratch Disk Usage in \PSIthree} \label{scratchfiles}

Depending on the calculation, the \PSIthree\ package often requires
substantial temporary disk storage for integrals, wave function ampltiudes,
etc.  By default, \PSIthree\ will write all such datafiles to {\tt /tmp}
(except for the checkpoint file, which is written to {\tt ./} by default).
However, to allow for various customized arrangements of scratch disks,
the \PSIthree\ {\tt files:} block gives the user considerable control
over how temporary files are organized, including file names, scratch
directories, and the ability to ``stripe'' files over several disks (much
like RAID0 systems).  This section of keywords is normally placed within
the {\tt psi:} section of input, but may be used for specific \PSIthree\
modules, just like other keywords.

For example, if the user is working with \PSIthree\ on a computer
system with only one scratch disk (mounted at, e.g., {\tt /scr}), one
could identify the disk in the input file as follows:
\begin{verbatim}
psi: (
  ...
  files: (
    default: (
      nvolume = 1
      volume1 = "/scr/"
    )
  )
)
\end{verbatim}
The {\tt nvolume} keyword indicates the number of scratch
directories/disks to be used to stripe files, and each of these is
specified by a corresponding {\tt volumen} keyword.  (NB: the trailing
slash ``/'' is essential in the directoy name.)  Thus, in the above
example, all temporary storage files generated by the various
\PSIthree\ modules would automatically be placed in the {\tt /scr}
directory.  

By default, the scratch files are given the prefix ``{\tt psi}'', and
named ``{\tt psi.nnn}'', where {\tt nnn} is a number used by the
\PSIthree\ modules.  The user can select a different prefix by
specifying it in the input file with the {\tt name} keyword:
\begin{verbatim}
psi: (
  ...
  files: (
    default: (
      name = "H2O"
      nvolume = 1
      volume1 = "/scr/"
    )
  )
)
\end{verbatim}
The {\tt name} keyword allows the user to store data associated with
multiple calculations in the same scratch area.  Alternatively, one
may specify the filename prefix on the command-line of the {\tt psi3}
driver program (or any \PSIthree\ module) with the {\tt -p} argument:
\begin{verbatim}
psi3 -p H2O
\end{verbatim}

If the user has multiple scratch areas available, \PSIthree\ files may
be automatically split (evenly) across them:
\begin{verbatim}
psi: (
  ...
  files: (
    default: (
      nvolume = 3
      volume1 = "/scr1/"
      volume2 = "/scr2/"
      volume3 = "/scr3/"
    )
  )
)
\end{verbatim}
In this case, each \PSIthree\ datafile will be written in chunks (65
kB each) to three separate files, e.g., {\tt /scr1/psi.72}, {\tt
/scr2/psi.72}, and {\tt /scr3/psi.72}.  The maximum number of volumes
allowed for striping files is eight (8), though this may be easily
extended in the \PSIthree\ I/O code, if necessary.

The format of the {\tt files} section of input also allows the user to
place selected files in alternative directories, such as the current
working directory.  This feature is especially important if some of
the data need to be retained between calculations.  For example, the
following {\tt files:} section will put {\tt file32} (the \PSIthree\
checkpoint file) into the working directory, but all scratch files
into the temporary areas:
\begin{verbatim}
psi: (
  ...
  files: (
    default: (
      nvolume = 3
      volume1 = "/scr1/"
      volume2 = "/scr2/"
      volume3 = "/scr3/"
    )
    file32: ( nvolume = 1  volume1 = "./" )
  )
)
\end{verbatim}

\subsection{The {\tt .psirc} File} \label{psirc}

Users of \PSIthree\ often find that they wish to use certain keywords
or input sections in every calculation they run, especially those
keywords associated with the {\tt files:} section.  The {\tt .psirc}
file, which is kept in the user's {\tt \$HOME} directory, helps to
avoid repetition of keywords whose defaults are essentially user- or
system-specific.  A typical {\tt .psirc} file would look like:
\begin{verbatim}
psi: (
  files: (
    default: (
      nvolume=3
      volume1 = "/tmp1/mylogin/"
      volume2 = "/tmp2/mylogin/"
      volume3 = "/tmp3/mylogin/"
    )
    file32: (nvolume=1 volume1 = "./")
  )
)
\end{verbatim}

\subsection{Specifying Basis Sets} \label{basis-spec}

\PSIthree\ uses basis sets comprised of Cartesian or spherical harmonic
Gaussian functions. A basis set is identified by a string, enclosed
in double quotes. Currently, there exist three ways to specify which
basis sets to use for which atoms:
\begin{itemize}
\item \keyword{basis = string} -- all atoms use basis set type.
\item \keyword{basis = (string1 string2 string3 ... stringN)} -- 
\keyword{string {\em i}}
specifies the basis set for atom {\em i}. Thus, the number of strings
in the \keyword{basis} vector has to be the same as the number of
atoms (including ghost atoms but excluding dummy atoms). Another
restriction is that symmetry equivalent atoms should have same basis
sets, otherwise \PSIinput\ will use the string provided for the
so-called unique atom out of the set of symmetry equivalent ones.
\item 
\begin{verbatim}
  basis = (
    (element1 string1)
    (element2 string2)
            ...
    (elementN stringN)
  )
\end{verbatim}
\keyword{string {\em i}} specifies the basis set for chemical element 
\keyword{element {\em i}}.
\end{itemize}

\subsubsection{Default Basis Sets}

\PSIthree\ default basis sets are located in \pbasisdat\ which may be
found by default in {\tt \$psipath/share}. Tables
\ref{table:poplebasis}, \ref{table:dunningbasis},
\ref{table:wachtersbasis}, and \ref{table:ccbasis} list basis sets
pre-defined in \pbasisdat.

The predefined basis sets use either spherical harmonics or Cartesian
Gaussians, which is determined by the authors of the basis.
Currently \PSIthree\ cannot handle basis sets that consist
of a mix of Cartesian and spherical harmonics Gaussians.
Therefore there may be combinations of basis sets that are forbidden,
e.g. {\tt cc-pVTZ} and {\tt 6-31G**}.
In such case one can override the predetermined choice
of the type of the Gaussians by specifying the \keyword{puream}
keyword. It takes two values, {\tt true} or {\tt false},
for spherical harmonics and Cartesian Gaussians, respectively.

\begin{table}[p]
\caption{Pople-type basis sets available in \PSIthree}
\label{table:poplebasis}
\begin{center}
\begin{tabular}{|l|l|l|}
\hline
\hline
Basis Set 		&Atoms   	&Aliases\\ 
\hline
	STO-3G			& H-Ar			&\\
	3-21G			& H-Ar			&\\
	6-31G			& H-Ar, K, Ca, Cu	&\\
        6-31G*                  & H-Ar, K, Ca, Cu       &6-31G(d)\\
        6-31+G*                 & H-Ar                  &6-31+G(d)\\
        6-31G**                 & H-Ar, K, Ca, Cu       &6-31G(d,p)\\
	6-311G			& H-Ar			&\\
	6-311G*                 & H-Ar                  &6-311G(d)\\
        6-311+G*                & H-Ne                  &6-311+G(d)\\
	6-311G**                & H-Ar                  &6-311G(d,p)\\
        6-311G(2df,2pd)         & H-Ne                  &\\
	6-311++G**		& H, B-Ar		&6-311++G(d,p)\\
        6-311G(2d,2p)           & H-Ar                  &\\
        6-311++G(2d,2p)         & H-Ar                  &\\
        6-311++G(3df,3pd)       & H-Ar                  &\\
\hline
\hline
\end{tabular}
\end{center}
\end{table}

\begin{table}[tbp]
\caption{Huzinaga-Dunning basis sets available in \PSIthree}
\label{table:dunningbasis}
\begin{center}
\begin{tabular}{|l|l|}
\hline
\hline
Basis Set 		&Atoms   	\\
\hline
	(4S/2S)			& H		\\
	(9S5P/4S2P)		& B-F			\\
	(11S7P/6S4P)		& Al-Cl			\\
	DZ			& H, Li, B-F, Al-Cl		\\
	DZP			& H, Li, Be, B-F, Na, Al-Cl	\\
	DZ-DIF			& H, B-F, Al-Cl		\\
	DZP-DIF			& H, B-F, Al-Cl		\\
	TZ2P			& H, B-F, Al-Cl		\\
	TZ2PD			& H			\\
	TZ2PF			& H, B-F, Al-Cl		\\
	TZ-DIF			& H, B-F, Al-Cl		\\ 	
	TZ2P-DIF		& H, B-F, Al-Cl		\\
	TZ2PD-DIF		& H			\\
	TZ2PF-DIF		& H, B-F, Al-Cl		\\		
\hline
\hline
\end{tabular}
\end{center}
\end{table}

\begin{table}[tbp]
\caption{Wachters basis sets available in \PSIthree}
\label{table:wachtersbasis}
\begin{center}
\begin{tabular}{|l|l|}
\hline
\hline
Basis Set 		&Atoms   	\\ 
\hline
	WACHTERS		& K, Sc-Cu			\\
	WACHTERS-F		& Sc-Cu			\\
\hline
\hline
\end{tabular}
\end{center}
\end{table}

\begin{table}[tbp]
\caption{Correlation-consistent basis sets available in \PSIthree}
\label{table:ccbasis}
\begin{center}
\begin{tabular}{|l|l|l|}
\hline
\hline
Basis Set 		&Atoms   	&Aliases\\ 
\textbf{ (N = D,T,Q,5,6)}	&			&	\\
\hline
	cc-pVNZ			& H-Ar			&CC-PVNZ\\
	cc-pV(N+D)Z		& Al-Ar			&CC-PV(N+D)Z\\
        cc-pCVNZ                & B-Ne                  &CC-PCVNZ\\
	aug-cc-pVNZ		& H-He, B-Ne, Al-Ar	&AUG-CC-PVNZ\\
	aug-cc-pV(N+D)Z		& Al-Ar			&AUG-CC-PCV(N+d)Z\\
	aug-cc-pCVNZ    	& B-F (N${<}$6)		&AUG-CC-PCVNZ\\
	d-aug-cc-pVNZ		& H			&\\
	pV7Z\footnote{testa}	& H, C, N, O, F, S	&PV7Z\\
	cc-pV7Z\footnote{testb}	& H, C, N, O, F, S	&CC-PV7Z\\
	aug-pV7Z\footnote{testc}     & H, C, N, O, F, S	&AUG-PV7Z\\
	aug-cc-pV7Z\footnote{testd}  & H, N, O, F            &AUG-CC-PV7Z\\
\hline
\hline
\end{tabular}
\end{center}
\end{table}

\subsubsection{Custom Basis Sets} \label{custom-basis}

If the basis set you desire is not already defined in \PSIthree, a
custom set may be used by specifying its exponents and contraction
coefficients (either in the input file or another file named {\tt
basis.dat}.) A contracted Cartesian Gaussian-type orbital
\begin{equation}
\phi_{\rm CGTO} =  x^ly^mz^n\sum_i^N C_i \exp(-\alpha_i[x^2+y^2+z^2])
\end{equation}
where
\begin{equation}
L = l+m+n
\end{equation}
is written as
\begin{verbatim}
basis: (
  ATOM_NAME: "BASIS_SET_LABEL" = (
    (L (C1  alpha1)
       (C2  alpha2)
       (C3  alpha3)
       ...
       (CN  alpha4))   
    )
  )
\end{verbatim}

One must further specify whether Cartesian or spherical harmonics
Gaussians are to be used. One can specify that in two ways:
\begin{itemize}
\item It can be done on a basis
by basis case, such as
\begin{verbatim}
basis: (
  "BASIS_SET_LABEL1":puream = true
  "BASIS_SET_LABEL2":puream = false
  "BASIS_SET_LABEL3":puream = true
  ....
)
\end{verbatim}
By default, if \keyword{puream} is not given for a basis,
then Cartesian Gaussians will be used.
\item
The choice between Cartesian or spherical harmonics Gaussian
can be made globally by specifying \keyword{puream} keyword
in the standard input section, e.g.
\begin{verbatim}
psi: (
  ...
  puream = true
  ...
)
\end{verbatim}
\end{itemize}
Note that currently \PSIthree\ cannot handle basis sets that consist
of a mix of Cartesian and spherical harmonics Gaussians.

Note that the basis set must be given in a separate {\tt basis:}
section of input, outside all other sections (including {\tt psi:}).
For example, the \PSIthree\ DZP basis set for carbon could be
specified as:
\begin{verbatim}
basis: (
  carbon: "DZP" = (
    (S (   4232.6100      0.002029) 
       (    634.8820      0.015535)
       (    146.0970      0.075411)
       (     42.4974      0.257121)
       (     14.1892      0.596555) 
       (      1.9666      0.242517))
    (S (      5.1477      1.0))
    (S (      0.4962      1.0))
    (S (      0.1533      1.0))
    (P (     18.1557      0.018534)
       (      3.9864      0.115442)
       (      1.1429      0.386206)
       (      0.3594      0.640089))
    (P (      0.1146      1.0))
    (D (      0.75        1.0))
  )
)
\end{verbatim}

Here are a couple of additional points that may be useful when
specifying customized basis sets:
\begin{itemize}
\item Normally the {\tt basis.dat} file is placed in the same
directory as the main input file, but it may also be placed in a
global location specified by the keyword {\tt basisfile}:
\begin{verbatim}
  basisfile = "/home/users/tool/chem/h2o/mybasis.in"
\end{verbatim}
\item To scale a basis set, a scale factor may be added as the last item
in the specification of each contracted Gaussian function.  For
example, to scale the S functions in a 6-31G** basis for hydrogen,
one would use the following
\begin{verbatim}
  hydrogen: "6-31G**" =
      ( (S (    18.73113696     0.03349460)
           (     2.82539437     0.23472695)
           (     0.64012169     0.81375733) 1.2 )
        (S (     0.16127776     1.00000000) 1.2 )
        (P (     1.10000000     1.00000000))
       )
\end{verbatim}
In this example, both contracted S functions have their exponents
scaled by a factor of (1.2)$^2$ = 1.44.  The output file should show
the exponents after scaling.
\end{itemize}

\subsubsection{Automated Conversion of Basis Sets}

The \PSIthree\ package is distributed with a Perl-based utility, named {\tt
g94\_2\_PSI3}, which will convert basis sets from the Gaussian ('94 or later)
format to \PSIthree\ format automatically.  This utility is especially useful
for basis sets downloaded from the EMSL database at \htmladdnormallink{{\tt
http://www.emsl.pnl.gov/forms/basisform.html}}{http://www.emsl.pnl.gov/forms/basisform.html}.
To use this utility, save the desired basis set to a file (e.g., {\tt
g94\_basis.dat}) in the Gaussian format.  Then execute:
\begin{verbatim}
g94_2_PSI3 < g94_basis.dat > basis.dat
\end{verbatim}
You may either incorporate the results from the {\tt basis.dat} file into
your input file as described above, or place the results into a global {\tt
basis.dat} file.  Be sure to surround the basis-set definition with the
{\tt basis:()} keyword (as shown in the above examples) or input parsing
errors will result.

\subsection{Specification of Ghost Atoms}

To specify ghost atoms, use atom symbol \keyword{G} in
\keyword{zmat} or \keyword{geometry} keywords:
\begin{verbatim}
  zmat = (
    he
    g 1 r
  )
  basis = "aug-cc-pVTZ"
\end{verbatim}
Basis sets for ghost atoms
must be defined explicitly using \keyword{GHOST} as the element name:
\begin{verbatim}
  basis:GHOST:"aug-cc-pVTZ": (
    ....
  )
\end{verbatim}
This method leads to replication of existing basis set
definitions.
It is usually more convenient to specify ghost atoms as regular atoms
with zero charge:
\begin{verbatim}
  zmat = (
    he
    he 1 r
  )
  charges = (2.0 0.0)
  basis = "aug-cc-pVTZ"
\end{verbatim}
In this example, the second helium atom is a ``ghost'' atom which carries
helium's aug-cc-pVTZ basis set.