File: matrices.c

package info (click to toggle)
psignifit 2.5.6-8
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 608 kB
  • sloc: ansic: 5,317; sh: 109; makefile: 41
file content (789 lines) | stat: -rwxr-xr-x 27,902 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
/*
	Part of the psignifit engine source distribution version 2.5.6.
	Copyright (c) J.Hill 1999-2005.
	mailto:psignifit@bootstrap-software.org
	http://bootstrap-software.org/psignifit/

	This program is free software; you can redistribute it and/or modify it under
	the terms of the GNU General Public License as published by the Free Software
	Foundation; either version 2 of the License, or (at your option) any later
	version.

	This program is distributed in the hope that it will be useful, but WITHOUT ANY
	WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
	PARTICULAR PURPOSE.  See the GNU General Public License for more details.
	You should have received a copy of the GNU General Public License along with
	this program; if not, write to the Free Software Foundation, Inc., 59 Temple
	Place, Suite 330, Boston, MA  02111-1307  USA

	For more information, including the GNU General Public License, please read the
	document Legal.txt

*/

#ifndef __MATRICES_C__
#define __MATRICES_C__

#include "universalprefix.h"
#include "mathheader.h"
#include <ctype.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include "matlabtools.h"

#include "matrices.h"

/* //////////////////////////////////////////////////////////////////////////////////////////////// */

matrix M_LAST = NULL;

/* //////////////////////////////////////////////////////////////////////////////////////////////// */
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
double *m_addr(matrix m, short dimension, long pos)
{
	long siz;
	if(dimension < 1 || dimension-- > mMaxDims) Bug("dimension argument to m_addr() must be from 1 to %d", mMaxDims);
	if(m == NULL || m->vals == NULL) return NULL;
	if((siz = m->extents[dimension]) == 0) return NULL;
	if(pos < 0) pos += siz;
	if((pos %= siz) < 0) pos += siz;
	return m->vals + m->index + (pos - m->positions[dimension]) * m->steps[dimension];
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
matrix m_allocate(matrix m)
{
	long i, space;
	
	if(m == NULL) return NULL;
	if(m->vals && m->disposeable) Destroy(m->vals);
	for(space = 0, i = 0; i < mMaxDims; i++)
		if(m->steps[i] * m->extents[i] > space) space = m->steps[i] * m->extents[i];
	m->vals = ((space == 0) ? NULL : New(double , space));
	m->disposeable = TRUE;
	return m;
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
matrix m_anew(double *vals, short nDims, long *steps, long *extents)
{
	matrix m;
	long i;
	
	if(nDims < 1 || nDims > mMaxDims) Bug("dimension argument to m_new() must be from 1 to %d", mMaxDims);
	
	m = New(matrix_s, 1);
	m->nDims = nDims;
	m->output = NULL;
	m->description = NULL;
	m->index = 0;
	m->disposeable = FALSE;
	m->refCon = 0;
	m->warnIfEmpty = TRUE;
	strcpy(m->writeMode, "w");
	strcpy(m->writeFormat, "%lg");
	for(i = 0; i < mMaxDims; i++) m->positions[i] = 0;
	
	m_asetsize(m, nDims, extents);
	m_asetsteps(m, steps);
	if(vals == mNewData) m_allocate(m);
	else if(vals == mNoData && m) m->vals = NULL;
	else if(m) m->vals = vals;

	if(m == NULL) return NULL;
	m->next = NULL;
	m->previous = M_LAST;
	if(M_LAST) M_LAST->next = m;
	return(M_LAST = m);
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
boolean m_asetpoint(matrix m, long *pos)
{
	long i;
	boolean returnVal = TRUE;
	
	if(m == NULL) return FALSE;
	for(i = 0; i < mMaxDims; i++)
		returnVal &= m_setpos(m, i+1, ((i < m->nDims) ? pos[i] : 0));

	if(m->vals == NULL) return FALSE;
	return returnVal;
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
matrix m_asetsize(matrix m, short nDims, long *extents)
{
	long i;
	
	if(nDims < 1 || nDims > mMaxDims) Bug("dimension argument to m_asetsize() must be from 1 to %d", mMaxDims);
	if(m == NULL) return NULL;
	m->nDims = nDims;
	for(i = 0; i < mMaxDims; i++) m->extents[i] = ((i < nDims) ? extents[i] : 1);
	return m;
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
matrix m_asetsteps(matrix m, long *steps)
{
	long i, nEls;
	
	if(m == NULL) return NULL;
	for(nEls = 1, i = 0; i < mMaxDims; i++) {
		m->steps[i] = ((i >= m->nDims) ? 0 : steps ? steps[i] : nEls);
		nEls *= m->extents[i];
	}
	return m;
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
matrix m_aslice(matrix m, short nDims, long *extents)
{
	matrix slice;
	long i, siz, steps[mMaxDims];
	
	if(nDims < 1 || nDims > mMaxDims) Bug("dimension argument to m_aslice() must be from 1 to %d", mMaxDims);
	
	for(i = 0; i < nDims; i++) {
		siz = extents[i];
		if(siz > m->extents[i] - m->positions[i]) Bug("m_aslice(): requested slice overlaps boundaries of parent matrix");
		steps[i] = m->steps[i];
	}	
	slice = m_anew(m->vals + m->index, nDims, steps, extents);
	strcpy(slice->writeFormat, m->writeFormat);
	slice->nDims = m_countdims(slice);
	return slice;
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
void m_clear(void) { while(M_LAST) m_free(M_LAST); }
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
double m_cofactor(matrix m, unsigned short row,  unsigned short col)
{
	unsigned short siz;
	long old_pos[mMaxDims];
	matrix sub;
	double result;
	
	if(m == NULL) Bug("m_cofactor() called with NULL matrix");
	if(m->nDims > 2) Bug("m_cofactor(): matrix must be two-dimensional");
	if((siz = m->extents[0]) != m->extents[1]) Bug("m_cofactor(): matrix must be square");
	if(row >= m->extents[0] || col >= m->extents[1]) Bug("m_cofactor(): indices exceed matrix dimensions");
	if(siz == 0) return 0.0;
	if(m->vals == NULL) Bug("m_cofactor() called with unallocated matrix");
	if(siz == 1) return 1.0;
	sub = m_new(mNewData, m2D, siz-1, siz-1);
	m_getpoint(m, old_pos);
	m_first(m);
	do {
		if(m_getpos(m, 1) != row && m_getpos(m, 2) != col) {
			m_val(sub) = m_val(m);
			m_next(sub);
		}
	} while(m_next(m));
	m_asetpoint(m, old_pos);
	result = m_determinant(sub);
	m_free(sub);
	return result;
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
matrix m_copy(matrix dest, matrix src)
{
	long i, nEls, old_src_pos[mMaxDims], old_dest_pos[mMaxDims];
	
	if(src == NULL) return NULL;
	if(dest == mNewMatrix) {
		dest = m_anew(((src->vals == NULL) ? mNoData : mNewData), src->nDims, NULL, src->extents);
		strcpy(dest->writeFormat, src->writeFormat);
	}
	else {
		for(i = 1; i <= mMaxDims; i++) if(m_getsize(src, i) != m_getsize(dest, i)) Bug("m_copy(): destination and source dimensions must match");
		if(dest->vals == NULL) m_allocate(dest);
	}
	m_getpoint(dest, old_dest_pos);
	m_getpoint(src, old_src_pos);
	for(nEls = 1, i = 0; i < mMaxDims; i++) {
		dest->steps[i] = nEls;
		nEls *= dest->extents[i];
	}	
	if(m_first(src) && m_first(dest)) {
		do {
			m_val(dest) = m_val(src);
		}while(m_next(src) && m_next(dest));
	}
	m_asetpoint(src, old_src_pos);
	m_asetpoint(dest, old_dest_pos);

	return dest;
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
short m_countdims(matrix m)
{
	long i, nDims;
	if(m == NULL) return 0;
	for(nDims = 0, i = 0; i < mMaxDims; i++) if(m->extents[i] != 1) nDims = i + 1;
	return nDims;
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
double m_determinant(matrix m)
{
	unsigned short siz, j;
	long old_pos[mMaxDims];
	double result, sign;
	
	if(m == NULL) Bug("m_determinant() called with NULL matrix");
	if(m->nDims > 2) Bug("m_determinant(): matrix must be two-dimensional");
	if((siz = m->extents[0]) != m->extents[1]) Bug("m_determinant(): matrix must be square");
	if(siz == 0) return 0.0;
	if(m->vals == NULL) Bug("m_determinant() called with unallocated matrix");
	if(siz == 1) return *m->vals;
	m_getpoint(m, old_pos);
	m_first(m);
	for(result = 0.0, sign = 1.0, j = 0; j < siz; j++, sign = -sign) {
		result += sign * m_val(m) * m_cofactor(m, 0, j);
		m_step(m, 2, 1);
	}
	m_asetpoint(m, old_pos);
	return result;
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
matrix m_diag(matrix m, matrix square)
{
	long size;
	if(square == NULL) Bug("m_diag(): received NULL input");
	if(square->nDims > 2 || (size = m_getsize(square, 1)) != m_getsize(square, 2)) Bug("m_diag(): input must be a square 2-dimensional matrix");
	if(m == mNewMatrix) m = m_new(mNewData, m1D, size);
	else {
		if(m_mass(m) != size) Bug("m_diag(): output matrix has wrong number of elements");
		if(m->vals == NULL) m_allocate(m);
	}
	if(m_first(square) && m_first(m))
		do m_val(m) = m_val(square); while(m_next(m) && m_step(square, 1, 1) && m_step(square, 2, 1));
	
	return m;
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
matrix m_fill(matrix m, double (*func)(short nDims, const long *pos))
{
	long old_pos[mMaxDims];
	m_getpoint(m, old_pos);
	if(m_first(m)) do m_val(m) = (*func)(m->nDims, m->positions); while(m_next(m));
	m_asetpoint(m, old_pos);
	return m;
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
boolean m_first(matrix m)
{
	long i;
	boolean returnVal;

	if(m == NULL) return FALSE;
	returnVal = (m->vals != NULL);
	for(i = 0; i < mMaxDims; i++) {
		m->positions[i] = 0;
		returnVal &= (m->extents[i] != 0);
	}
	m->index = 0;
	return returnVal;
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
void m_free(matrix m)
{
#ifdef MATLAB_MEX_FILE
	matrix dup;
	mxArray * mx;
	int dims[mMaxDims];
	long i, nEls;
	char temp[8], *s;
	
	if(m == NULL) return;
	if(m->output) {
		strncpy(temp, m->output, 7); for(s = temp; *s; s++) *s = tolower(*s);
		if(strlen(temp) == 0 || strcmp(temp, "null") == 0 || strcmp(temp, "false") == 0 || strcmp(temp, "0") == 0) {Destroy(m->output); m->output = NULL;}
	}

	if(m->output || m->refCon) {
		for(nEls = 1, i = 0; i <  mMaxDims; i++) {
			dims[i] = ((m->vals == NULL) ? 0 : m->extents[i]);
			if(i < m->nDims && m->steps[i] != nEls) break;
			nEls *= m->extents[i];
		}
		if(nEls > 0 && m->vals != NULL && (!m->disposeable || i < mMaxDims)) {
			dup = m_copy(mNewMatrix, m);
			dup->output = m->output; m->output = NULL;
			dup->refCon = m->refCon; m->refCon = 0;
			m_free(dup);
		}
		else {
			if(nEls == 0 || m->vals == NULL) {
				mx = mxCreateDoubleMatrix(0, 0, mxREAL);
/*				if(m->output && *m->writeMode == 'w') JWarning("no data were available for the requested assignment to %s", m->output);
*/				if(m->output && *m->writeMode == 'a') JWarning("no data were available for concatenation with %s", m->output);
			}
			else {
				mx = mxCreateDoubleMatrix(1, 1, mxREAL);
				mxFree(mxGetPr(mx));
				mxSetPr(mx, m->vals);
			}
			mxSetDimensions(mx, dims, (((m->nDims) < 2) ? 2 : m->nDims));
			if(m->disposeable && m->vals != NULL) ProtectBlock(m->vals);
			m->disposeable = FALSE;
			if(m->output != NULL && mexAssignArray(mx, "MEX__TEMP") == 0) {
				if(*m->writeMode == 'w' && mexEvalf("%s = MEX__TEMP; clear MEX__TEMP", m->output) != 0)
					JWarning("could not assign data to %s, because the assignment produced an error in MATLAB", m->output);
				if(*m->writeMode == 'a' && mexEvalf("%s = [[%s];MEX__TEMP]; clear MEX__TEMP", m->output, m->output) != 0)
					JWarning("could not append data to %s, because the vertcat operation produced an error in MATLAB", m->output);
			}
			if(m->refCon) mexAddArrayToOutputList(mx, m->refCon);
			else mxDestroyArray(mx);
		}
	}
#else
	FILE * file = NULL;
	char temp[8], *s;

	if(m == NULL) return;
	if(m->output) {
		strncpy(temp, m->output, 7); for(s = temp; *s; s++) *s = tolower(*s);
		if(strlen(temp) == 0 || strcmp(temp, "null") == 0 || strcmp(temp, "false") == 0 || strcmp(temp, "0") == 0) {Destroy(m->output); m->output = NULL;}
		if(strcmp(temp, "stderr") == 0) file = stderr;
		if(strcmp(temp, "stdout") == 0 | strcmp(temp, "-") == 0) file = stdout;
	}
	
	if(m->output) {
/*		if(file == NULL && m->vals == NULL && *m->writeMode == 'w')
			JWarning("%s was not (over)written because the requested data were not available", m->output);
		else
*/		if(file == NULL && (file = fopen(m->output, m->writeMode)) == NULL)
			JWarning("failed to write to %s", m->output);
		else {
			if(m->vals == NULL && m->description == NULL && m->warnIfEmpty)
				JWarning("some data were unavailable for %s to %s", ((*m->writeMode == 'a') ? "append" : "output"), m->output);
			m_report(file, m, ", ", "\n");
			fprintf(file, "\n");
			if(file != stderr && file != stdout) fclose(file);
		}
		
	}
#endif /* MATLAB_MEX_FILE */
	if(DEBUG)DEBUG=1;
	if(m->output != NULL) Destroy(m->output);
	if(DEBUG)DEBUG=2;
	if(m->description != NULL) Destroy(m->description);
	if(DEBUG)DEBUG=3;
	if(m->vals != NULL && m->disposeable) Destroy(m->vals);
	if(DEBUG)DEBUG=4;
	if(m->previous) m->previous->next = m->next;
	if(DEBUG)DEBUG=5;
	if(m->next) m->next->previous = m->previous;
	if(M_LAST == m) M_LAST = m->previous;
	Destroy(m);
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
long *m_getpoint(matrix m, long *buf)
{
	if(m == NULL) return NULL;
	if(buf == NULL) buf = New(long, mMaxDims);
	memcpy(buf, m->positions, mMaxDims * sizeof(long));
	return buf;
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
long m_getpos(matrix m, short dimension)
{
	if(dimension < 1 || dimension-- > mMaxDims) Bug("dimension argument to m_getpos() must be from 1 to %d", mMaxDims);
	if(m == NULL) return 0;
	return m->positions[dimension];
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
long m_getsize(matrix m, short dimension)
{
	if(dimension < 1 || dimension-- > mMaxDims) Bug("dimension argument to m_getsize() must be from 1 to %d", mMaxDims);
	if(m == NULL) return 0;
	return m->extents[dimension];
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
long m_getstep(matrix m, short dimension)
{
	if(dimension < 1 || dimension-- > mMaxDims) Bug("dimension argument to m_getsize() must be from 1 to %d", mMaxDims);
	if(m == NULL) return 0;
	return m->steps[dimension];
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
matrix m_hessian(matrix m, matrix dirs, matrix square)
{
	unsigned short i, j, nPartials, nResults;
	matrix temp;
	
	if(dirs == NULL || square == NULL) Bug("m_hessian(): received NULL input");
	if(dirs->nDims > 2 || square->nDims > 2) Bug("m_hessian(): inputs must be two-dimensional");
	
	nPartials = m_getsize(dirs, 1);
	nResults = m_getsize(dirs, 2);
	if(nPartials != m_getsize(square, 1)) Bug("m_hessian(): dimensions mismatch");
	if(nPartials != m_getsize(square, 2)) Bug("m_hessian(): central matrix must be square");

	if(m == mNewMatrix) m = m_new(mNewData, m2D, 1, nResults);
	else {
		if(m_getsize(m, 1) != 1) Bug("m_hessian(): output must have 1 row");
		if(m_getsize(m, 2) != nResults) Bug("m_hessian(): wrong number of output columns");
		if(m->vals == NULL) m_allocate(m);
	}
	if(!m_first(m)) return m;
	
	temp = m_mult(mNewMatrix, square, dirs);
	m_first(temp);
	m_first(dirs);
	for(j = 0; j < nResults; j++) {
		m_val(m) = 0.0;
		for(i = 0; i < nPartials; i++) {
			m_val(m) += m_val(temp) * m_val(dirs);
			m_next(temp);
			m_next(dirs);
		}
		m_next(m);
	}
	m_free(temp);
	return m;
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
matrix m_identity(matrix m, long size)
{
	unsigned short i, j;
	if(m == mNewMatrix) m = m_new(mNoData, m2D, size, size);
	else if(m->nDims > 2 || (size = m_getsize(m, 1)) != m_getsize(m, 2))
		Bug("m_identity(): matrix must be square and two-dimensional");

	m_first(m);
	if(m->vals == NULL) {
		m_allocate(m);
		if(size > 0) do m_val(m) = 1.0; while(m_step(m, 1, 1) && m_step(m, 2, 1));
	}
	else {
		for(i = 0; i < size; i++) {
			for(j = 0; j < size; j++) {
				m_val(m) = ((i == j) ? 1.0 : 0.0);
				m_next(m);
			}
		}
	}
	m_first(m);
	return m;
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
void m_init(void){M_LAST = NULL;}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
matrix m_inverse(matrix dest, matrix src)
{
	long i, j, siz, old_src_pos[mMaxDims], old_dest_pos[mMaxDims];
	double sign, det;
	
	if(src == NULL) Bug("m_inverse(): called with NULL matrix");
	if(src->nDims > 2 || (siz = m_getsize(src, 1)) != m_getsize(src, 2))
		Bug("m_inverse(): input must be a square 2D matrix");
	if(dest == mNewMatrix) {
		dest = m_new(mNewData, m2D, m_getsize(src, 1), m_getsize(src, 2));
		strcpy(dest->writeFormat, src->writeFormat);
	}
	if(dest->nDims > 2 || m_getsize(dest, 1) != siz || m_getsize(dest, 2) != siz)
		Bug("m_inverse(): dimensions of output matrix must match those of input");
	if(siz > 0 && src->vals == NULL) Bug("m_inverse(): called with unallocated matrix");
	if(dest->vals == NULL) m_allocate(dest);
	det = 0.0;
	m_getpoint(src, old_src_pos);
	m_getpoint(dest, old_dest_pos);
	for(i = 0; i < siz; i++) {
		m_setpoint(src, i, 0);
		m_setpoint(dest, 0, i);
		for(j = 0; j < siz; j++) {
			sign = (((i + j) % 2) ? -1.0 : 1.0);
			m_val(dest) = sign * m_cofactor(src, i, j);
			if(i == 0) det += m_val(src) * m_val(dest);
			m_step(src, 2, 1);
			m_step(dest, 1, 1);
		}
	}
	if(m_first(dest)) do m_val(dest) /= det; while(m_next(dest));
	m_asetpoint(dest, old_dest_pos);	
	m_asetpoint(src, old_src_pos);
	return dest;
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
long m_mass(matrix m)
{
	long i, nEls;
	if(m == NULL) return 0;
	for(nEls = 1, i = 0; i < mMaxDims; i++) nEls *= m->extents[i];
	return nEls;
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
void m_moveslice(matrix slice, matrix parent, unsigned short dimension, long distance)
{
	if(slice == NULL || parent == NULL || slice->vals == NULL) Bug("m_moveslice(): called with NULL or invalid matrix");
	if(dimension < 1 || dimension-- > mMaxDims) Bug("dimension argument to m_movelice() must be from 1 to %d", mMaxDims);
	slice->vals += parent->steps[dimension] * distance;
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
matrix m_mult(matrix result, matrix m1, matrix m2)
{
	long i, j, k, nEls, rows, cols, inner, m1Step, m2Step;
	double *m1Ptr, *m2Ptr, *resultPtr;
	
	if(m1 == NULL || m2 == NULL) Bug("m_mult() received one or more NULL matrices");
	if(m1->vals == NULL || m2->vals == NULL) Bug("m_mult() received one or more unallocated matrices");
	if(m_countdims(m1) > 2 || m_countdims(m2) > 2) Bug("m_mult() cannot multiply matrices of more than 2 dimensions");
	if((inner = m_getsize(m1, 2)) != m_getsize(m2, 1)) Bug("m_mult(): inner dimensions of matrices must match");
	rows = m_getsize(m1, 1); cols = m_getsize(m2, 2);
	if(result == mNewMatrix) result = m_new(mNewData, m2D, rows, cols);
	else {
		if(m_getsize(result, 1) != rows || m_getsize(result, 2) != cols)
			Bug("m_mult(): dimensions of pre-existing result matrix are incorrect");
		for(nEls = 1, i = 0; i < result->nDims; nEls *= result->extents[i], i++)
			if(result->steps[i] != nEls) break;
		if(i < result->nDims) Bug("m_mult(): if a pre-existing result matrix is used, it must be packed in the default manner");
		if(result->vals == NULL) m_allocate(result);
	}

	m1Step = m1->steps[0] - inner * m1->steps[1];
	m2Step = -inner * m2->steps[0];

	resultPtr = result->vals;
	m2Ptr = m2->vals;
	for(j = cols; j; j--) {
		m1Ptr = m1->vals;
		for(i = rows; i; i--) {
			*resultPtr = 0;
			for(k = inner; k; k--) {
				*resultPtr += *m1Ptr * *m2Ptr;
				m1Ptr += m1->steps[1];
				m2Ptr += m2->steps[0];
			}
			resultPtr++;
			m1Ptr += m1Step;
			m2Ptr += m2Step;
		}
		m2Ptr += m2->steps[1];
	}
	
	return result;
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
matrix m_new(double *vals, short nDims, ...)
{
	va_list ap;
	long i, extents[mMaxDims], steps[mMaxDims];
	boolean customPacking = FALSE;
	
	va_start(ap, nDims);	
	for(i = 0; i < mMaxDims; i++) {
		if(customPacking) steps[i] = ((i < nDims) ? va_arg(ap, long) : 1);
		extents[i] = ((i < nDims) ? va_arg(ap, long) : 1);
		if(i == 0 && !customPacking && extents[i] == mCustomPacking)
			{customPacking = TRUE; i--; continue;}		
	}
	va_end(ap);	
	
	return m_anew(vals, nDims, (customPacking ? steps : NULL), extents);
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
boolean m_next(matrix m)
{
	long i;
	
	if(m == NULL) return FALSE;
	for(i = 1; i <= m->nDims; i++)
		if(m_step(m, i, 1)) return (m->vals != NULL);
	return FALSE;
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
matrix m_normalize(matrix m, unsigned short dim)
{
	unsigned short i, siz;
	double len;
	boolean more;
	
	if(dim < 1 || dim > mMaxDims) Bug("m_normalize(): dimension must be from 1 to %d", mMaxDims);
	if(!m_first(m)) return m;
	m_swapdims(m, dim, 1);
	siz = m_getsize(m, dim);
	do {
		len = 0.0;
		do len += m_val(m) * m_val(m); while(m_step(m, 1, 1));
		len = sqrt(len);
		m_setpos(m, 1, 0);
		for(i = 0; i < siz; i++) {
			m_val(m) /= len;
			more = m_next(m);
		}
	} while(more);
	m_swapdims(m, dim, 1);
	return m;
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
int m_report(FILE *file, matrix m, char *colDelimStr, char *rowDelimStr)
{
	int nc = 0;
	boolean started;
	
	if(m->description && strlen(m->description) > 0) nc += fprintf(file, "#%s\n", m->description);
	if(m_mass(m) == 0 || !m_setpos(m, 1, 0) || !m_setpos(m, 2, 0)) return nc;
	do {
		started = FALSE;
		do {
			if(started) nc += fprintf(file, "%s", colDelimStr);
			nc += fprintf(file, m->writeFormat, m_val(m));
			started = TRUE;
		} while(m_step(m, 2, 1));
		nc += fprintf(file, "%s", rowDelimStr);
	} while(m_step(m, 1, 1));
	return nc;
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
matrix m_setoutput(matrix m, char *output, char *writeMode, char *description)
{
	if(m == NULL) return NULL;
	
	if(m->output) Destroy(m->output);
	if(output == NULL || strlen(output) == 0) m->output = NULL;
	else strcpy((m->output = New(char, strlen(output)+1)), output);
	
	if(writeMode != NULL) strncpy(m->writeMode, writeMode, 3);
	
	if(m->description) Destroy(m->description);
	if(description == NULL || strlen(description) == 0) m->description = NULL;
	else strcpy((m->description = New(char, strlen(description)+1)), description);
	
	return m;
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
boolean m_setpoint(matrix m, ...)
{
	va_list ap;
	long i, pos[mMaxDims];
	
	if(m == NULL) return FALSE;
	va_start(ap, m);
	for(i = 0; i < mMaxDims; i++) pos[i] = ((i < m->nDims) ? va_arg(ap, long) : 0);
	va_end(ap);
	return m_asetpoint(m, pos);
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
boolean m_setpos(matrix m, short dimension, long pos)
{
	boolean inRange;
	long siz;
	
	if(dimension < 1 || dimension-- > mMaxDims) Bug("dimension argument to m_setpos() must be from 1 to %d", mMaxDims);
	if(m == NULL) return FALSE;
	siz = m->extents[dimension];
	if(pos < 0) pos += siz;
	inRange = (pos >= 0 && pos < siz);
	if(siz == 0) pos = 0;
	else if(!inRange && (pos %= siz) < 0) pos += siz;
	m->index += m->steps[dimension] * (pos - m->positions[dimension]);
	m->positions[dimension] = pos;
	if(m->vals == NULL) return FALSE;
	return inRange;
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
matrix m_setsize(matrix m, short nDims, ...)
{
	va_list ap;
	long i, dims[mMaxDims];
	
	if(m == NULL) return NULL;
	va_start(ap, nDims);
	for(i = 0; i < mMaxDims; i++) dims[i] = ((i < nDims) ? va_arg(ap, long) : 1);
	va_end(ap);
	return m_asetsize(m, nDims, dims);
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
matrix m_setsteps(matrix m, ...)
{
	va_list ap;
	long i, steps[mMaxDims];
	
	if(m == NULL) return NULL;
	va_start(ap, m);
	for(i = 0; i < mMaxDims; i++) steps[i] = ((i < m->nDims) ? va_arg(ap, long) : 0);
	va_end(ap);
	return m_asetsteps(m, steps);
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
matrix m_slice(matrix m, short nDims, ...)
{
	va_list ap;
	long i, extents[mMaxDims];
	
	va_start(ap, nDims);
	for(i = 0; i < mMaxDims; i++) extents[i] = ((i < nDims) ? va_arg(ap, long) : 1);
	va_end(ap);
	return m_aslice(m, nDims, extents);
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
double *m_sortvals(double *vals, matrix m)
{
	long i = 0, nVals, old_pos[mMaxDims];
	
	if(m == NULL || m->vals == NULL) return NULL;
	if((nVals = m_mass(m)) == 0) return NULL;
	if(vals == NULL) vals = New(double, nVals);
	m_getpoint(m, old_pos);
	if(m_first(m)) do vals[i++] = m_val(m); while(m_next(m));
	m_asetpoint(m, old_pos);
	qsort(vals, nVals, sizeof(double), dcmp);
	return vals;
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
boolean m_step(matrix m, short dimension, long distance)
{
	long pos, siz;
	boolean returnVal;

	if(dimension < 1 || dimension-- > mMaxDims) Bug("dimension argument to m_step() must be from 1 to %d", mMaxDims);
	
	if(m == NULL) return FALSE;
	siz = m->extents[dimension];
	pos = m->positions[dimension] + distance;
	returnVal = (pos >= 0 && pos < siz);
	if(siz == 0) pos = 0;
	else if(!returnVal && (pos %= siz) < 0) pos += siz;
	m->index += (pos - m->positions[dimension]) * m->steps[dimension];
	m->positions[dimension] = pos;
	if(m->vals == NULL) return FALSE;
	return returnVal;
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
matrix m_swapdims(matrix m, short dim1, short dim2)
{
	long temp;
	if(dim1 < 1 || dim1-- > mMaxDims || dim2 < 1 || dim2-- > mMaxDims)
		Bug("dimension argument to m_swapdims() must be from 1 to %d", mMaxDims);
	if(m == NULL) return NULL;
	temp = m->steps[dim1];
	m->steps[dim1] = m->steps[dim2];
	m->steps[dim2] = temp;
	temp = m->extents[dim1];
	m->extents[dim1] = m->extents[dim2];
	m->extents[dim2] = temp;
	temp = m->positions[dim1];
	m->positions[dim1] = m->positions[dim2];
	m->positions[dim2] = temp;
	
	m->nDims = m_countdims(m);
	return m;
}
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
#ifdef MATLAB_MEX_FILE
matrix mxArray2matrix(mxArray * mx, char *desc)
{
	matrix m = NULL;
	short nDims, i;
	long extents[mMaxDims];
	const int *d;
	
	if((nDims = mxGetNumberOfDimensions(mx)) > mMaxDims) JError("%s has too many dimensions", desc);
	if(mxIsSparse(mx) || !mxIsDouble(mx)) JError("%s must be a full double matrix", desc);
	d = mxGetDimensions(mx);
	for(i = 0; i < mMaxDims; i++) extents[i] = ((i < nDims) ? d[i] : 1);
	m = m_anew(mNewData, nDims, NULL, extents);
	if(m->vals) CopyVals(m->vals, mxGetPr(mx), m_mass(m), sizeof(double));
	return m;
}
#endif /* MATLAB_MEX_FILE */
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
/* //////////////////////////////////////////////////////////////////////////////////////////////// */
#endif /* __MATRICES_C__ */