File: Bayesian.pm

package info (click to toggle)
psortb 3.0.6%2Bdfsg-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 121,044 kB
  • sloc: perl: 3,652; ansic: 698; cpp: 338; sh: 27; makefile: 23
file content (153 lines) | stat: -rw-r--r-- 4,816 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
package Bio::Tools::PSort::Module::Bayesian;

# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.

# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.

# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA

# OVERVIEW

# PSORT-B is described in Gardy, J.L. et al (2003). PSORT-B: 
# improving protein subcellular localization prediction for 
# Gram-negative bacteria. Nuc Acids Res 31(13):3613-17. Please 
# cite this publication if you use PSORT-B in your research.

# The standalone version of PSORT-B is distributed under the GNU 
# General Public Licence (Gnu GPL) (see the LICENSE file included 
# in the download) by the Brinkman Laboratory, Simon Fraser 
# University, Burnaby, B.C., Canada.

# This standalone version of PSORT-B has initially been developed 
# for the Linux environment.

# This document describes the installation of the PSORT-B version 
# 1.1.4 command line program and the PSORT-B server packages. For 
# most purposes, following the installation instructions for the 
# command line version will be sufficient.

# For further information, please contact psort-mail@sfu.ca.


use Bio::Tools::PSort::Module::OutputI;
use Bio::Tools::PSort::Report::Result;

use Data::Dumper;

use vars qw(@ISA);
@ISA = qw(Bio::Tools::PSort::Module::OutputI);

use strict;

sub new {
  my ($class, @args) = @_;
  my $self = $class->SUPER::new(@args);

  my ($mfile, $prior) = $self->_rearrange([qw(MODEL PRIOR)], @args);

  $self->throw("Bayesian model file not found: $mfile") if(! -e $mfile);

  # Load the Bayesian model produced by the training program.
  open(MFILE, $mfile) || $self->throw("error: open $mfile: $!");
  my $model = join('', <MFILE>);
  close(MFILE) || $self->throw("error: close $model: $!");

  $self->{model} = eval($model);
  $self->throw("Error loading Bayesian model: $@") if($@);

  # Store any prior probabilities provided to us.  (If none provided,
  # each localization will be assumed to have an equal chance of
  # appearing.)
  if(defined($prior)) {
    $self->throw("Prior probabilties must be a hash reference")
      if(ref($prior) ne "HASH");
    $self->{prior} = $prior;
  } else {
    # If we weren't provided a list of prior probabilities, figure out all the
    # localizations we're going to be making predictions for.
    for my $anal (keys(%{$self->{model}})) {
      for my $loc (keys(%{$self->{model}->{$anal}})) {
	$self->{prior}->{$loc} = 1;
      }
    }
  }

  return $self;
}

sub run {
  my ($self, $seq, %res) = @_;
  my (%preds, @res);

  # Initialize to the prior probabilities of getting each localization.
  %preds = %{$self->{prior}};

  # This deals with SCL-BLASTe and 100% protein matches
  if($res{'SCL-BLASTe-'} || $res{'SCL-BLASTe+'} || $res{'SCL-BLASTe_a'}) {
      my $res;
      if($res{'SCL-BLASTe-'}) {
	  ($res) = @{$res{'SCL-BLASTe-'}};
      } elsif($res{'SCL-BLASTe+'}) {
	  ($res) = @{$res{'SCL-BLASTe+'}};
      } else {
	  ($res) = @{$res{'SCL-BLASTe_a'}};
      }
      my @locs = $res->localization;
      if(!($locs[0] eq 'Unknown')) {
	  my %scores = ();
	  $scores{$_} = 1
	      for(@locs);
	  push(@res, new Bio::Tools::PSort::Report::Result(-loc => $_, -score => ($scores{$_}?1:0)))
	      for(keys(%preds));

	  return sort({$b->score <=> $a->score} @res);
      }
  }

  for my $anal (keys(%res)) {
    my (@res) = @{$res{$anal}};

    # Ensure that the results from each analysis are the correct object type.
    for my $r (@res) {
      $self->throw("Not a Bio::Tools::PSort::Report::Result object")
	if((! ref($r)) && (! $r->isa("Bio::Tools::PSort::Report::Result")));
    }

    for my $res (@res) {
      # Get the prediction for the analysis.
      my @locs = $res->localization;

      for my $pred (@locs) {
	next if($pred eq "Unknown");
	# Update the probabilities for each location.
	$preds{$_} *= $self->{model}->{$anal}->{$_}->{$pred}
	  for(keys(%preds));
      }
    }
  }

  # Scale the scores so they all sum to 1.0
  my ($tot, $scale);
  $tot += $_ for(values(%preds));
  if($tot) {
    $scale = 1/$tot;
    $preds{$_} *= $scale for(keys(%preds));
  }

  # Sort the scores so the highest comes first.
  push(@res, new Bio::Tools::PSort::Report::Result(-loc => $_, -score => $preds{$_}))
    for(keys(%preds));

  return sort({$b->score <=> $a->score} @res);
}

1;