1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
package Bio::Tools::Signal;
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
# OVERVIEW
# PSORT-B is described in Gardy, J.L. et al (2003). PSORT-B:
# improving protein subcellular localization prediction for
# Gram-negative bacteria. Nuc Acids Res 31(13):3613-17. Please
# cite this publication if you use PSORT-B in your research.
# The standalone version of PSORT-B is distributed under the GNU
# General Public Licence (Gnu GPL) (see the LICENSE file included
# in the download) by the Brinkman Laboratory, Simon Fraser
# University, Burnaby, B.C., Canada.
# This standalone version of PSORT-B has initially been developed
# for the Linux environment.
# This document describes the installation of the PSORT-B version
# 1.1.4 command line program and the PSORT-B server packages. For
# most purposes, following the installation instructions for the
# command line version will be sufficient.
# For further information, please contact psort-mail@sfu.ca.
use Bio::Tools::Signal::Report;
use Bio::Tools::PSort::SVMLoc::DataSet;
use Bio::Tools::PSort::SVMLoc;
use Algorithm::HMM;
use Bio::Root::Root;
use strict;
# SubLoc localizations.
my %LOCS = (Cytoplasmic => 0, InnerMembrane => 1, Periplasmic => 2,
OuterMembrane => 3, Extracellular => 4, Mitochondrial => 5,
Nuclear => 6, Unknown => 7);
my %LOCSR = (0 => 'Cytoplasmic', 1 => 'InnerMembrane', 2 => 'Periplasmic',
3 => 'OuterMembrane', 4 => 'Extracellular', 5 => 'Mitochondrial',
6 => 'Nuclear', 7 => 'Unknown');
use vars qw(@ISA $VERSION);
@ISA = qw(Bio::Root::Root);
$VERSION = '0.01';
# List of all the amino acid symbols.
my @AA = qw(V L I M F W Y G A P S T C H R K Q E N D);
sub new {
my ($class, @args) = @_;
my $self = $class->SUPER::new(@args);
# Get the model filenames and cutoff values, throwing an error if they
# weren't provided.
my ($svm, $hmm, $svmcutoff, $hmmcutoff)
= $self->_rearrange(["SVM", "HMM", "SVMCUTOFF", "HMMCUTOFF"], @args);
$self->throw("SVM model not specified") unless $svm;
$self->throw("HMM model not specified") unless $hmm;
# Create the SVM, throwing an error if we failed instantiate it.
eval { $self->{svm} = new Bio::Tools::PSort::SVMLoc(Model => $svm); };
$self->throw($@) if($@);
# Create the HMM, throwing an error if we failed instantiate it.
eval { $self->{hmm} = new Algorithm::HMM(Model => $hmm); };
$self->throw($@) if($@);
# Set the default cutoff value for the HMM and SVM.
$self->{svmcutoff} = (defined($svmcutoff)) ? ($svmcutoff + 0) : 0.05;
$self->{hmmcutoff} = (defined($hmmcutoff)) ? ($hmmcutoff + 0) : 0.01;
return $self;
}
sub analyze {
my ($self, $seq) = @_;
my (%count, $subseq, $len, $ds, $loc, $res);
# Make sure that we received a sequence object.
$self->throw("Not a Bio::Seq object")
if((! ref($seq)) || (! $seq->isa("Bio::SeqI")));
$res = new Bio::Tools::Signal::Report();
# We want at most the first 70 amino acids to analyze.
$len = ($seq->length() > 70) ? 70 : $seq->length();
$subseq = $seq->subseq(1, $len);
# Run the sub-sequence through the HMM.
my $rep = $self->{hmm}->search($subseq);
my $hit = ($rep->domain_hits())[0];
if($hit) {
# Get the pvalue for the hit, and return immediately if we satisfy the
# HMM cutoff. (ie. We're pretty damn sure this looks like a cleavage
# site.
my $pval = $hit->pvalue;
$res->hmm_score($hit->score);
$res->hmm_pvalue($pval);
}
# Check for the lipoprotein motif.
my $lip = $self->_is_prokar_lipoprotein($subseq);
$loc = $lip ? $self->_localization($subseq, $lip) : 'Unknown';
$res->is_lipoprotein($lip);
$res->localization($loc);
# Do an amino acid composition from the start of the sequence to five
# amino acids after the predicted clevage point.
my $ssubseq = substr($subseq, 0, $hit->seq_to);
my $ssublen = length($ssubseq);
# Count the occurences of each amino acid in the sub-sub-sequence.
$count{uc($_)}++ for(split('', $ssubseq));
# Create the dataset with all of the elements.
$ds = new Bio::Tools::PSort::SVMLoc::DataSet(Label => 1);
$ds->attribute($_, $count{$AA[$_ - 1]}/$ssublen || 0) for(1..scalar(@AA));
$res->svm_prediction($self->{svm}->predict($ds));
return $res;
}
sub _is_prokar_lipoprotein {
my ($self, $seq) = @_;
# Check for the motif (Prosite ID PS00013).
if($seq =~ /[^.+DERK]{6}[LIVMFWSTAG]{2}[LIVMFYSTAGCQ][AGS]C/ig) {
# Check to see where the cysteine residue was and whether or not
# there was a charged residue (Lys or Arg) in the first seven residues.
my $p = pos($seq);
if((($p > 15) && ($p <= 36)) && (substr($seq, 0, 7) =~ /[RK]/)) {
return $p if(substr($seq, $p + 1, 2) =~ /[DE]/);
}
}
return 0;
}
sub _localization {
my ($self, $seq, $pos) = @_;
return substr($seq, $pos+1, 2) =~ /[DE]/ ? 'CytoplasmicMembrane': 'OuterMembrane';
}
sub train {
my ($self, $data, $opts) = @_;
my @tset;
# Ensure we have at least 2 localizations to sort to.
$self->throw("Training set must have > 1 localization")
if(keys(%{$data}) < 2);
# Create a new SVM.
my $svm = new Bio::Tools::PSort::SVMLoc(Type => 'C-SVC', Kernel => 'linear');
$self->throw("Error initializing SVM") if(! $svm);
foreach my $loc (keys(%{$data})) {
# Ensure we have a valid localization.
$self->throw("Unknown localization: $_") if(! exists($data->{$loc}));
# Ensure we have an array ref of something...
$self->throw("Training set must be an array of Bio::Seq objects")
if(ref($data->{$loc}) ne "ARRAY");
for(@{$data->{$loc}}) {
my (%count, $len, $ds);
# Ensure we recieved a set of Bio::Seq objects.
$self->throw("Not a Bio::Seq object") if(ref($_) ne "Bio::Seq");
# Count the occurences of each amino acid in the sequence.
$count{uc($_)}++ for(split('', $_->seq()));
$len = $_->length();
if($len) {
# Create a new dataset and add it to the list.
$ds = new Bio::Tools::PSort::SVMLoc::DataSet(Label => $LOCS{$loc});
$ds->attribute($_, ($count{$AA[$_-1]} || 0)/$len) for(1..scalar(@AA));
push(@tset, $ds);
}
}
}
$svm->train(@tset);
$svm->save($opts->{Filename});
}
=head1 NAME
=head1 SYNOPSIS
=head1 DESCRIPTION
=head1 CONSTRUCTOR
=head1 METHODS
=head1 AUTHOR
Cory Spencer <cspencer@sfu.ca>
=head1 Maintainer
Matthew Laird <lairdm@sfu.ca>
=head1 SEE ALSO
=head1 ACKNOWLEGEMENTS
=cut
1;
|