1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445
|
@node Basic Concepts
@chapter Basic Concepts
This chapter introduces basic data structures and other concepts
needed for developing in PSPP.
@menu
* Values::
* Input and Output Formats::
* User-Missing Values::
* Value Labels::
* Variables::
* Dictionaries::
* Coding Conventions::
* Cases::
* Data Sets::
* Pools::
@end menu
@node Values
@section Values
@cindex value
The unit of data in PSPP is a @dfn{value}.
@cindex width
@cindex string value
@cindex numeric value
@cindex MAX_STRING
Values are classified by @dfn{type} and @dfn{width}. The
type of a value is either @dfn{numeric} or @dfn{string} (sometimes
called alphanumeric). The width of a string value ranges from 1 to
@code{MAX_STRING} bytes. The width of a numeric value is artificially
defined to be 0; thus, the type of a value can be inferred from its
width.
Some support is provided for working with value types and widths, in
@file{data/val-type.h}:
@deftypefn Macro int MAX_STRING
Maximum width of a string value, in bytes, currently 32,767.
@end deftypefn
@deftypefun bool val_type_is_valid (enum val_type @var{val_type})
Returns true if @var{val_type} is a valid value type, that is,
either @code{VAL_NUMERIC} or @code{VAL_STRING}. Useful for
assertions.
@end deftypefun
@deftypefun {enum val_type} val_type_from_width (int @var{width})
Returns @code{VAL_NUMERIC} if @var{width} is 0 and thus represents the
width of a numeric value, otherwise @code{VAL_STRING} to indicate that
@var{width} is the width of a string value.
@end deftypefun
The following subsections describe how values of each type are
represented.
@menu
* Numeric Values::
* String Values::
* Runtime Typed Values::
@end menu
@node Numeric Values
@subsection Numeric Values
A value known to be numeric at compile time is represented as a
@code{double}. PSPP provides three values of @code{double} for
special purposes, defined in @file{data/val-type.h}:
@deftypefn Macro double SYSMIS
The @dfn{system-missing value}, used to represent a datum whose true
value is unknown, such as a survey question that was not answered by
the respondent, or undefined, such as the result of division by zero.
PSPP propagates the system-missing value through calculations and
compensates for missing values in statistical analyses. @xref{Missing
Observations,,,pspp, PSPP Users Guide}, for a PSPP user's view of
missing values.
PSPP currently defines @code{SYSMIS} as @code{-DBL_MAX}, that is, the
greatest finite negative value of @code{double}. It is best not to
depend on this definition, because PSPP may transition to using an
IEEE NaN (not a number) instead at some point in the future.
@end deftypefn
@deftypefn Macro double LOWEST
@deftypefnx Macro double HIGHEST
The greatest finite negative (except for @code{SYSMIS}) and positive
values of @code{double}, respectively. These values do not ordinarily
appear in user data files. Instead, they are used to implement
endpoints of open-ended ranges that are occasionally permitted in PSPP
syntax, e.g.@: @code{5 THRU HI} as a range of missing values
(@pxref{MISSING VALUES,,,pspp, PSPP Users Guide}).
@end deftypefn
@node String Values
@subsection String Values
A value known at compile time to have string type is represented as an
array of @code{char}. String values do not necessarily represent
readable text strings and may contain arbitrary 8-bit data, including
null bytes, control codes, and bytes with the high bit set. Thus,
string values are not null-terminated strings, but rather opaque
arrays of bytes.
@code{SYSMIS}, @code{LOWEST}, and @code{HIGHEST} have no equivalents
as string values. Usually, PSPP fills an unknown or undefined string
values with spaces, but PSPP does not treat such a string as a special
case when it processes it later.
@cindex MAX_STRING
@code{MAX_STRING}, the maximum length of a string value, is defined in
@file{data/val-type.h}.
@node Runtime Typed Values
@subsection Runtime Typed Values
When a value's type is only known at runtime, it is often represented
as a @union{value}, defined in @file{data/value.h}. A @union{value}
does not identify the type or width of the data it contains. Code
that works with @union{values}s must therefore have external knowledge
of its content, often through the type and width of a
@struct{variable} (@pxref{Variables}).
@union{value} has one member that clients are permitted to access
directly, a @code{double} named @samp{f} that stores the content of a
numeric @union{value}. It has other members that store the content of
string @union{value}, but client code should use accessor functions
instead of referring to these directly.
PSPP provides some functions for working with @union{value}s. The
most useful are described below. To use these functions, recall that
a numeric value has a width of 0.
@deftypefun void value_init (union value *@var{value}, int @var{width})
Initializes @var{value} as a value of the given @var{width}. After
initialization, the data in @var{value} are indeterminate; the caller
is responsible for storing initial data in it.
@end deftypefun
@deftypefun void value_destroy (union value *@var{value}, int @var{width})
Frees auxiliary storage associated with @var{value}, which must have
the given @var{width}.
@end deftypefun
@deftypefun bool value_needs_init (int @var{width})
For some widths, @func{value_init} and @func{value_destroy} do not
actually do anything, because no additional storage is needed beyond
the size of @union{value}. This function returns true if @var{width}
is such a width, which case there is no actual need to call those
functions. This can be a useful optimization if a large number of
@union{value}s of such a width are to be initialized or destroyed.
This function returns false if @func{value_init} and
@func{value_destroy} are actually required for the given @var{width}.
@end deftypefun
@deftypefun double value_num (const union value *@var{value})
Returns the numeric value in @var{value}, which must have been
initialized as a numeric value. Equivalent to @code{@var{value}->f}.
@end deftypefun
@deftypefun {const char *} value_str (const union value *@var{value}, int @var{width})
@deftypefunx {char *} value_str_rw (union value *@var{value}, int @var{width})
Returns the string value in @var{value}, which must have been
initialized with positive width @var{width}. The string returned is
not null-terminated. Only @var{width} bytes of returned data may be
accessed.
The two different functions exist only for @code{const}-correctness.
Otherwise they are identical.
It is important that @var{width} be the correct value that was passed
to @func{value_init}. Passing a smaller or larger value (e.g.@:
because that number of bytes will be accessed) will not always work
and should be avoided.
@end deftypefun
@deftypefun void value_copy (union value *@var{dst}, @
const union value *@var{src}, @
int @var{width})
Copies the contents of @union{value} @var{src} to @var{dst}. Both
@var{dst} and @var{src} must have been initialized with the specified
@var{width}.
@end deftypefun
@deftypefun void value_set_missing (union value *@var{value}, int @var{width})
Sets @var{value} to @code{SYSMIS} if it is numeric or to all spaces if
it is alphanumeric, according to @var{width}. @var{value} must have
been initialized with the specified @var{width}.
@end deftypefun
@anchor{value_is_resizable}
@deftypefun bool value_is_resizable (const union value *@var{value}, int @var{old_width}, int @var{new_width})
Determines whether @var{value}, which must have been initialized with
the specified @var{old_width}, may be resized to @var{new_width}.
Resizing is possible if the following criteria are met. First,
@var{old_width} and @var{new_width} must be both numeric or both
string widths. Second, if @var{new_width} is a short string width and
less than @var{old_width}, resizing is allowed only if bytes
@var{new_width} through @var{old_width} in @var{value} contain only
spaces.
These rules are part of those used by @func{mv_is_resizable} and
@func{val_labs_can_set_width}.
@end deftypefun
@deftypefun void value_resize (union value *@var{value}, int @var{old_width}, int @var{new_width})
Resizes @var{value} from @var{old_width} to @var{new_width}, which
must be allowed by the rules stated above. @var{value} must have been
initialized with the specified @var{old_width} before calling this
function. After resizing, @var{value} has width @var{new_width}.
If @var{new_width} is greater than @var{old_width}, @var{value} will
be padded on the right with spaces to the new width. If
@var{new_width} is less than @var{old_width}, the rightmost bytes of
@var{value} are truncated.
@end deftypefun
@deftypefun bool value_equal (const union value *@var{a}, const union value *@var{b}, int @var{width})
Compares of @var{a} and @var{b}, which must both have width
@var{width}. Returns true if their contents are the same, false if
they differ.
@end deftypefun
@deftypefun int value_compare_3way (const union value *@var{a}, const union value *@var{b}, int @var{width})
Compares of @var{a} and @var{b}, which must both have width
@var{width}. Returns -1 if @var{a} is less than @var{b}, 0 if they
are equal, or 1 if @var{a} is greater than @var{b}.
Numeric values are compared numerically, with @code{SYSMIS} comparing
less than any real number. String values are compared
lexicographically byte-by-byte.
@end deftypefun
@deftypefun size_t value_hash (const union value *@var{value}, int @var{width}, unsigned int @var{basis})
Computes and returns a hash of @var{value}, which must have the
specified @var{width}. The value in @var{basis} is folded into the
hash.
@end deftypefun
@node Input and Output Formats
@section Input and Output Formats
Input and output formats specify how to convert data fields to and
from data values (@pxref{Input and Output Formats,,,pspp, PSPP Users
Guide}). PSPP uses @struct{fmt_spec} to represent input and output
formats.
Function prototypes and other declarations related to formats are in
the @file{<data/format.h>} header.
@deftp {Structure} {struct fmt_spec}
An input or output format, with the following members:
@table @code
@item enum fmt_type type
The format type (see below).
@item int w
Field width, in bytes. The width of numeric fields is always between
1 and 40 bytes, and the width of string fields is always between 1 and
65534 bytes. However, many individual types of formats place stricter
limits on field width (see @ref{fmt_max_input_width},
@ref{fmt_max_output_width}).
@item int d
Number of decimal places, in character positions. For format types
that do not allow decimal places to be specified, this value must be
0. Format types that do allow decimal places have type-specific and
often width-specific restrictions on @code{d} (see
@ref{fmt_max_input_decimals}, @ref{fmt_max_output_decimals}).
@end table
@end deftp
@deftp {Enumeration} {enum fmt_type}
An enumerated type representing an input or output format type. Each
PSPP input and output format has a corresponding enumeration constant
prefixed by @samp{FMT}: @code{FMT_F}, @code{FMT_COMMA},
@code{FMT_DOT}, and so on.
@end deftp
The following sections describe functions for manipulating formats and
the data in fields represented by formats.
@menu
* Constructing and Verifying Formats::
* Format Utility Functions::
* Obtaining Properties of Format Types::
* Numeric Formatting Styles::
* Formatted Data Input and Output::
@end menu
@node Constructing and Verifying Formats
@subsection Constructing and Verifying Formats
These functions construct @struct{fmt_spec}s and verify that they are
valid.
@deftypefun {struct fmt_spec} fmt_for_input (enum fmt_type @var{type}, int @var{w}, int @var{d})
@deftypefunx {struct fmt_spec} fmt_for_output (enum fmt_type @var{type}, int @var{w}, int @var{d})
Constructs a @struct{fmt_spec} with the given @var{type}, @var{w}, and
@var{d}, asserts that the result is a valid input (or output) format,
and returns it.
@end deftypefun
@anchor{fmt_for_output_from_input}
@deftypefun {struct fmt_spec} fmt_for_output_from_input (const struct fmt_spec *@var{input})
Given @var{input}, which must be a valid input format, returns the
equivalent output format. @xref{Input and Output Formats,,,pspp, PSPP
Users Guide}, for the rules for converting input formats into output
formats.
@end deftypefun
@deftypefun {struct fmt_spec} fmt_default_for_width (int @var{width})
Returns the default output format for a variable of the given
@var{width}. For a numeric variable, this is F8.2 format; for a
string variable, it is the A format of the given @var{width}.
@end deftypefun
The following functions check whether a @struct{fmt_spec} is valid for
various uses and return true if so, false otherwise. When any of them
returns false, it also outputs an explanatory error message using
@func{msg}. To suppress error output, enclose a call to one of these
functions by a @func{msg_disable}/@func{msg_enable} pair.
@deftypefun bool fmt_check (const struct fmt_spec *@var{format}, bool @var{for_input})
@deftypefunx bool fmt_check_input (const struct fmt_spec *@var{format})
@deftypefunx bool fmt_check_output (const struct fmt_spec *@var{format})
Checks whether @var{format} is a valid input format (for
@func{fmt_check_input}, or @func{fmt_check} if @var{for_input}) or
output format (for @func{fmt_check_output}, or @func{fmt_check} if not
@var{for_input}).
@end deftypefun
@deftypefun bool fmt_check_type_compat (const struct fmt_spec *@var{format}, enum val_type @var{type})
Checks whether @var{format} matches the value type @var{type}, that
is, if @var{type} is @code{VAL_NUMERIC} and @var{format} is a numeric
format or @var{type} is @code{VAL_STRING} and @var{format} is a string
format.
@end deftypefun
@deftypefun bool fmt_check_width_compat (const struct fmt_spec *@var{format}, int @var{width})
Checks whether @var{format} may be used as an output format for a
value of the given @var{width}.
@func{fmt_var_width}, described in
the following section, can be also be used to determine the value
width needed by a format.
@end deftypefun
@node Format Utility Functions
@subsection Format Utility Functions
These functions work with @struct{fmt_spec}s.
@deftypefun int fmt_var_width (const struct fmt_spec *@var{format})
Returns the width for values associated with @var{format}. If
@var{format} is a numeric format, the width is 0; if @var{format} is
an A format, then the width @code{@var{format}->w}; otherwise,
@var{format} is an AHEX format and its width is @code{@var{format}->w
/ 2}.
@end deftypefun
@deftypefun char *fmt_to_string (const struct fmt_spec *@var{format}, char @var{s}[FMT_STRING_LEN_MAX + 1])
Converts @var{format} to a human-readable format specifier in @var{s}
and returns @var{s}. @var{format} need not be a valid input or output
format specifier, e.g.@: it is allowed to have an excess width or
decimal places. In particular, if @var{format} has decimals, they are
included in the output string, even if @var{format}'s type does not
allow decimals, to allow accurately presenting incorrect formats to
the user.
@end deftypefun
@deftypefun bool fmt_equal (const struct fmt_spec *@var{a}, const struct fmt_spec *@var{b})
Compares @var{a} and @var{b} memberwise and returns true if they are
identical, false otherwise. @var{format} need not be a valid input or
output format specifier.
@end deftypefun
@deftypefun void fmt_resize (struct fmt_spec *@var{fmt}, int @var{width})
Sets the width of @var{fmt} to a valid format for a @union{value} of size @var{width}.
@end deftypefun
@node Obtaining Properties of Format Types
@subsection Obtaining Properties of Format Types
These functions work with @enum{fmt_type}s instead of the higher-level
@struct{fmt_spec}s. Their primary purpose is to report properties of
each possible format type, which in turn allows clients to abstract
away many of the details of the very heterogeneous requirements of
each format type.
The first group of functions works with format type names.
@deftypefun const char *fmt_name (enum fmt_type @var{type})
Returns the name for the given @var{type}, e.g.@: @code{"COMMA"} for
@code{FMT_COMMA}.
@end deftypefun
@deftypefun bool fmt_from_name (const char *@var{name}, enum fmt_type *@var{type})
Tries to find the @enum{fmt_type} associated with @var{name}. If
successful, sets @code{*@var{type}} to the type and returns true;
otherwise, returns false without modifying @code{*@var{type}}.
@end deftypefun
The functions below query basic limits on width and decimal places for
each kind of format.
@deftypefun bool fmt_takes_decimals (enum fmt_type @var{type})
Returns true if a format of the given @var{type} is allowed to have a
nonzero number of decimal places (the @code{d} member of
@struct{fmt_spec}), false if not.
@end deftypefun
@anchor{fmt_min_input_width}
@anchor{fmt_max_input_width}
@anchor{fmt_min_output_width}
@anchor{fmt_max_output_width}
@deftypefun int fmt_min_input_width (enum fmt_type @var{type})
@deftypefunx int fmt_max_input_width (enum fmt_type @var{type})
@deftypefunx int fmt_min_output_width (enum fmt_type @var{type})
@deftypefunx int fmt_max_output_width (enum fmt_type @var{type})
Returns the minimum or maximum width (the @code{w} member of
@struct{fmt_spec}) allowed for an input or output format of the
specified @var{type}.
@end deftypefun
@anchor{fmt_max_input_decimals}
@anchor{fmt_max_output_decimals}
@deftypefun int fmt_max_input_decimals (enum fmt_type @var{type}, int @var{width})
@deftypefunx int fmt_max_output_decimals (enum fmt_type @var{type}, int @var{width})
Returns the maximum number of decimal places allowed for an input or
output format, respectively, of the given @var{type} and @var{width}.
Returns 0 if the specified @var{type} does not allow any decimal
places or if @var{width} is too narrow to allow decimal places.
@end deftypefun
@deftypefun int fmt_step_width (enum fmt_type @var{type})
Returns the ``width step'' for a @struct{fmt_spec} of the given
@var{type}. A @struct{fmt_spec}'s width must be a multiple of its
type's width step. Most format types have a width step of 1, so that
their formats' widths may be any integer within the valid range, but
hexadecimal numeric formats and AHEX string formats have a width step
of 2.
@end deftypefun
These functions allow clients to broadly determine how each kind of
input or output format behaves.
@deftypefun bool fmt_is_string (enum fmt_type @var{type})
@deftypefunx bool fmt_is_numeric (enum fmt_type @var{type})
Returns true if @var{type} is a format for numeric or string values,
respectively, false otherwise.
@end deftypefun
@deftypefun enum fmt_category fmt_get_category (enum fmt_type @var{type})
Returns the category within which @var{type} falls.
@deftp {Enumeration} {enum fmt_category}
A group of format types. Format type categories correspond to the
input and output categories described in the PSPP user documentation
(@pxref{Input and Output Formats,,,pspp, PSPP Users Guide}).
Each format is in exactly one category. The categories have bitwise
disjoint values to make it easy to test whether a format type is in
one of multiple categories, e.g.@:
@example
if (fmt_get_category (type) & (FMT_CAT_DATE | FMT_CAT_TIME))
@{
/* @dots{}@r{@code{type} is a date or time format}@dots{} */
@}
@end example
The format categories are:
@table @code
@item FMT_CAT_BASIC
Basic numeric formats.
@item FMT_CAT_CUSTOM
Custom currency formats.
@item FMT_CAT_LEGACY
Legacy numeric formats.
@item FMT_CAT_BINARY
Binary formats.
@item FMT_CAT_HEXADECIMAL
Hexadecimal formats.
@item FMT_CAT_DATE
Date formats.
@item FMT_CAT_TIME
Time formats.
@item FMT_CAT_DATE_COMPONENT
Date component formats.
@item FMT_CAT_STRING
String formats.
@end table
@end deftp
@end deftypefun
The PSPP input and output routines use the following pair of functions
to convert @enum{fmt_type}s to and from the separate set of codes used
in system and portable files:
@deftypefun int fmt_to_io (enum fmt_type @var{type})
Returns the format code used in system and portable files that
corresponds to @var{type}.
@end deftypefun
@deftypefun bool fmt_from_io (int @var{io}, enum fmt_type *@var{type})
Converts @var{io}, a format code used in system and portable files,
into a @enum{fmt_type} in @code{*@var{type}}. Returns true if
successful, false if @var{io} is not valid.
@end deftypefun
These functions reflect the relationship between input and output
formats.
@deftypefun enum fmt_type fmt_input_to_output (enum fmt_type @var{type})
Returns the output format type that is used by default by DATA LIST
and other input procedures when @var{type} is specified as an input
format. The conversion from input format to output format is more
complicated than simply changing the format.
@xref{fmt_for_output_from_input}, for a function that performs the
entire conversion.
@end deftypefun
@deftypefun bool fmt_usable_for_input (enum fmt_type @var{type})
Returns true if @var{type} may be used as an input format type, false
otherwise. The custom currency formats, in particular, may be used
for output but not for input.
All format types are valid for output.
@end deftypefun
The final group of format type property functions obtain
human-readable templates that illustrate the formats graphically.
@deftypefun const char *fmt_date_template (enum fmt_type @var{type})
Returns a formatting template for @var{type}, which must be a date or
time format type. These formats are used by @func{data_in} and
@func{data_out} to guide parsing and formatting date and time data.
@end deftypefun
@deftypefun char *fmt_dollar_template (const struct fmt_spec *@var{format})
Returns a string of the form @code{$#,###.##} according to
@var{format}, which must be of type @code{FMT_DOLLAR}. The caller
must free the string with @code{free}.
@end deftypefun
@node Numeric Formatting Styles
@subsection Numeric Formatting Styles
Each of the basic numeric formats (F, E, COMMA, DOT, DOLLAR, PCT) and
custom currency formats (CCA, CCB, CCC, CCD, CCE) has an associated
numeric formatting style, represented by @struct{fmt_number_style}.
Input and output conversion of formats that have numeric styles is
determined mainly by the style, although the formatting rules have
special cases that are not represented within the style.
@deftp {Structure} {struct fmt_number_style}
A structure type with the following members:
@table @code
@item struct substring neg_prefix
@itemx struct substring prefix
@itemx struct substring suffix
@itemx struct substring neg_suffix
A set of strings used a prefix to negative numbers, a prefix to every
number, a suffix to every number, and a suffix to negative numbers,
respectively. Each of these strings is no more than
@code{FMT_STYLE_AFFIX_MAX} bytes (currently 16) bytes in length.
These strings must be freed with @func{ss_dealloc} when no longer
needed.
@item decimal
The character used as a decimal point. It must be either @samp{.} or
@samp{,}.
@item grouping
The character used for grouping digits to the left of the decimal
point. It may be @samp{.} or @samp{,}, in which case it must not be
equal to @code{decimal}, or it may be set to 0 to disable grouping.
@end table
@end deftp
The following functions are provided for working with numeric
formatting styles.
@deftypefun void fmt_number_style_init (struct fmt_number_style *@var{style})
Initialises a @struct{fmt_number_style} with all of the
prefixes and suffixes set to the empty string, @samp{.} as the decimal
point character, and grouping disables.
@end deftypefun
@deftypefun void fmt_number_style_destroy (struct fmt_number_style *@var{style})
Destroys @var{style}, freeing its storage.
@end deftypefun
@deftypefun {struct fmt_number_style} *fmt_create (void)
A function which creates an array of all the styles used by pspp, and
calls fmt_number_style_init on each of them.
@end deftypefun
@deftypefun void fmt_done (struct fmt_number_style *@var{styles})
A wrapper function which takes an array of @struct{fmt_number_style}, calls
fmt_number_style_destroy on each of them, and then frees the array.
@end deftypefun
@deftypefun int fmt_affix_width (const struct fmt_number_style *@var{style})
Returns the total length of @var{style}'s @code{prefix} and @code{suffix}.
@end deftypefun
@deftypefun int fmt_neg_affix_width (const struct fmt_number_style *@var{style})
Returns the total length of @var{style}'s @code{neg_prefix} and
@code{neg_suffix}.
@end deftypefun
PSPP maintains a global set of number styles for each of the basic
numeric formats and custom currency formats. The following functions
work with these global styles:
@deftypefun {const struct fmt_number_style *} fmt_get_style (enum fmt_type @var{type})
Returns the numeric style for the given format @var{type}.
@end deftypefun
@deftypefun {const char *} fmt_name (enum fmt_type @var{type})
Returns the name of the given format @var{type}.
@end deftypefun
@node Formatted Data Input and Output
@subsection Formatted Data Input and Output
These functions provide the ability to convert data fields into
@union{value}s and vice versa.
@deftypefun bool data_in (struct substring @var{input}, const char *@var{encoding}, enum fmt_type @var{type}, int @var{implied_decimals}, int @var{first_column}, const struct dictionary *@var{dict}, union value *@var{output}, int @var{width})
Parses @var{input} as a field containing data in the given format
@var{type}. The resulting value is stored in @var{output}, which the
caller must have initialized with the given @var{width}. For
consistency, @var{width} must be 0 if
@var{type} is a numeric format type and greater than 0 if @var{type}
is a string format type.
@var{encoding} should be set to indicate the character
encoding of @var{input}.
@var{dict} must be a pointer to the dictionary with which @var{output}
is associated.
If @var{input} is the empty string (with length 0), @var{output} is
set to the value set on SET BLANKS (@pxref{SET BLANKS,,,pspp, PSPP
Users Guide}) for a numeric value, or to all spaces for a string
value. This applies regardless of the usual parsing requirements for
@var{type}.
If @var{implied_decimals} is greater than zero, then the numeric
result is shifted right by @var{implied_decimals} decimal places if
@var{input} does not contain a decimal point character or an exponent.
Only certain numeric format types support implied decimal places; for
string formats and other numeric formats, @var{implied_decimals} has
no effect. DATA LIST FIXED is the primary user of this feature
(@pxref{DATA LIST FIXED,,,pspp, PSPP Users Guide}). Other callers
should generally specify 0 for @var{implied_decimals}, to disable this
feature.
When @var{input} contains invalid input data, @func{data_in} outputs a
message using @func{msg}.
@c (@pxref{msg}).
If @var{first_column} is
nonzero, it is included in any such error message as the 1-based
column number of the start of the field. The last column in the field
is calculated as @math{@var{first_column} + @var{input} - 1}. To
suppress error output, enclose the call to @func{data_in} by calls to
@func{msg_disable} and @func{msg_enable}.
This function returns true on success, false if a message was output
(even if suppressed). Overflow and underflow provoke warnings but are
not propagated to the caller as errors.
This function is declared in @file{data/data-in.h}.
@end deftypefun
@deftypefun char * data_out (const union value *@var{input}, const struct fmt_spec *@var{format})
@deftypefunx char * data_out_legacy (const union value *@var{input}, const char *@var{encoding}, const struct fmt_spec *@var{format})
Converts the data pointed to by @var{input} into a string value, which
will be encoded in UTF-8, according to output format specifier @var{format}.
Format
must be a valid output format. The width of @var{input} is
inferred from @var{format} using an algorithm equivalent to
@func{fmt_var_width}.
When @var{input} contains data that cannot be represented in the given
@var{format}, @func{data_out} may output a message using @func{msg},
@c (@pxref{msg}),
although the current implementation does not
consistently do so. To suppress error output, enclose the call to
@func{data_out} by calls to @func{msg_disable} and @func{msg_enable}.
This function is declared in @file{data/data-out.h}.
@end deftypefun
@node User-Missing Values
@section User-Missing Values
In addition to the system-missing value for numeric values, each
variable has a set of user-missing values (@pxref{MISSING
VALUES,,,pspp, PSPP Users Guide}). A set of user-missing values is
represented by @struct{missing_values}.
It is rarely necessary to interact directly with a
@struct{missing_values} object. Instead, the most common operation,
querying whether a particular value is a missing value for a given
variable, is most conveniently executed through functions on
@struct{variable}. @xref{Variable Missing Values}, for details.
A @struct{missing_values} is essentially a set of @union{value}s that
have a common value width (@pxref{Values}). For a set of
missing values associated with a variable (the common case), the set's
width is the same as the variable's width.
Function prototypes and other declarations related to missing values
are declared in @file{data/missing-values.h}.
@deftp {Structure} {struct missing_values}
Opaque type that represents a set of missing values.
@end deftp
The contents of a set of missing values is subject to some
restrictions. Regardless of width, a set of missing values is allowed
to be empty. A set of numeric missing values may contain up to three
discrete numeric values, or a range of numeric values (which includes
both ends of the range), or a range plus one discrete numeric value.
A set of string missing values may contain up to three discrete string
values (with the same width as the set), but ranges are not supported.
In addition, values in string missing values wider than
@code{MV_MAX_STRING} bytes may contain non-space characters only in
their first @code{MV_MAX_STRING} bytes; all the bytes after the first
@code{MV_MAX_STRING} must be spaces. @xref{mv_is_acceptable}, for a
function that tests a value against these constraints.
@deftypefn Macro int MV_MAX_STRING
Number of bytes in a string missing value that are not required to be
spaces. The current value is 8, a value which is fixed by the system
file format. In PSPP we could easily eliminate this restriction, but
doing so would also require us to extend the system file format in an
incompatible way, which we consider a bad tradeoff.
@end deftypefn
The most often useful functions for missing values are those for
testing whether a given value is missing, described in the following
section. Several other functions for creating, inspecting, and
modifying @struct{missing_values} objects are described afterward, but
these functions are much more rarely useful.
@menu
* Testing for Missing Values::
* Creating and Destroying User-Missing Values::
* Changing User-Missing Value Set Width::
* Inspecting User-Missing Value Sets::
* Modifying User-Missing Value Sets::
@end menu
@node Testing for Missing Values
@subsection Testing for Missing Values
The most often useful functions for missing values are those for
testing whether a given value is missing, described here. However,
using one of the corresponding missing value testing functions for
variables can be even easier (@pxref{Variable Missing Values}).
@deftypefun bool mv_is_value_missing (const struct missing_values *@var{mv}, const union value *@var{value}, enum mv_class @var{class})
@deftypefunx bool mv_is_num_missing (const struct missing_values *@var{mv}, double @var{value}, enum mv_class @var{class})
@deftypefunx bool mv_is_str_missing (const struct missing_values *@var{mv}, const char @var{value}[], enum mv_class @var{class})
Tests whether @var{value} is in one of the categories of missing
values given by @var{class}. Returns true if so, false otherwise.
@var{mv} determines the width of @var{value} and provides the set of
user-missing values to test.
The only difference among these functions in the form in which
@var{value} is provided, so you may use whichever function is most
convenient.
The @var{class} argument determines the exact kinds of missing values
that the functions test for:
@deftp Enumeration {enum mv_class}
@table @t
@item MV_USER
Returns true if @var{value} is in the set of user-missing values given
by @var{mv}.
@item MV_SYSTEM
Returns true if @var{value} is system-missing. (If @var{mv}
represents a set of string values, then @var{value} is never
system-missing.)
@item MV_ANY
@itemx MV_USER | MV_SYSTEM
Returns true if @var{value} is user-missing or system-missing.
@item MV_NONE
Always returns false, that is, @var{value} is never considered
missing.
@end table
@end deftp
@end deftypefun
@node Creating and Destroying User-Missing Values
@subsection Creation and Destruction
These functions create and destroy @struct{missing_values} objects.
@deftypefun void mv_init (struct missing_values *@var{mv}, int @var{width})
Initializes @var{mv} as a set of user-missing values. The set is
initially empty. Any values added to it must have the specified
@var{width}.
@end deftypefun
@deftypefun void mv_destroy (struct missing_values *@var{mv})
Destroys @var{mv}, which must not be referred to again.
@end deftypefun
@deftypefun void mv_copy (struct missing_values *@var{mv}, const struct missing_values *@var{old})
Initializes @var{mv} as a copy of the existing set of user-missing
values @var{old}.
@end deftypefun
@deftypefun void mv_clear (struct missing_values *@var{mv})
Empties the user-missing value set @var{mv}, retaining its existing
width.
@end deftypefun
@node Changing User-Missing Value Set Width
@subsection Changing User-Missing Value Set Width
A few PSPP language constructs copy sets of user-missing values from
one variable to another. When the source and target variables have
the same width, this is simple. But when the target variable's width
might be different from the source variable's, it takes a little more
work. The functions described here can help.
In fact, it is usually unnecessary to call these functions directly.
Most of the time @func{var_set_missing_values}, which uses
@func{mv_resize} internally to resize the new set of missing values to
the required width, may be used instead.
@xref{var_set_missing_values}, for more information.
@deftypefun bool mv_is_resizable (const struct missing_values *@var{mv}, int @var{new_width})
Tests whether @var{mv}'s width may be changed to @var{new_width} using
@func{mv_resize}. Returns true if it is allowed, false otherwise.
If @var{mv} contains any missing values, then it may be resized only
if each missing value may be resized, as determined by
@func{value_is_resizable} (@pxref{value_is_resizable}).
@end deftypefun
@anchor{mv_resize}
@deftypefun void mv_resize (struct missing_values *@var{mv}, int @var{width})
Changes @var{mv}'s width to @var{width}. @var{mv} and @var{width}
must satisfy the constraints explained above.
When a string missing value set's width is increased, each
user-missing value is padded on the right with spaces to the new
width.
@end deftypefun
@node Inspecting User-Missing Value Sets
@subsection Inspecting User-Missing Value Sets
These functions inspect the properties and contents of
@struct{missing_values} objects.
The first set of functions inspects the discrete values that sets of
user-missing values may contain:
@deftypefun bool mv_is_empty (const struct missing_values *@var{mv})
Returns true if @var{mv} contains no user-missing values, false if it
contains at least one user-missing value (either a discrete value or a
numeric range).
@end deftypefun
@deftypefun int mv_get_width (const struct missing_values *@var{mv})
Returns the width of the user-missing values that @var{mv} represents.
@end deftypefun
@deftypefun int mv_n_values (const struct missing_values *@var{mv})
Returns the number of discrete user-missing values included in
@var{mv}. The return value will be between 0 and 3. For sets of
numeric user-missing values that include a range, the return value
will be 0 or 1.
@end deftypefun
@deftypefun bool mv_has_value (const struct missing_values *@var{mv})
Returns true if @var{mv} has at least one discrete user-missing
values, that is, if @func{mv_n_values} would return nonzero for
@var{mv}.
@end deftypefun
@deftypefun {const union value *} mv_get_value (const struct missing_values *@var{mv}, int @var{index})
Returns the discrete user-missing value in @var{mv} with the given
@var{index}. The caller must not modify or free the returned value or
refer to it after modifying or freeing @var{mv}. The index must be
less than the number of discrete user-missing values in @var{mv}, as
reported by @func{mv_n_values}.
@end deftypefun
The second set of functions inspects the single range of values that
numeric sets of user-missing values may contain:
@deftypefun bool mv_has_range (const struct missing_values *@var{mv})
Returns true if @var{mv} includes a range, false otherwise.
@end deftypefun
@deftypefun void mv_get_range (const struct missing_values *@var{mv}, double *@var{low}, double *@var{high})
Stores the low endpoint of @var{mv}'s range in @code{*@var{low}} and
the high endpoint of the range in @code{*@var{high}}. @var{mv} must
include a range.
@end deftypefun
@node Modifying User-Missing Value Sets
@subsection Modifying User-Missing Value Sets
These functions modify the contents of @struct{missing_values}
objects.
The next set of functions applies to all sets of user-missing values:
@deftypefun bool mv_add_value (struct missing_values *@var{mv}, const union value *@var{value})
@deftypefunx bool mv_add_str (struct missing_values *@var{mv}, const char @var{value}[])
@deftypefunx bool mv_add_num (struct missing_values *@var{mv}, double @var{value})
Attempts to add the given discrete @var{value} to set of user-missing
values @var{mv}. @var{value} must have the same width as @var{mv}.
Returns true if @var{value} was successfully added, false if the set
could not accept any more discrete values or if @var{value} is not an
acceptable user-missing value (see @func{mv_is_acceptable} below).
These functions are equivalent, except for the form in which
@var{value} is provided, so you may use whichever function is most
convenient.
@end deftypefun
@deftypefun void mv_pop_value (struct missing_values *@var{mv}, union value *@var{value})
Removes a discrete value from @var{mv} (which must contain at least
one discrete value) and stores it in @var{value}.
@end deftypefun
@deftypefun bool mv_replace_value (struct missing_values *@var{mv}, const union value *@var{value}, int @var{index})
Attempts to replace the discrete value with the given @var{index} in
@var{mv} (which must contain at least @var{index} + 1 discrete values)
by @var{value}. Returns true if successful, false if @var{value} is
not an acceptable user-missing value (see @func{mv_is_acceptable}
below).
@end deftypefun
@deftypefun bool mv_is_acceptable (const union value *@var{value}, int @var{width})
@anchor{mv_is_acceptable}
Returns true if @var{value}, which must have the specified
@var{width}, may be added to a missing value set of the same
@var{width}, false if it cannot. As described above, all numeric
values and string values of width @code{MV_MAX_STRING} or less may be
added, but string value of greater width may be added only if bytes
beyond the first @code{MV_MAX_STRING} are all spaces.
@end deftypefun
The second set of functions applies only to numeric sets of
user-missing values:
@deftypefun bool mv_add_range (struct missing_values *@var{mv}, double @var{low}, double @var{high})
Attempts to add a numeric range covering @var{low}@dots{}@var{high}
(inclusive on both ends) to @var{mv}, which must be a numeric set of
user-missing values. Returns true if the range is successful added,
false on failure. Fails if @var{mv} already contains a range, or if
@var{mv} contains more than one discrete value, or if @var{low} >
@var{high}.
@end deftypefun
@deftypefun void mv_pop_range (struct missing_values *@var{mv}, double *@var{low}, double *@var{high})
Given @var{mv}, which must be a numeric set of user-missing values
that contains a range, removes that range from @var{mv} and stores its
low endpoint in @code{*@var{low}} and its high endpoint in
@code{*@var{high}}.
@end deftypefun
@node Value Labels
@section Value Labels
Each variable has a set of value labels (@pxref{VALUE LABELS,,,pspp,
PSPP Users Guide}), represented as @struct{val_labs}. A
@struct{val_labs} is essentially a map from @union{value}s to strings.
All of the values in a set of value labels have the same width, which
for a set of value labels owned by a variable (the common case) is the
same as its variable.
Sets of value labels may contain any number of entries.
It is rarely necessary to interact directly with a @struct{val_labs}
object. Instead, the most common operation, looking up the label for
a value of a given variable, can be conveniently executed through
functions on @struct{variable}. @xref{Variable Value Labels}, for
details.
Function prototypes and other declarations related to missing values
are declared in @file{data/value-labels.h}.
@deftp {Structure} {struct val_labs}
Opaque type that represents a set of value labels.
@end deftp
The most often useful function for value labels is
@func{val_labs_find}, for looking up the label associated with a
value.
@deftypefun {char *} val_labs_find (const struct val_labs *@var{val_labs}, union value @var{value})
Looks in @var{val_labs} for a label for the given @var{value}.
Returns the label, if one is found, or a null pointer otherwise.
@end deftypefun
Several other functions for working with value labels are described in
the following section, but these are more rarely useful.
@menu
* Value Labels Creation and Destruction::
* Value Labels Properties::
* Value Labels Adding and Removing Labels::
* Value Labels Iteration::
@end menu
@node Value Labels Creation and Destruction
@subsection Creation and Destruction
These functions create and destroy @struct{val_labs} objects.
@deftypefun {struct val_labs *} val_labs_create (int @var{width})
Creates and returns an initially empty set of value labels with the
given @var{width}.
@end deftypefun
@deftypefun {struct val_labs *} val_labs_clone (const struct val_labs *@var{val_labs})
Creates and returns a set of value labels whose width and contents are
the same as those of @var{var_labs}.
@end deftypefun
@deftypefun void val_labs_clear (struct val_labs *@var{var_labs})
Deletes all value labels from @var{var_labs}.
@end deftypefun
@deftypefun void val_labs_destroy (struct val_labs *@var{var_labs})
Destroys @var{var_labs}, which must not be referenced again.
@end deftypefun
@node Value Labels Properties
@subsection Value Labels Properties
These functions inspect and manipulate basic properties of
@struct{val_labs} objects.
@deftypefun size_t val_labs_count (const struct val_labs *@var{val_labs})
Returns the number of value labels in @var{val_labs}.
@end deftypefun
@deftypefun bool val_labs_can_set_width (const struct val_labs *@var{val_labs}, int @var{new_width})
Tests whether @var{val_labs}'s width may be changed to @var{new_width}
using @func{val_labs_set_width}. Returns true if it is allowed, false
otherwise.
A set of value labels may be resized to a given width only if each
value in it may be resized to that width, as determined by
@func{value_is_resizable} (@pxref{value_is_resizable}).
@end deftypefun
@deftypefun void val_labs_set_width (struct val_labs *@var{val_labs}, int @var{new_width})
Changes the width of @var{val_labs}'s values to @var{new_width}, which
must be a valid new width as determined by
@func{val_labs_can_set_width}.
@end deftypefun
@node Value Labels Adding and Removing Labels
@subsection Adding and Removing Labels
These functions add and remove value labels from a @struct{val_labs}
object.
@deftypefun bool val_labs_add (struct val_labs *@var{val_labs}, union value @var{value}, const char *@var{label})
Adds @var{label} to in @var{var_labs} as a label for @var{value},
which must have the same width as the set of value labels. Returns
true if successful, false if @var{value} already has a label.
@end deftypefun
@deftypefun void val_labs_replace (struct val_labs *@var{val_labs}, union value @var{value}, const char *@var{label})
Adds @var{label} to in @var{var_labs} as a label for @var{value},
which must have the same width as the set of value labels. If
@var{value} already has a label in @var{var_labs}, it is replaced.
@end deftypefun
@deftypefun bool val_labs_remove (struct val_labs *@var{val_labs}, union value @var{value})
Removes from @var{val_labs} any label for @var{value}, which must have
the same width as the set of value labels. Returns true if a label
was removed, false otherwise.
@end deftypefun
@node Value Labels Iteration
@subsection Iterating through Value Labels
These functions allow iteration through the set of value labels
represented by a @struct{val_labs} object. They may be used in the
context of a @code{for} loop:
@example
struct val_labs val_labs;
const struct val_lab *vl;
@dots{}
for (vl = val_labs_first (val_labs); vl != NULL;
vl = val_labs_next (val_labs, vl))
@{
@dots{}@r{do something with @code{vl}}@dots{}
@}
@end example
Value labels should not be added or deleted from a @struct{val_labs}
as it is undergoing iteration.
@deftypefun {const struct val_lab *} val_labs_first (const struct val_labs *@var{val_labs})
Returns the first value label in @var{var_labs}, if it contains at
least one value label, or a null pointer if it does not contain any
value labels.
@end deftypefun
@deftypefun {const struct val_lab *} val_labs_next (const struct val_labs *@var{val_labs}, const struct val_labs_iterator **@var{vl})
Returns the value label in @var{var_labs} following @var{vl}, if
@var{vl} is not the last value label in @var{val_labs}, or a null
pointer if there are no value labels following @var{vl}.
@end deftypefun
@deftypefun {const struct val_lab **} val_labs_sorted (const struct val_labs *@var{val_labs})
Allocates and returns an array of pointers to value labels, which are
sorted in increasing order by value. The array has
@code{val_labs_count (@var{val_labs})} elements. The caller is
responsible for freeing the array with @func{free} (but must not free
any of the @struct{val_lab} elements that the array points to).
@end deftypefun
The iteration functions above work with pointers to @struct{val_lab}
which is an opaque data structure that users of @struct{val_labs} must
not modify or free directly. The following functions work with
objects of this type:
@deftypefun {const union value *} val_lab_get_value (const struct val_lab *@var{vl})
Returns the value of value label @var{vl}. The caller must not modify
or free the returned value. (To achieve a similar result, remove the
value label with @func{val_labs_remove}, then add the new value with
@func{val_labs_add}.)
The width of the returned value cannot be determined directly from
@var{vl}. It may be obtained by calling @func{val_labs_get_width} on
the @struct{val_labs} that @var{vl} is in.
@end deftypefun
@deftypefun {const char *} val_lab_get_label (const struct val_lab *@var{vl})
Returns the label in @var{vl} as a null-terminated string. The caller
must not modify or free the returned string. (Use
@func{val_labs_replace} to change a value label.)
@end deftypefun
@node Variables
@section Variables
A PSPP variable is represented by @struct{variable}, an opaque type
declared in @file{data/variable.h} along with related declarations.
@xref{Variables,,,pspp, PSPP Users Guide}, for a description of PSPP
variables from a user perspective.
PSPP is unusual among computer languages in that, by itself, a PSPP
variable does not have a value. Instead, a variable in PSPP takes on
a value only in the context of a case, which supplies one value for
each variable in a set of variables (@pxref{Cases}). The set of
variables in a case, in turn, are ordinarily part of a dictionary
(@pxref{Dictionaries}).
Every variable has several attributes, most of which correspond
directly to one of the variable attributes visible to PSPP users
(@pxref{Attributes,,,pspp, PSPP Users Guide}).
The following sections describe variable-related functions and macros.
@menu
* Variable Name::
* Variable Type and Width::
* Variable Missing Values::
* Variable Value Labels::
* Variable Print and Write Formats::
* Variable Labels::
* Variable GUI Attributes::
* Variable Leave Status::
* Dictionary Class::
* Variable Creation and Destruction::
* Variable Short Names::
* Variable Relationships::
* Variable Auxiliary Data::
* Variable Categorical Values::
@end menu
@node Variable Name
@subsection Variable Name
A variable name is a string between 1 and @code{ID_MAX_LEN} bytes
long that satisfies the rules for PSPP identifiers
(@pxref{Tokens,,,pspp, PSPP Users Guide}). Variable names are
mixed-case and treated case-insensitively.
@deftypefn Macro int ID_MAX_LEN
Maximum length of a variable name, in bytes, currently 64.
@end deftypefn
Only one commonly useful function relates to variable names:
@deftypefun {const char *} var_get_name (const struct variable *@var{var})
Returns @var{var}'s variable name as a C string.
@end deftypefun
A few other functions are much more rarely used. Some of these
functions are used internally by the dictionary implementation:
@anchor{var_set_name}
@deftypefun {void} var_set_name (struct variable *@var{var}, const char *@var{new_name})
Changes the name of @var{var} to @var{new_name}, which must be a
``plausible'' name as defined below.
This function cannot be applied to a variable that is part of a
dictionary. Use @func{dict_rename_var} instead (@pxref{Dictionary
Renaming Variables}).
@end deftypefun
@deftypefun {enum dict_class} var_get_dict_class (const struct variable *@var{var})
Returns the dictionary class of @var{var}'s name (@pxref{Dictionary
Class}).
@end deftypefun
@node Variable Type and Width
@subsection Variable Type and Width
A variable's type and width are the type and width of its values
(@pxref{Values}).
@deftypefun {enum val_type} var_get_type (const struct variable *@var{var})
Returns the type of variable @var{var}.
@end deftypefun
@deftypefun int var_get_width (const struct variable *@var{var})
Returns the width of variable @var{var}.
@end deftypefun
@deftypefun void var_set_width (struct variable *@var{var}, int @var{width})
Sets the width of variable @var{var} to @var{width}. The width of a
variable should not normally be changed after the variable is created,
so this function is rarely used. This function cannot be applied to a
variable that is part of a dictionary.
@end deftypefun
@deftypefun bool var_is_numeric (const struct variable *@var{var})
Returns true if @var{var} is a numeric variable, false otherwise.
@end deftypefun
@deftypefun bool var_is_alpha (const struct variable *@var{var})
Returns true if @var{var} is an alphanumeric (string) variable, false
otherwise.
@end deftypefun
@node Variable Missing Values
@subsection Variable Missing Values
A numeric or short string variable may have a set of user-missing
values (@pxref{MISSING VALUES,,,pspp, PSPP Users Guide}), represented
as a @struct{missing_values} (@pxref{User-Missing Values}).
The most frequent operation on a variable's missing values is to query
whether a value is user- or system-missing:
@deftypefun bool var_is_value_missing (const struct variable *@var{var}, const union value *@var{value}, enum mv_class @var{class})
@deftypefunx bool var_is_num_missing (const struct variable *@var{var}, double @var{value}, enum mv_class @var{class})
@deftypefunx bool var_is_str_missing (const struct variable *@var{var}, const char @var{value}[], enum mv_class @var{class})
Tests whether @var{value} is a missing value of the given @var{class}
for variable @var{var} and returns true if so, false otherwise.
@func{var_is_num_missing} may only be applied to numeric variables;
@func{var_is_str_missing} may only be applied to string variables.
@var{value} must have been initialized with the same width as
@var{var}.
@code{var_is_@var{type}_missing (@var{var}, @var{value}, @var{class})}
is equivalent to @code{mv_is_@var{type}_missing
(var_get_missing_values (@var{var}), @var{value}, @var{class})}.
@end deftypefun
In addition, a few functions are provided to work more directly with a
variable's @struct{missing_values}:
@deftypefun {const struct missing_values *} var_get_missing_values (const struct variable *@var{var})
Returns the @struct{missing_values} associated with @var{var}. The
caller must not modify the returned structure. The return value is
always non-null.
@end deftypefun
@anchor{var_set_missing_values}
@deftypefun {void} var_set_missing_values (struct variable *@var{var}, const struct missing_values *@var{miss})
Changes @var{var}'s missing values to a copy of @var{miss}, or if
@var{miss} is a null pointer, clears @var{var}'s missing values. If
@var{miss} is non-null, it must have the same width as @var{var} or be
resizable to @var{var}'s width (@pxref{mv_resize}). The caller
retains ownership of @var{miss}.
@end deftypefun
@deftypefun void var_clear_missing_values (struct variable *@var{var})
Clears @var{var}'s missing values. Equivalent to
@code{var_set_missing_values (@var{var}, NULL)}.
@end deftypefun
@deftypefun bool var_has_missing_values (const struct variable *@var{var})
Returns true if @var{var} has any missing values, false if it has
none. Equivalent to @code{mv_is_empty (var_get_missing_values (@var{var}))}.
@end deftypefun
@node Variable Value Labels
@subsection Variable Value Labels
A numeric or short string variable may have a set of value labels
(@pxref{VALUE LABELS,,,pspp, PSPP Users Guide}), represented as a
@struct{val_labs} (@pxref{Value Labels}). The most commonly useful
functions for value labels return the value label associated with a
value:
@deftypefun {const char *} var_lookup_value_label (const struct variable *@var{var}, const union value *@var{value})
Looks for a label for @var{value} in @var{var}'s set of value labels.
@var{value} must have the same width as @var{var}. Returns the label
if one exists, otherwise a null pointer.
@end deftypefun
@deftypefun void var_append_value_name (const struct variable *@var{var}, const union value *@var{value}, struct string *@var{str})
Looks for a label for @var{value} in @var{var}'s set of value labels.
@var{value} must have the same width as @var{var}.
If a label exists, it will be appended to the string pointed to by @var{str}.
Otherwise, it formats @var{value}
using @var{var}'s print format (@pxref{Input and Output Formats})
and appends the formatted string.
@end deftypefun
The underlying @struct{val_labs} structure may also be accessed
directly using the functions described below.
@deftypefun bool var_has_value_labels (const struct variable *@var{var})
Returns true if @var{var} has at least one value label, false
otherwise.
@end deftypefun
@deftypefun {const struct val_labs *} var_get_value_labels (const struct variable *@var{var})
Returns the @struct{val_labs} associated with @var{var}. If @var{var}
has no value labels, then the return value may or may not be a null
pointer.
The variable retains ownership of the returned @struct{val_labs},
which the caller must not attempt to modify.
@end deftypefun
@deftypefun void var_set_value_labels (struct variable *@var{var}, const struct val_labs *@var{val_labs})
Replaces @var{var}'s value labels by a copy of @var{val_labs}. The
caller retains ownership of @var{val_labs}. If @var{val_labs} is a
null pointer, then @var{var}'s value labels, if any, are deleted.
@end deftypefun
@deftypefun void var_clear_value_labels (struct variable *@var{var})
Deletes @var{var}'s value labels. Equivalent to
@code{var_set_value_labels (@var{var}, NULL)}.
@end deftypefun
A final group of functions offers shorthands for operations that would
otherwise require getting the value labels from a variable, copying
them, modifying them, and then setting the modified value labels into
the variable (making a second copy):
@deftypefun bool var_add_value_label (struct variable *@var{var}, const union value *@var{value}, const char *@var{label})
Attempts to add a copy of @var{label} as a label for @var{value} for
the given @var{var}. @var{value} must have the same width as
@var{var}. If @var{value} already has a label, then the old label is
retained. Returns true if a label is added, false if there was an
existing label for @var{value}. Either way, the caller retains
ownership of @var{value} and @var{label}.
@end deftypefun
@deftypefun void var_replace_value_label (struct variable *@var{var}, const union value *@var{value}, const char *@var{label})
Attempts to add a copy of @var{label} as a label for @var{value} for
the given @var{var}. @var{value} must have the same width as
@var{var}. If @var{value} already has a label, then
@var{label} replaces the old label. Either way, the caller retains
ownership of @var{value} and @var{label}.
@end deftypefun
@node Variable Print and Write Formats
@subsection Variable Print and Write Formats
Each variable has an associated pair of output formats, called its
@dfn{print format} and @dfn{write format}. @xref{Input and Output
Formats,,,pspp, PSPP Users Guide}, for an introduction to formats.
@xref{Input and Output Formats}, for a developer's description of
format representation.
The print format is used to convert a variable's data values to
strings for human-readable output. The write format is used similarly
for machine-readable output, primarily by the WRITE transformation
(@pxref{WRITE,,,pspp, PSPP Users Guide}). Most often a variable's
print and write formats are the same.
A newly created variable by default has format F8.2 if it is numeric
or an A format with the same width as the variable if it is string.
Many creators of variables override these defaults.
Both the print format and write format are output formats. Input
formats are not part of @struct{variable}. Instead, input programs
and transformations keep track of variable input formats themselves.
The following functions work with variable print and write formats.
@deftypefun {const struct fmt_spec *} var_get_print_format (const struct variable *@var{var})
@deftypefunx {const struct fmt_spec *} var_get_write_format (const struct variable *@var{var})
Returns @var{var}'s print or write format, respectively.
@end deftypefun
@deftypefun void var_set_print_format (struct variable *@var{var}, const struct fmt_spec *@var{format})
@deftypefunx void var_set_write_format (struct variable *@var{var}, const struct fmt_spec *@var{format})
@deftypefunx void var_set_both_formats (struct variable *@var{var}, const struct fmt_spec *@var{format})
Sets @var{var}'s print format, write format, or both formats,
respectively, to a copy of @var{format}.
@end deftypefun
@node Variable Labels
@subsection Variable Labels
A variable label is a string that describes a variable. Variable
labels may contain spaces and punctuation not allowed in variable
names. @xref{VARIABLE LABELS,,,pspp, PSPP Users Guide}, for a
user-level description of variable labels.
The most commonly useful functions for variable labels are those to
retrieve a variable's label:
@deftypefun {const char *} var_to_string (const struct variable *@var{var})
Returns @var{var}'s variable label, if it has one, otherwise
@var{var}'s name. In either case the caller must not attempt to
modify or free the returned string.
This function is useful for user output.
@end deftypefun
@deftypefun {const char *} var_get_label (const struct variable *@var{var})
Returns @var{var}'s variable label, if it has one, or a null pointer
otherwise.
@end deftypefun
A few other variable label functions are also provided:
@deftypefun void var_set_label (struct variable *@var{var}, const char *@var{label})
Sets @var{var}'s variable label to a copy of @var{label}, or removes
any label from @var{var} if @var{label} is a null pointer or contains
only spaces. Leading and trailing spaces are removed from the
variable label and its remaining content is truncated at 255 bytes.
@end deftypefun
@deftypefun void var_clear_label (struct variable *@var{var})
Removes any variable label from @var{var}.
@end deftypefun
@deftypefun bool var_has_label (const struct variable *@var{var})
Returns true if @var{var} has a variable label, false otherwise.
@end deftypefun
@node Variable GUI Attributes
@subsection GUI Attributes
These functions and types access and set attributes that are mainly
used by graphical user interfaces. Their values are also stored in
and retrieved from system files (but not portable files).
The first group of functions relate to the measurement level of
numeric data. New variables are assigned a nominal level of
measurement by default.
@deftp {Enumeration} {enum measure}
Measurement level. Available values are:
@table @code
@item MEASURE_NOMINAL
Numeric data values are arbitrary. Arithmetic operations and
numerical comparisons of such data are not meaningful.
@item MEASURE_ORDINAL
Numeric data values indicate progression along a rank order.
Arbitrary arithmetic operations such as addition are not meaningful on
such data, but inequality comparisons (less, greater, etc.) have
straightforward interpretations.
@item MEASURE_SCALE
Ratios, sums, etc. of numeric data values have meaningful
interpretations.
@end table
PSPP does not have a separate category for interval data, which would
naturally fall between the ordinal and scale measurement levels.
@end deftp
@deftypefun bool measure_is_valid (enum measure @var{measure})
Returns true if @var{measure} is a valid level of measurement, that
is, if it is one of the @code{enum measure} constants listed above,
and false otherwise.
@end deftypefun
@deftypefun enum measure var_get_measure (const struct variable *@var{var})
@deftypefunx void var_set_measure (struct variable *@var{var}, enum measure @var{measure})
Gets or sets @var{var}'s measurement level.
@end deftypefun
The following set of functions relates to the width of on-screen
columns used for displaying variable data in a graphical user
interface environment. The unit of measurement is the width of a
character. For proportionally spaced fonts, this is based on the
average width of a character.
@deftypefun int var_get_display_width (const struct variable *@var{var})
@deftypefunx void var_set_display_width (struct variable *@var{var}, int @var{display_width})
Gets or sets @var{var}'s display width.
@end deftypefun
@anchor{var_default_display_width}
@deftypefun int var_default_display_width (int @var{width})
Returns the default display width for a variable with the given
@var{width}. The default width of a numeric variable is 8. The
default width of a string variable is @var{width} or 32, whichever is
less.
@end deftypefun
The final group of functions work with the justification of data when
it is displayed in on-screen columns. New variables are by default
right-justified.
@deftp {Enumeration} {enum alignment}
Text justification. Possible values are @code{ALIGN_LEFT},
@code{ALIGN_RIGHT}, and @code{ALIGN_CENTRE}.
@end deftp
@deftypefun bool alignment_is_valid (enum alignment @var{alignment})
Returns true if @var{alignment} is a valid alignment, that is, if it
is one of the @code{enum alignment} constants listed above, and false
otherwise.
@end deftypefun
@deftypefun enum alignment var_get_alignment (const struct variable *@var{var})
@deftypefunx void var_set_alignment (struct variable *@var{var}, enum alignment @var{alignment})
Gets or sets @var{var}'s alignment.
@end deftypefun
@node Variable Leave Status
@subsection Variable Leave Status
Commonly, most or all data in a case come from an input file, read
with a command such as DATA LIST or GET, but data can also be
generated with transformations such as COMPUTE. In the latter case
the question of a datum's ``initial value'' can arise. For example,
the value of a piece of generated data can recursively depend on its
own value:
@example
COMPUTE X = X + 1.
@end example
Another situation where the initial value of a variable arises is when
its value is not set at all for some cases, e.g.@: below, @code{Y} is
set only for the first 10 cases:
@example
DO IF #CASENUM <= 10.
+ COMPUTE Y = 1.
END IF.
@end example
By default, the initial value of a datum in either of these situations
is the system-missing value for numeric values and spaces for string
values. This means that, above, X would be system-missing and that Y
would be 1 for the first 10 cases and system-missing for the
remainder.
PSPP also supports retaining the value of a variable from one case to
another, using the LEAVE command (@pxref{LEAVE,,,pspp, PSPP Users
Guide}). The initial value of such a variable is 0 if it is numeric
and spaces if it is a string. If the command @samp{LEAVE X Y} is
appended to the above example, then X would have value 1 in the first
case and increase by 1 in every succeeding case, and Y would have
value 1 for the first 10 cases and 0 for later cases.
The LEAVE command has no effect on data that comes from an input file
or whose values do not depend on a variable's initial value.
The value of scratch variables (@pxref{Scratch Variables,,,pspp, PSPP
Users Guide}) are always left from one case to another.
The following functions work with a variable's leave status.
@deftypefun bool var_get_leave (const struct variable *@var{var})
Returns true if @var{var}'s value is to be retained from case to case,
false if it is reinitialized to system-missing or spaces.
@end deftypefun
@deftypefun void var_set_leave (struct variable *@var{var}, bool @var{leave})
If @var{leave} is true, marks @var{var} to be left from case to case;
if @var{leave} is false, marks @var{var} to be reinitialized for each
case.
If @var{var} is a scratch variable, @var{leave} must be true.
@end deftypefun
@deftypefun bool var_must_leave (const struct variable *@var{var})
Returns true if @var{var} must be left from case to case, that is, if
@var{var} is a scratch variable.
@end deftypefun
@node Dictionary Class
@subsection Dictionary Class
Occasionally it is useful to classify variables into @dfn{dictionary
classes} based on their names. Dictionary classes are represented by
@enum{dict_class}. This type and other declarations for dictionary
classes are in the @file{<data/dict-class.h>} header.
@deftp {Enumeration} {enum dict_class}
The dictionary classes are:
@table @code
@item DC_ORDINARY
An ordinary variable, one whose name does not begin with @samp{$} or
@samp{#}.
@item DC_SYSTEM
A system variable, one whose name begins with @samp{$}. @xref{System
Variables,,,pspp, PSPP Users Guide}.
@item DC_SCRATCH
A scratch variable, one whose name begins with @samp{#}.
@xref{Scratch Variables,,,pspp, PSPP Users Guide}.
@end table
The values for dictionary classes are bitwise disjoint, which allows
them to be used in bit-masks. An extra enumeration constant
@code{DC_ALL}, whose value is the bitwise-@i{or} of all of the above
constants, is provided to aid in this purpose.
@end deftp
One example use of dictionary classes arises in connection with PSPP
syntax that uses @code{@var{a} TO @var{b}} to name the variables in a
dictionary from @var{a} to @var{b} (@pxref{Sets of Variables,,,pspp,
PSPP Users Guide}). This syntax requires @var{a} and @var{b} to be in
the same dictionary class. It limits the variables that it includes
to those in that dictionary class.
The following functions relate to dictionary classes.
@deftypefun {enum dict_class} dict_class_from_id (const char *@var{name})
Returns the ``dictionary class'' for the given variable @var{name}, by
looking at its first letter.
@end deftypefun
@deftypefun {const char *} dict_class_to_name (enum dict_class @var{dict_class})
Returns a name for the given @var{dict_class} as an adjective, e.g.@:
@code{"scratch"}.
This function should probably not be used in new code as it can lead
to difficulties for internationalization.
@end deftypefun
@node Variable Creation and Destruction
@subsection Variable Creation and Destruction
Only rarely should PSPP code create or destroy variables directly.
Ordinarily, variables are created within a dictionary and destroying
by individual deletion from the dictionary or by destroying the entire
dictionary at once. The functions here enable the exceptional case,
of creation and destruction of variables that are not associated with
any dictionary. These functions are used internally in the dictionary
implementation.
@anchor{var_create}
@deftypefun {struct variable *} var_create (const char *@var{name}, int @var{width})
Creates and returns a new variable with the given @var{name} and
@var{width}. The new variable is not part of any dictionary. Use
@func{dict_create_var}, instead, to create a variable in a dictionary
(@pxref{Dictionary Creating Variables}).
@var{name} should be a valid variable name and must be a ``plausible''
variable name (@pxref{Variable Name}). @var{width} must be between 0
and @code{MAX_STRING}, inclusive (@pxref{Values}).
The new variable has no user-missing values, value labels, or variable
label. Numeric variables initially have F8.2 print and write formats,
right-justified display alignment, and scale level of measurement.
String variables are created with A print and write formats,
left-justified display alignment, and nominal level of measurement.
The initial display width is determined by
@func{var_default_display_width} (@pxref{var_default_display_width}).
The new variable initially has no short name (@pxref{Variable Short
Names}) and no auxiliary data (@pxref{Variable Auxiliary Data}).
@end deftypefun
@anchor{var_clone}
@deftypefun {struct variable *} var_clone (const struct variable *@var{old_var})
Creates and returns a new variable with the same attributes as
@var{old_var}, with a few exceptions. First, the new variable is not
part of any dictionary, regardless of whether @var{old_var} was in a
dictionary. Use @func{dict_clone_var}, instead, to add a clone of a
variable to a dictionary.
Second, the new variable is not given any short name, even if
@var{old_var} had a short name. This is because the new variable is
likely to be immediately renamed, in which case the short name would
be incorrect (@pxref{Variable Short Names}).
Finally, @var{old_var}'s auxiliary data, if any, is not copied to the
new variable (@pxref{Variable Auxiliary Data}).
@end deftypefun
@deftypefun {void} var_destroy (struct variable *@var{var})
Destroys @var{var} and frees all associated storage, including its
auxiliary data, if any. @var{var} must not be part of a dictionary.
To delete a variable from a dictionary and destroy it, use
@func{dict_delete_var} (@pxref{Dictionary Deleting Variables}).
@end deftypefun
@node Variable Short Names
@subsection Variable Short Names
PSPP variable names may be up to 64 (@code{ID_MAX_LEN}) bytes long.
The system and portable file formats, however, were designed when
variable names were limited to 8 bytes in length. Since then, the
system file format has been augmented with an extension record that
explains how the 8-byte short names map to full-length names
(@pxref{Long Variable Names Record}), but the short names are still
present. Thus, the continued presence of the short names is more or
less invisible to PSPP users, but every variable in a system file
still has a short name that must be unique.
PSPP can generate unique short names for variables based on their full
names at the time it creates the data file. If all variables' full
names are unique in their first 8 bytes, then the short names are
simply prefixes of the full names; otherwise, PSPP changes them so
that they are unique.
By itself this algorithm interoperates well with other software that
can read system files, as long as that software understands the
extension record that maps short names to long names. When the other
software does not understand the extension record, it can produce
surprising results. Consider a situation where PSPP reads a system
file that contains two variables named RANKINGSCORE, then the user
adds a new variable named RANKINGSTATUS, then saves the modified data
as a new system file. A program that does not understand long names
would then see one of these variables under the name RANKINGS---either
one, depending on the algorithm's details---and the other under a
different name. The effect could be very confusing: by adding a new
and apparently unrelated variable in PSPP, the user effectively
renamed the existing variable.
To counteract this potential problem, every @struct{variable} may have
a short name. A variable created by the system or portable file
reader receives the short name from that data file. When a variable
with a short name is written to a system or portable file, that
variable receives priority over other long names whose names begin
with the same 8 bytes but which were not read from a data file under
that short name.
Variables not created by the system or portable file reader have no
short name by default.
A variable with a full name of 8 bytes or less in length has absolute
priority for that name when the variable is written to a system file,
even over a second variable with that assigned short name.
PSPP does not enforce uniqueness of short names, although the short
names read from any given data file will always be unique. If two
variables with the same short name are written to a single data file,
neither one receives priority.
The following macros and functions relate to short names.
@defmac SHORT_NAME_LEN
Maximum length of a short name, in bytes. Its value is 8.
@end defmac
@deftypefun {const char *} var_get_short_name (const struct variable *@var{var})
Returns @var{var}'s short name, or a null pointer if @var{var} has not
been assigned a short name.
@end deftypefun
@deftypefun void var_set_short_name (struct variable *@var{var}, const char *@var{short_name})
Sets @var{var}'s short name to @var{short_name}, or removes
@var{var}'s short name if @var{short_name} is a null pointer. If it
is non-null, then @var{short_name} must be a plausible name for a
variable. The name will be truncated
to 8 bytes in length and converted to all-uppercase.
@end deftypefun
@deftypefun void var_clear_short_name (struct variable *@var{var})
Removes @var{var}'s short name.
@end deftypefun
@node Variable Relationships
@subsection Variable Relationships
Variables have close relationships with dictionaries
(@pxref{Dictionaries}) and cases (@pxref{Cases}). A variable is
usually a member of some dictionary, and a case is often used to store
data for the set of variables in a dictionary.
These functions report on these relationships. They may be applied
only to variables that are in a dictionary.
@deftypefun size_t var_get_dict_index (const struct variable *@var{var})
Returns @var{var}'s index within its dictionary. The first variable
in a dictionary has index 0, the next variable index 1, and so on.
The dictionary index can be influenced using dictionary functions such
as dict_reorder_var (@pxref{dict_reorder_var}).
@end deftypefun
@deftypefun size_t var_get_case_index (const struct variable *@var{var})
Returns @var{var}'s index within a case. The case index is an index
into an array of @union{value} large enough to contain all the data in
the dictionary.
The returned case index can be used to access the value of @var{var}
within a case for its dictionary, as in e.g.@: @code{case_data_idx
(case, var_get_case_index (@var{var}))}, but ordinarily it is more
convenient to use the data access functions that do variable-to-index
translation internally, as in e.g.@: @code{case_data (case,
@var{var})}.
@end deftypefun
@node Variable Auxiliary Data
@subsection Variable Auxiliary Data
Each @struct{variable} can have a single pointer to auxiliary data of
type @code{void *}. These functions manipulate a variable's auxiliary
data.
Use of auxiliary data is discouraged because of its lack of
flexibility. Only one client can make use of auxiliary data on a
given variable at any time, even though many clients could usefully
associate data with a variable.
To prevent multiple clients from attempting to use a variable's single
auxiliary data field at the same time, we adopt the convention that
use of auxiliary data in the active dataset dictionary is restricted to
the currently executing command. In particular, transformations must
not attach auxiliary data to a variable in the active dataset in the
expectation that it can be used later when the active dataset is read and
the transformation is executed. To help enforce this restriction,
auxiliary data is deleted from all variables in the active dataset
dictionary after the execution of each PSPP command.
This convention for safe use of auxiliary data applies only to the
active dataset dictionary. Rules for other dictionaries may be
established separately.
Auxiliary data should be replaced by a more flexible mechanism at some
point, but no replacement mechanism has been designed or implemented
so far.
The following functions work with variable auxiliary data.
@deftypefun {void *} var_get_aux (const struct variable *@var{var})
Returns @var{var}'s auxiliary data, or a null pointer if none has been
assigned.
@end deftypefun
@deftypefun {void *} var_attach_aux (const struct variable *@var{var}, void *@var{aux}, void (*@var{aux_dtor}) (struct variable *))
Sets @var{var}'s auxiliary data to @var{aux}, which must not be null.
@var{var} must not already have auxiliary data.
Before @var{var}'s auxiliary data is cleared by @code{var_clear_aux},
@var{aux_dtor}, if non-null, will be called with @var{var} as its
argument. It should free any storage associated with @var{aux}, if
necessary. @code{var_dtor_free} may be appropriate for use as
@var{aux_dtor}:
@deffn {Function} void var_dtor_free (struct variable *@var{var})
Frees @var{var}'s auxiliary data by calling @code{free}.
@end deffn
@end deftypefun
@deftypefun void var_clear_aux (struct variable *@var{var})
Removes auxiliary data, if any, from @var{var}, first calling the
destructor passed to @code{var_attach_aux}, if one was provided.
Use @code{dict_clear_aux} to remove auxiliary data from every variable
in a dictionary. @c (@pxref{dict_clear_aux}).
@end deftypefun
@deftypefun {void *} var_detach_aux (struct variable *@var{var})
Removes auxiliary data, if any, from @var{var}, and returns it.
Returns a null pointer if @var{var} had no auxiliary data.
Any destructor passed to @code{var_attach_aux} is not called, so the
caller is responsible for freeing storage associated with the returned
auxiliary data.
@end deftypefun
@node Variable Categorical Values
@subsection Variable Categorical Values
Some statistical procedures require a list of all the values that a
categorical variable takes on. Arranging such a list requires making
a pass through the data, so PSPP caches categorical values in
@struct{variable}.
When variable auxiliary data is revamped to support multiple clients
as described in the previous section, categorical values are an
obvious candidate. The form in which they are currently supported is
inelegant.
Categorical values are not robust against changes in the data. That
is, there is currently no way to detect that a transformation has
changed data values, meaning that categorical values lists for the
changed variables must be recomputed. PSPP is in fact in need of a
general-purpose caching and cache-invalidation mechanism, but none
has yet been designed and built.
The following functions work with cached categorical values.
@deftypefun {struct cat_vals *} var_get_obs_vals (const struct variable *@var{var})
Returns @var{var}'s set of categorical values. Yields undefined
behavior if @var{var} does not have any categorical values.
@end deftypefun
@deftypefun void var_set_obs_vals (const struct variable *@var{var}, struct cat_vals *@var{cat_vals})
Destroys @var{var}'s categorical values, if any, and replaces them by
@var{cat_vals}, ownership of which is transferred to @var{var}. If
@var{cat_vals} is a null pointer, then @var{var}'s categorical values
are cleared.
@end deftypefun
@deftypefun bool var_has_obs_vals (const struct variable *@var{var})
Returns true if @var{var} has a set of categorical values, false
otherwise.
@end deftypefun
@node Dictionaries
@section Dictionaries
Each data file in memory or on disk has an associated dictionary,
whose primary purpose is to describe the data in the file.
@xref{Variables,,,pspp, PSPP Users Guide}, for a PSPP user's view of a
dictionary.
A data file stored in a PSPP format, either as a system or portable
file, has a representation of its dictionary embedded in it. Other
kinds of data files are usually not self-describing enough to
construct a dictionary unassisted, so the dictionaries for these files
must be specified explicitly with PSPP commands such as @cmd{DATA
LIST}.
The most important content of a dictionary is an array of variables,
which must have unique names. A dictionary also conceptually contains
a mapping from each of its variables to a location within a case
(@pxref{Cases}), although in fact these mappings are stored within
individual variables.
System variables are not members of any dictionary (@pxref{System
Variables,,,pspp, PSPP Users Guide}).
Dictionaries are represented by @struct{dictionary}. Declarations
related to dictionaries are in the @file{<data/dictionary.h>} header.
The following sections describe functions for use with dictionaries.
@menu
* Dictionary Variable Access::
* Dictionary Creating Variables::
* Dictionary Deleting Variables::
* Dictionary Reordering Variables::
* Dictionary Renaming Variables::
* Dictionary Weight Variable::
* Dictionary Filter Variable::
* Dictionary Case Limit::
* Dictionary Split Variables::
* Dictionary File Label::
* Dictionary Documents::
@end menu
@node Dictionary Variable Access
@subsection Accessing Variables
The most common operations on a dictionary simply retrieve a
@code{struct variable *} of an individual variable based on its name
or position.
@deftypefun {struct variable *} dict_lookup_var (const struct dictionary *@var{dict}, const char *@var{name})
@deftypefunx {struct variable *} dict_lookup_var_assert (const struct dictionary *@var{dict}, const char *@var{name})
Looks up and returns the variable with the given @var{name} within
@var{dict}. Name lookup is not case-sensitive.
@code{dict_lookup_var} returns a null pointer if @var{dict} does not
contain a variable named @var{name}. @code{dict_lookup_var_assert}
asserts that such a variable exists.
@end deftypefun
@deftypefun {struct variable *} dict_get_var (const struct dictionary *@var{dict}, size_t @var{position})
Returns the variable at the given @var{position} in @var{dict}.
@var{position} must be less than the number of variables in @var{dict}
(see below).
@end deftypefun
@deftypefun size_t dict_get_var_cnt (const struct dictionary *@var{dict})
Returns the number of variables in @var{dict}.
@end deftypefun
Another pair of functions allows retrieving a number of variables at
once. These functions are more rarely useful.
@deftypefun void dict_get_vars (const struct dictionary *@var{dict}, const struct variable ***@var{vars}, size_t *@var{cnt}, enum dict_class @var{exclude})
@deftypefunx void dict_get_vars_mutable (const struct dictionary *@var{dict}, struct variable ***@var{vars}, size_t *@var{cnt}, enum dict_class @var{exclude})
Retrieves all of the variables in @var{dict}, in their original order,
except that any variables in the dictionary classes specified
@var{exclude}, if any, are excluded (@pxref{Dictionary Class}).
Pointers to the variables are stored in an array allocated with
@code{malloc}, and a pointer to the first element of this array is
stored in @code{*@var{vars}}. The caller is responsible for freeing
this memory when it is no longer needed. The number of variables
retrieved is stored in @code{*@var{cnt}}.
The presence or absence of @code{DC_SYSTEM} in @var{exclude} has no
effect, because dictionaries never include system variables.
@end deftypefun
One additional function is available. This function is most often
used in assertions, but it is not restricted to such use.
@deftypefun bool dict_contains_var (const struct dictionary *@var{dict}, const struct variable *@var{var})
Tests whether @var{var} is one of the variables in @var{dict}.
Returns true if so, false otherwise.
@end deftypefun
@node Dictionary Creating Variables
@subsection Creating Variables
These functions create a new variable and insert it into a dictionary
in a single step.
There is no provision for inserting an already created variable into a
dictionary. There is no reason that such a function could not be
written, but so far there has been no need for one.
The names provided to one of these functions should be valid variable
names and must be plausible variable names. @c (@pxref{Variable Names}).
If a variable with the same name already exists in the dictionary, the
non-@code{assert} variants of these functions return a null pointer,
without modifying the dictionary. The @code{assert} variants, on the
other hand, assert that no duplicate name exists.
A variable may be in only one dictionary at any given time.
@deftypefun {struct variable *} dict_create_var (struct dictionary *@var{dict}, const char *@var{name}, int @var{width})
@deftypefunx {struct variable *} dict_create_var_assert (struct dictionary *@var{dict}, const char *@var{name}, int @var{width})
Creates a new variable with the given @var{name} and @var{width}, as
if through a call to @code{var_create} with those arguments
(@pxref{var_create}), appends the new variable to @var{dict}'s array
of variables, and returns the new variable.
@end deftypefun
@deftypefun {struct variable *} dict_clone_var (struct dictionary *@var{dict}, const struct variable *@var{old_var})
@deftypefunx {struct variable *} dict_clone_var_assert (struct dictionary *@var{dict}, const struct variable *@var{old_var})
Creates a new variable as a clone of @var{var}, inserts the new
variable into @var{dict}, and returns the new variable. Other
properties of the new variable are copied from @var{old_var}, except
for those not copied by @code{var_clone} (@pxref{var_clone}).
@var{var} does not need to be a member of any dictionary.
@end deftypefun
@deftypefun {struct variable *} dict_clone_var_as (struct dictionary *@var{dict}, const struct variable *@var{old_var}, const char *@var{name})
@deftypefunx {struct variable *} dict_clone_var_as_assert (struct dictionary *@var{dict}, const struct variable *@var{old_var}, const char *@var{name})
These functions are similar to @code{dict_clone_var} and
@code{dict_clone_var_assert}, respectively, except that the new
variable is named @var{name} instead of keeping @var{old_var}'s name.
@end deftypefun
@node Dictionary Deleting Variables
@subsection Deleting Variables
These functions remove variables from a dictionary's array of
variables. They also destroy the removed variables and free their
associated storage.
Deleting a variable to which there might be external pointers is a bad
idea. In particular, deleting variables from the active dataset
dictionary is a risky proposition, because transformations can retain
references to arbitrary variables. Therefore, no variable should be
deleted from the active dataset dictionary when any transformations are
active, because those transformations might reference the variable to
be deleted. The safest time to delete a variable is just after a
procedure has been executed, as done by @cmd{DELETE VARIABLES}.
Deleting a variable automatically removes references to that variable
from elsewhere in the dictionary as a weighting variable, filter
variable, @cmd{SPLIT FILE} variable, or member of a vector.
No functions are provided for removing a variable from a dictionary
without destroying that variable. As with insertion of an existing
variable, there is no reason that this could not be implemented, but
so far there has been no need.
@deftypefun void dict_delete_var (struct dictionary *@var{dict}, struct variable *@var{var})
Deletes @var{var} from @var{dict}, of which it must be a member.
@end deftypefun
@deftypefun void dict_delete_vars (struct dictionary *@var{dict}, struct variable *const *@var{vars}, size_t @var{count})
Deletes the @var{count} variables in array @var{vars} from @var{dict}.
All of the variables in @var{vars} must be members of @var{dict}. No
variable may be included in @var{vars} more than once.
@end deftypefun
@deftypefun void dict_delete_consecutive_vars (struct dictionary *@var{dict}, size_t @var{idx}, size_t @var{count})
Deletes the variables in sequential positions
@var{idx}@dots{}@var{idx} + @var{count} (exclusive) from @var{dict},
which must contain at least @var{idx} + @var{count} variables.
@end deftypefun
@deftypefun void dict_delete_scratch_vars (struct dictionary *@var{dict})
Deletes all scratch variables from @var{dict}.
@end deftypefun
@node Dictionary Reordering Variables
@subsection Changing Variable Order
The variables in a dictionary are stored in an array. These functions
change the order of a dictionary's array of variables without changing
which variables are in the dictionary.
@anchor{dict_reorder_var}
@deftypefun void dict_reorder_var (struct dictionary *@var{dict}, struct variable *@var{var}, size_t @var{new_index})
Moves @var{var}, which must be in @var{dict}, so that it is at
position @var{new_index} in @var{dict}'s array of variables. Other
variables in @var{dict}, if any, retain their relative positions.
@var{new_index} must be less than the number of variables in
@var{dict}.
@end deftypefun
@deftypefun void dict_reorder_vars (struct dictionary *@var{dict}, struct variable *const *@var{new_order}, size_t @var{count})
Moves the @var{count} variables in @var{new_order} to the beginning of
@var{dict}'s array of variables in the specified order. Other
variables in @var{dict}, if any, retain their relative positions.
All of the variables in @var{new_order} must be in @var{dict}. No
duplicates are allowed within @var{new_order}, which means that
@var{count} must be no greater than the number of variables in
@var{dict}.
@end deftypefun
@node Dictionary Renaming Variables
@subsection Renaming Variables
These functions change the names of variables within a dictionary.
The @func{var_set_name} function (@pxref{var_set_name}) cannot be
applied directly to a variable that is in a dictionary, because
@struct{dictionary} contains an index by name that @func{var_set_name}
would not update. The following functions take care to update the
index as well. They also ensure that variable renaming does not cause
a dictionary to contain a duplicate variable name.
@deftypefun void dict_rename_var (struct dictionary *@var{dict}, struct variable *@var{var}, const char *@var{new_name})
Changes the name of @var{var}, which must be in @var{dict}, to
@var{new_name}. A variable named @var{new_name} must not already be
in @var{dict}, unless @var{new_name} is the same as @var{var}'s
current name.
@end deftypefun
@deftypefun bool dict_rename_vars (struct dictionary *@var{dicT}, struct variable **@var{vars}, char **@var{new_names}, size_t @var{count}, char **@var{err_name})
Renames each of the @var{count} variables in @var{vars} to the name in
the corresponding position of @var{new_names}. If the renaming would
result in a duplicate variable name, returns false and stores one of
the names that would be be duplicated into @code{*@var{err_name}}, if
@var{err_name} is non-null. Otherwise, the renaming is successful,
and true is returned.
@end deftypefun
@node Dictionary Weight Variable
@subsection Weight Variable
A data set's cases may optionally be weighted by the value of a
numeric variable. @xref{WEIGHT,,,pspp, PSPP Users Guide}, for a user
view of weight variables.
The weight variable is written to and read from system and portable
files.
The most commonly useful function related to weighting is a
convenience function to retrieve a weighting value from a case.
@deftypefun double dict_get_case_weight (const struct dictionary *@var{dict}, const struct ccase *@var{case}, bool *@var{warn_on_invalid})
Retrieves and returns the value of the weighting variable specified by
@var{dict} from @var{case}. Returns 1.0 if @var{dict} has no
weighting variable.
Returns 0.0 if @var{c}'s weight value is user- or system-missing,
zero, or negative. In such a case, if @var{warn_on_invalid} is
non-null and @code{*@var{warn_on_invalid}} is true,
@func{dict_get_case_weight} also issues an error message and sets
@code{*@var{warn_on_invalid}} to false. To disable error reporting,
pass a null pointer or a pointer to false as @var{warn_on_invalid} or
use a @func{msg_disable}/@func{msg_enable} pair.
@end deftypefun
The dictionary also has a pair of functions for getting and setting
the weight variable.
@deftypefun {struct variable *} dict_get_weight (const struct dictionary *@var{dict})
Returns @var{dict}'s current weighting variable, or a null pointer if
the dictionary does not have a weighting variable.
@end deftypefun
@deftypefun void dict_set_weight (struct dictionary *@var{dict}, struct variable *@var{var})
Sets @var{dict}'s weighting variable to @var{var}. If @var{var} is
non-null, it must be a numeric variable in @var{dict}. If @var{var}
is null, then @var{dict}'s weighting variable, if any, is cleared.
@end deftypefun
@node Dictionary Filter Variable
@subsection Filter Variable
When the active dataset is read by a procedure, cases can be excluded
from analysis based on the values of a @dfn{filter variable}.
@xref{FILTER,,,pspp, PSPP Users Guide}, for a user view of filtering.
These functions store and retrieve the filter variable. They are
rarely useful, because the data analysis framework automatically
excludes from analysis the cases that should be filtered.
@deftypefun {struct variable *} dict_get_filter (const struct dictionary *@var{dict})
Returns @var{dict}'s current filter variable, or a null pointer if the
dictionary does not have a filter variable.
@end deftypefun
@deftypefun void dict_set_filter (struct dictionary *@var{dict}, struct variable *@var{var})
Sets @var{dict}'s filter variable to @var{var}. If @var{var} is
non-null, it must be a numeric variable in @var{dict}. If @var{var}
is null, then @var{dict}'s filter variable, if any, is cleared.
@end deftypefun
@node Dictionary Case Limit
@subsection Case Limit
The limit on cases analyzed by a procedure, set by the @cmd{N OF
CASES} command (@pxref{N OF CASES,,,pspp, PSPP Users Guide}), is
stored as part of the dictionary. The dictionary does not, on the
other hand, play any role in enforcing the case limit (a job done by
data analysis framework code).
A case limit of 0 means that the number of cases is not limited.
These functions are rarely useful, because the data analysis framework
automatically excludes from analysis any cases beyond the limit.
@deftypefun casenumber dict_get_case_limit (const struct dictionary *@var{dict})
Returns the current case limit for @var{dict}.
@end deftypefun
@deftypefun void dict_set_case_limit (struct dictionary *@var{dict}, casenumber @var{limit})
Sets @var{dict}'s case limit to @var{limit}.
@end deftypefun
@node Dictionary Split Variables
@subsection Split Variables
The user may use the @cmd{SPLIT FILE} command (@pxref{SPLIT
FILE,,,pspp, PSPP Users Guide}) to select a set of variables on which
to split the active dataset into groups of cases to be analyzed
independently in each statistical procedure. The set of split
variables is stored as part of the dictionary, although the effect on
data analysis is implemented by each individual statistical procedure.
Split variables may be numeric or short or long string variables.
The most useful functions for split variables are those to retrieve
them. Even these functions are rarely useful directly: for the
purpose of breaking cases into groups based on the values of the split
variables, it is usually easier to use
@func{casegrouper_create_splits}.
@deftypefun {const struct variable *const *} dict_get_split_vars (const struct dictionary *@var{dict})
Returns a pointer to an array of pointers to split variables. If and
only if there are no split variables, returns a null pointer. The
caller must not modify or free the returned array.
@end deftypefun
@deftypefun size_t dict_get_split_cnt (const struct dictionary *@var{dict})
Returns the number of split variables.
@end deftypefun
The following functions are also available for working with split
variables.
@deftypefun void dict_set_split_vars (struct dictionary *@var{dict}, struct variable *const *@var{vars}, size_t @var{cnt})
Sets @var{dict}'s split variables to the @var{cnt} variables in
@var{vars}. If @var{cnt} is 0, then @var{dict} will not have any
split variables. The caller retains ownership of @var{vars}.
@end deftypefun
@deftypefun void dict_unset_split_var (struct dictionary *@var{dict}, struct variable *@var{var})
Removes @var{var}, which must be a variable in @var{dict}, from
@var{dict}'s split of split variables.
@end deftypefun
@node Dictionary File Label
@subsection File Label
A dictionary may optionally have an associated string that describes
its contents, called its file label. The user may set the file label
with the @cmd{FILE LABEL} command (@pxref{FILE LABEL,,,pspp, PSPP
Users Guide}).
These functions set and retrieve the file label.
@deftypefun {const char *} dict_get_label (const struct dictionary *@var{dict})
Returns @var{dict}'s file label. If @var{dict} does not have a label,
returns a null pointer.
@end deftypefun
@deftypefun void dict_set_label (struct dictionary *@var{dict}, const char *@var{label})
Sets @var{dict}'s label to @var{label}. If @var{label} is non-null,
then its content, truncated to at most 60 bytes, becomes the new file
label. If @var{label} is null, then @var{dict}'s label is removed.
The caller retains ownership of @var{label}.
@end deftypefun
@node Dictionary Documents
@subsection Documents
A dictionary may include an arbitrary number of lines of explanatory
text, called the dictionary's documents. For compatibility, document
lines have a fixed width, and lines that are not exactly this width
are truncated or padded with spaces as necessary to bring them to the
correct width.
PSPP users can use the @cmd{DOCUMENT} (@pxref{DOCUMENT,,,pspp, PSPP
Users Guide}), @cmd{ADD DOCUMENT} (@pxref{ADD DOCUMENT,,,pspp, PSPP
Users Guide}), and @cmd{DROP DOCUMENTS} (@pxref{DROP DOCUMENTS,,,pspp,
PSPP Users Guide}) commands to manipulate documents.
@deftypefn Macro int DOC_LINE_LENGTH
The fixed length of a document line, in bytes, defined to 80.
@end deftypefn
The following functions work with whole sets of documents. They
accept or return sets of documents formatted as null-terminated
strings that are an exact multiple of @code{DOC_LINE_LENGTH}
bytes in length.
@deftypefun {const char *} dict_get_documents (const struct dictionary *@var{dict})
Returns the documents in @var{dict}, or a null pointer if @var{dict}
has no documents.
@end deftypefun
@deftypefun void dict_set_documents (struct dictionary *@var{dict}, const char *@var{new_documents})
Sets @var{dict}'s documents to @var{new_documents}. If
@var{new_documents} is a null pointer or an empty string, then
@var{dict}'s documents are cleared. The caller retains ownership of
@var{new_documents}.
@end deftypefun
@deftypefun void dict_clear_documents (struct dictionary *@var{dict})
Clears the documents from @var{dict}.
@end deftypefun
The following functions work with individual lines in a dictionary's
set of documents.
@deftypefun void dict_add_document_line (struct dictionary *@var{dict}, const char *@var{content})
Appends @var{content} to the documents in @var{dict}. The text in
@var{content} will be truncated or padded with spaces as necessary to
make it exactly @code{DOC_LINE_LENGTH} bytes long. The caller retains
ownership of @var{content}.
If @var{content} is over @code{DOC_LINE_LENGTH}, this function also
issues a warning using @func{msg}. To suppress the warning, enclose a
call to one of this function in a @func{msg_disable}/@func{msg_enable}
pair.
@end deftypefun
@deftypefun size_t dict_get_document_line_cnt (const struct dictionary *@var{dict})
Returns the number of line of documents in @var{dict}. If the
dictionary contains no documents, returns 0.
@end deftypefun
@deftypefun void dict_get_document_line (const struct dictionary *@var{dict}, size_t @var{idx}, struct string *@var{content})
Replaces the text in @var{content} (which must already have been
initialized by the caller) by the document line in @var{dict} numbered
@var{idx}, which must be less than the number of lines of documents in
@var{dict}. Any trailing white space in the document line is trimmed,
so that @var{content} will have a length between 0 and
@code{DOC_LINE_LENGTH}.
@end deftypefun
@node Coding Conventions
@section Coding Conventions
Every @file{.c} file should have @samp{#include <config.h>} as its
first non-comment line. No @file{.h} file should include
@file{config.h}.
This section needs to be finished.
@node Cases
@section Cases
This section needs to be written.
@node Data Sets
@section Data Sets
This section needs to be written.
@node Pools
@section Pools
This section needs to be written.
@c LocalWords: bool
|