1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
# fmaf.m4 serial 1
dnl Copyright (C) 2011 Free Software Foundation, Inc.
dnl This file is free software; the Free Software Foundation
dnl gives unlimited permission to copy and/or distribute it,
dnl with or without modifications, as long as this notice is preserved.
AC_DEFUN([gl_FUNC_FMAF],
[
AC_REQUIRE([gl_MATH_H_DEFAULTS])
dnl Determine FMAF_LIBM.
gl_MATHFUNC([fmaf], [float], [(float, float, float)])
if test $gl_cv_func_fmaf_no_libm = yes \
|| test $gl_cv_func_fmaf_in_libm = yes; then
gl_FUNC_FMAF_WORKS
case "$gl_cv_func_fmaf_works" in
*no) REPLACE_FMAF=1 ;;
esac
else
HAVE_FMAF=0
fi
if test $HAVE_FMAF = 0 || test $REPLACE_FMAF = 1; then
dnl Find libraries needed to link lib/fmaf.c.
AC_REQUIRE([gl_FUNC_FREXPF])
AC_REQUIRE([gl_FUNC_LDEXPF])
AC_REQUIRE([gl_FUNC_FEGETROUND])
FMAF_LIBM=
dnl Append $FREXPF_LIBM to FMAF_LIBM, avoiding gratuitous duplicates.
case " $FMAF_LIBM " in
*" $FREXPF_LIBM "*) ;;
*) FMAF_LIBM="$FMAF_LIBM $FREXPF_LIBM" ;;
esac
dnl Append $LDEXPF_LIBM to FMAF_LIBM, avoiding gratuitous duplicates.
case " $FMAF_LIBM " in
*" $LDEXPF_LIBM "*) ;;
*) FMAF_LIBM="$FMAF_LIBM $LDEXPF_LIBM" ;;
esac
dnl Append $FEGETROUND_LIBM to FMAF_LIBM, avoiding gratuitous duplicates.
case " $FMAF_LIBM " in
*" $FEGETROUND_LIBM "*) ;;
*) FMAF_LIBM="$FMAF_LIBM $FEGETROUND_LIBM" ;;
esac
fi
AC_SUBST([FMAF_LIBM])
])
dnl Test whether fmaf() has any of the 7 known bugs of glibc 2.11.3 on x86_64.
AC_DEFUN([gl_FUNC_FMAF_WORKS],
[
AC_REQUIRE([AC_PROG_CC])
AC_REQUIRE([AC_CANONICAL_HOST]) dnl for cross-compiles
AC_REQUIRE([gl_FUNC_LDEXPF])
save_LIBS="$LIBS"
LIBS="$LIBS $FMAF_LIBM $LDEXPF_LIBM"
AC_CACHE_CHECK([whether fmaf works], [gl_cv_func_fmaf_works],
[
AC_RUN_IFELSE(
[AC_LANG_SOURCE([[
#include <float.h>
#include <math.h>
float p0 = 0.0f;
int main()
{
int failed_tests = 0;
/* These tests fail with glibc 2.11.3 on x86_64. */
{
volatile float x = 1.5f; /* 3 * 2^-1 */
volatile float y = x;
volatile float z = ldexpf (1.0f, FLT_MANT_DIG + 1); /* 2^25 */
/* x * y + z with infinite precision: 2^25 + 9 * 2^-2.
Lies between (2^23 + 0) * 2^2 and (2^23 + 1) * 2^2
and is closer to (2^23 + 1) * 2^2, therefore the rounding
must round up and produce (2^23 + 1) * 2^2. */
volatile float expected = z + 4.0f;
volatile float result = fmaf (x, y, z);
if (result != expected)
failed_tests |= 1;
}
{
volatile float x = 1.25f; /* 2^0 + 2^-2 */
volatile float y = - x;
volatile float z = ldexpf (1.0f, FLT_MANT_DIG + 1); /* 2^25 */
/* x * y + z with infinite precision: 2^25 - 2^0 - 2^-1 - 2^-4.
Lies between (2^24 - 1) * 2^1 and 2^24 * 2^1
and is closer to (2^24 - 1) * 2^1, therefore the rounding
must round down and produce (2^24 - 1) * 2^1. */
volatile float expected = (ldexpf (1.0f, FLT_MANT_DIG) - 1.0f) * 2.0f;
volatile float result = fmaf (x, y, z);
if (result != expected)
failed_tests |= 2;
}
{
volatile float x = 1.0f + ldexpf (1.0f, 1 - FLT_MANT_DIG); /* 2^0 + 2^-23 */
volatile float y = x;
volatile float z = 4.0f; /* 2^2 */
/* x * y + z with infinite precision: 2^2 + 2^0 + 2^-22 + 2^-46.
Lies between (2^23 + 2^21) * 2^-21 and (2^23 + 2^21 + 1) * 2^-21
and is closer to (2^23 + 2^21 + 1) * 2^-21, therefore the rounding
must round up and produce (2^23 + 2^21 + 1) * 2^-21. */
volatile float expected = 4.0f + 1.0f + ldexpf (1.0f, 3 - FLT_MANT_DIG);
volatile float result = fmaf (x, y, z);
if (result != expected)
failed_tests |= 4;
}
{
volatile float x = 1.0f + ldexpf (1.0f, 1 - FLT_MANT_DIG); /* 2^0 + 2^-23 */
volatile float y = - x;
volatile float z = 8.0f; /* 2^3 */
/* x * y + z with infinite precision: 2^2 + 2^1 + 2^0 - 2^-22 - 2^-46.
Lies between (2^23 + 2^22 + 2^21 - 1) * 2^-21 and
(2^23 + 2^22 + 2^21) * 2^-21 and is closer to
(2^23 + 2^22 + 2^21 - 1) * 2^-21, therefore the rounding
must round down and produce (2^23 + 2^22 + 2^21 - 1) * 2^-21. */
volatile float expected = 7.0f - ldexpf (1.0f, 3 - FLT_MANT_DIG);
volatile float result = fmaf (x, y, z);
if (result != expected)
failed_tests |= 8;
}
{
volatile float x = 1.25f; /* 2^0 + 2^-2 */
volatile float y = - 0.75f; /* - 2^0 + 2^-2 */
volatile float z = ldexpf (1.0f, FLT_MANT_DIG); /* 2^24 */
/* x * y + z with infinite precision: 2^24 - 2^0 + 2^-4.
Lies between (2^24 - 2^0) and 2^24 and is closer to (2^24 - 2^0),
therefore the rounding must round down and produce (2^24 - 2^0). */
volatile float expected = ldexpf (1.0f, FLT_MANT_DIG) - 1.0f;
volatile float result = fmaf (x, y, z);
if (result != expected)
failed_tests |= 16;
}
if ((FLT_MANT_DIG % 2) == 0)
{
volatile float x = 1.0f + ldexpf (1.0f, - FLT_MANT_DIG / 2); /* 2^0 + 2^-12 */
volatile float y = x;
volatile float z = ldexpf (1.0f, FLT_MIN_EXP - FLT_MANT_DIG); /* 2^-149 */
/* x * y + z with infinite precision: 2^0 + 2^-11 + 2^-24 + 2^-149.
Lies between (2^23 + 2^12 + 0) * 2^-23 and (2^23 + 2^12 + 1) * 2^-23
and is closer to (2^23 + 2^12 + 1) * 2^-23, therefore the rounding
must round up and produce (2^23 + 2^12 + 1) * 2^-23. */
volatile float expected =
1.0f + ldexpf (1.0f, 1 - FLT_MANT_DIG / 2) + ldexpf (1.0f, 1 - FLT_MANT_DIG);
volatile float result = fmaf (x, y, z);
if (result != expected)
failed_tests |= 32;
}
{
float minus_inf = -1.0f / p0;
volatile float x = ldexpf (1.0f, FLT_MAX_EXP - 1);
volatile float y = ldexpf (1.0f, FLT_MAX_EXP - 1);
volatile float z = minus_inf;
volatile float result = fmaf (x, y, z);
if (!(result == minus_inf))
failed_tests |= 64;
}
return failed_tests;
}]])],
[gl_cv_func_fmaf_works=yes],
[gl_cv_func_fmaf_works=no],
[dnl Guess no, even on glibc systems.
gl_cv_func_fmaf_works="guessing no"
])
])
LIBS="$save_LIBS"
])
# Prerequisites of lib/fmaf.c.
AC_DEFUN([gl_PREREQ_FMAF], [:])
|