File: matrices.texi

package info (click to toggle)
pspp 2.0.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 66,676 kB
  • sloc: ansic: 267,210; xml: 18,446; sh: 5,534; python: 2,881; makefile: 125; perl: 64
file content (2689 lines) | stat: -rw-r--r-- 89,037 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
@c PSPP - a program for statistical analysis.
@c Copyright (C) 2017, 2020, 2021 Free Software Foundation, Inc.
@c Permission is granted to copy, distribute and/or modify this document
@c under the terms of the GNU Free Documentation License, Version 1.3
@c or any later version published by the Free Software Foundation;
@c with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
@c A copy of the license is included in the section entitled "GNU
@c Free Documentation License".
@c
@node Matrices
@chapter Matrices

Some @pspp{} procedures work with matrices by producing numeric
matrices that report results of data analysis, or by consuming
matrices as a basis for further analysis.  This chapter documents the
format of data files that store these matrices and commands for
working with them, as well as @pspp{}'s general-purpose facility for
matrix operations.

@node Matrix Files
@section Matrix Files
@vindex Matrix file

A matrix file is an SPSS system file that conforms to the dictionary
and case structure described in this section.  Procedures that read
matrices from files expect them to be in the matrix file format.
Procedures that write matrices also use this format.

Text files that contain matrices can be converted to matrix file
format.  @xref{MATRIX DATA}, for a command to read a text file as a
matrix file.

A matrix file's dictionary must have the following variables in the
specified order:

@enumerate
@item
Zero or more numeric split variables.  These are included by
procedures when @cmd{SPLIT FILE} is active.  @cmd{MATRIX DATA} assigns
split variables format F4.0.

@item
@code{ROWTYPE_}, a string variable with width 8.  This variable
indicates the kind of matrix or vector that a given case represents.
The supported row types are listed below.

@item
Zero or more numeric factor variables.  These are included by
procedures that divide data into cells.  For within-cell data, factor
variables are filled with non-missing values; for pooled data, they
are missing.  @cmd{MATRIX DATA} assigns factor variables format F4.0.

@item
@code{VARNAME_}, a string variable.  Matrix data includes one row per
continuous variable (see below), naming each continuous variable in
order.  This column is blank for vector data.  @cmd{MATRIX DATA} makes
@code{VARNAME_} wide enough for the name of any of the continuous
variables, but at least 8 bytes.

@item
One or more numeric continuous variables.  These are the variables
whose data was analyzed to produce the matrices.  @cmd{MATRIX DATA}
assigns continuous variables format F10.4.
@end enumerate

Case weights are ignored in matrix files.

@subheading Row Types
@anchor{Matrix File Row Types}

Matrix files support a fixed set of types of matrix and vector data.
The @code{ROWTYPE_} variable in each case of a matrix file indicates
its row type.

The supported matrix row types are listed below.  Each type is listed
with the keyword that identifies it in @code{ROWTYPE_}.  All supported
types of matrices are square, meaning that each matrix must include
one row per continuous variable, with the @code{VARNAME_} variable
indicating each continuous variable in turn in the same order as the
dictionary.

@table @code
@item CORR
Correlation coefficients.

@item COV
Covariance coefficients.

@item MAT
General-purpose matrix.

@item N_MATRIX
Counts.

@item PROX
Proximities matrix.
@end table

The supported vector row types are listed below, along with their
associated keyword.  Vector row types only require a single row, whose
@code{VARNAME_} is blank:

@table @code
@item COUNT
Unweighted counts.

@item DFE
Degrees of freedom.

@item MEAN
Means.

@item MSE
Mean squared errors.

@item N
Counts.

@item STDDEV
Standard deviations.
@end table

Only the row types listed above may appear in matrix files.  The
@cmd{MATRIX DATA} command, however, accepts the additional row types
listed below, which it changes into matrix file row types as part of
its conversion process:

@table @code
@item N_VECTOR
Synonym for @cmd{N}.

@item SD
Synonym for @code{STDDEV}.

@item N_SCALAR
Accepts a single number from the @code{MATRIX DATA} input and writes
it as an @code{N} row with the number replicated across all the
continuous variables.
@end table

@node MATRIX DATA
@section MATRIX DATA
@vindex MATRIX DATA

@display
MATRIX DATA
        VARIABLES=@var{variables}
        [FILE=@{'@var{file_name}' | INLINE@}
        [/FORMAT=[@{LIST | FREE@}]
                 [@{UPPER | LOWER | FULL@}]
                 [@{DIAGONAL | NODIAGONAL@}]]
        [/SPLIT=@var{split_vars}]
        [/FACTORS=@var{factor_vars}]
        [/N=@var{n}]

The following subcommands are only needed when ROWTYPE_ is not
specified on the VARIABLES subcommand:
        [/CONTENTS=@{CORR,COUNT,COV,DFE,MAT,MEAN,MSE,
                    N_MATRIX,N|N_VECTOR,N_SCALAR,PROX,SD|STDDEV@}]
        [/CELLS=@var{n_cells}]
@end display

The @cmd{MATRIX DATA} command convert matrices and vectors from text
format into the matrix file format (@xref{Matrix Files}) for use by
procedures that read matrices.  It reads a text file or inline data
and outputs to the active file, replacing any data already in the
active dataset.  The matrix file may then be used by other commands
directly from the active file, or it may be written to a @file{.sav}
file using the @cmd{SAVE} command.

The text data read by @cmd{MATRIX DATA} can be delimited by spaces or
commas.  A plus or minus sign, except immediately following a @samp{d}
or @samp{e}, also begins a new value.  Optionally, values may be
enclosed in single or double quotes.

@cmd{MATRIX DATA} can read the types of matrix and vector data
supported in matrix files (@pxref{Matrix File Row Types}).

The @subcmd{FILE} subcommand specifies the source of the command's
input.  To read input from a text file, specify its name in quotes.
To supply input inline, omit @subcmd{FILE} or specify @code{INLINE}.
Inline data must directly follow @code{MATRIX DATA}, inside @cmd{BEGIN
DATA} (@pxref{BEGIN DATA}).

@subcmd{VARIABLES} is the only required subcommand.  It names the
variables present in each input record in the order that they appear.
(@cmd{MATRIX DATA} reorders the variables in the matrix file it
produces, if needed to fit the matrix file format.)  The variable list
must include split variables and factor variables, if they are present
in the data, in addition to the continuous variables that form matrix
rows and columns.  It may also include a special variable named
@code{ROWTYPE_}.

Matrix data may include split variables or factor variables or both.
List split variables, if any, on the @subcmd{SPLIT} subcommand and
factor variables, if any, on the @subcmd{FACTORS} subcommand.  Split
and factor variables must be numeric.  Split and factor variables must
also be listed on @subcmd{VARIABLES}, with one exception: if
@subcmd{VARIABLES} does not include @code{ROWTYPE_}, then
@subcmd{SPLIT} may name a single variable that is not in
@subcmd{VARIABLES} (@pxref{MATRIX DATA Example 8}).

The @subcmd{FORMAT} subcommand accepts settings to describe the format
of the input data:

@table @asis
@item @code{LIST} (default)
@itemx @code{FREE}
LIST requires each row to begin at the start of a new input line.
FREE allows rows to begin in the middle of a line.  Either setting
allows a single row to continue across multiple input lines.

@item @code{LOWER} (default)
@itemx @code{UPPER}
@itemx @code{FULL}
With LOWER, only the lower triangle is read from the input data and
the upper triangle is mirrored across the main diagonal.  UPPER
behaves similarly for the upper triangle.  FULL reads the entire
matrix.

@item @code{DIAGONAL} (default)
@itemx @code{NODIAGONAL}
With DIAGONAL, the main diagonal is read from the input data.  With
NODIAGONAL, which is incompatible with FULL, the main diagonal is not
read from the input data but instead set to 1 for correlation matrices
and system-missing for others.
@end table

The @subcmd{N} subcommand is a way to specify the size of the
population.  It is equivalent to specifying an @code{N} vector with
the specified value for each split file.

@cmd{MATRIX DATA} supports two different ways to indicate the kinds of
matrices and vectors present in the data, depending on whether a
variable with the special name @code{ROWTYPE_} is present in
@code{VARIABLES}.  The following subsections explain @cmd{MATRIX DATA}
syntax and behavior in each case.

@node MATRIX DATA with ROWTYPE_
@subsection With @code{ROWTYPE_}

If @code{VARIABLES} includes @code{ROWTYPE_}, each case's
@code{ROWTYPE_} indicates the type of data contained in the row.
@xref{Matrix File Row Types}, for a list of supported row types.

@subsubheading Example 1: Defaults with @code{ROWTYPE_}
@anchor{MATRIX DATA Example 1}

This example shows a simple use of @cmd{MATRIX DATA} with
@code{ROWTYPE_} plus 8 variables named @code{var01} through
@code{var08}.

Because @code{ROWTYPE_} is the first variable in @subcmd{VARIABLES},
it appears first on each line. The first three lines in the example
data have @code{ROWTYPE_} values of @samp{MEAN}, @samp{SD}, and
@samp{N}.  These indicate that these lines contain vectors of means,
standard deviations, and counts, respectively, for @code{var01}
through @code{var08} in order.

The remaining 8 lines have a ROWTYPE_ of @samp{CORR} which indicates
that the values are correlation coefficients.  Each of the lines
corresponds to a row in the correlation matrix: the first line is for
@code{var01}, the next line for @code{var02}, and so on.  The input
only contains values for the lower triangle, including the diagonal,
since @code{FORMAT=LOWER DIAGONAL} is the default.

With @code{ROWTYPE_}, the @code{CONTENTS} subcommand is optional and
the @code{CELLS} subcommand may not be used.

@example
MATRIX DATA
    VARIABLES=ROWTYPE_ var01 TO var08.
BEGIN DATA.
MEAN  24.3   5.4  69.7  20.1  13.4   2.7  27.9   3.7
SD     5.7   1.5  23.5   5.8   2.8   4.5   5.4   1.5
N       92    92    92    92    92    92    92    92
CORR  1.00
CORR   .18  1.00
CORR  -.22  -.17  1.00
CORR   .36   .31  -.14  1.00
CORR   .27   .16  -.12   .22  1.00
CORR   .33   .15  -.17   .24   .21  1.00
CORR   .50   .29  -.20   .32   .12   .38  1.00
CORR   .17   .29  -.05   .20   .27   .20   .04  1.00
END DATA.
@end example

@subsubheading Example 2: @code{FORMAT=UPPER NODIAGONAL}

This syntax produces the same matrix file as example 1, but it uses
@code{FORMAT=UPPER NODIAGONAL} to specify the upper triangle and omit
the diagonal.  Because the matrix's @code{ROWTYPE_} is @code{CORR},
@pspp{} automatically fills in the diagonal with 1.

@example
MATRIX DATA
    VARIABLES=ROWTYPE_ var01 TO var08
    /FORMAT=UPPER NODIAGONAL.
BEGIN DATA.
MEAN  24.3   5.4  69.7  20.1  13.4   2.7  27.9   3.7
SD     5.7   1.5  23.5   5.8   2.8   4.5   5.4   1.5
N       92    92    92    92    92    92    92    92
CORR         .17   .50  -.33   .27   .36  -.22   .18
CORR               .29   .29  -.20   .32   .12   .38
CORR                     .05   .20  -.15   .16   .21
CORR                           .20   .32  -.17   .12
CORR                                 .27   .12  -.24
CORR                                      -.20  -.38
CORR                                             .04
END DATA.
@end example

@subsubheading Example 3: @subcmd{N} subcommand

This syntax uses the @subcmd{N} subcommand in place of an @code{N}
vector.  It produces the same matrix file as examples 1 and 2.

@example
MATRIX DATA
    VARIABLES=ROWTYPE_ var01 TO var08
    /FORMAT=UPPER NODIAGONAL
    /N 92.
BEGIN DATA.
MEAN  24.3   5.4  69.7  20.1  13.4   2.7  27.9   3.7
SD     5.7   1.5  23.5   5.8   2.8   4.5   5.4   1.5
CORR         .17   .50  -.33   .27   .36  -.22   .18
CORR               .29   .29  -.20   .32   .12   .38
CORR                     .05   .20  -.15   .16   .21
CORR                           .20   .32  -.17   .12
CORR                                 .27   .12  -.24
CORR                                      -.20  -.38
CORR                                             .04
END DATA.
@end example

@subsubheading Example 4: Split variables
@anchor{MATRIX DATA Example 4}

This syntax defines two matrices, using the variable @samp{s1} to
distinguish between them.  Notice how the order of variables in the
input matches their order on @subcmd{VARIABLES}.  This example also
uses @code{FORMAT=FULL}.

@example
MATRIX DATA
    VARIABLES=s1 ROWTYPE_  var01 TO var04
    /SPLIT=s1
    /FORMAT=FULL.
BEGIN DATA.
0 MEAN 34 35 36 37
0 SD   22 11 55 66
0 N    99 98 99 92
0 CORR  1 .9 .8 .7
0 CORR .9  1 .6 .5
0 CORR .8 .6  1 .4
0 CORR .7 .5 .4  1
1 MEAN 44 45 34 39
1 SD   23 15 51 46
1 N    98 34 87 23
1 CORR  1 .2 .3 .4
1 CORR .2  1 .5 .6
1 CORR .3 .5  1 .7
1 CORR .4 .6 .7  1
END DATA.
@end example

@subsubheading Example 5: Factor variables
@anchor{MATRIX DATA Example 5}

This syntax defines a matrix file that includes a factor variable
@samp{f1}.  The data includes mean, standard deviation, and count
vectors for two values of the factor variable, plus a correlation
matrix for pooled data.

@example
MATRIX DATA
    VARIABLES=ROWTYPE_ f1 var01 TO var04
    /FACTOR=f1.
BEGIN DATA.
MEAN 0 34 35 36 37
SD   0 22 11 55 66
N    0 99 98 99 92
MEAN 1 44 45 34 39
SD   1 23 15 51 46
N    1 98 34 87 23
CORR .  1
CORR . .9  1
CORR . .8 .6  1
CORR . .7 .5 .4  1
END DATA.
@end example

@node MATRIX DATA without ROWTYPE_
@subsection Without @code{ROWTYPE_}

If @code{VARIABLES} does not contain @code{ROWTYPE_}, the
@subcmd{CONTENTS} subcommand defines the row types that appear in the
file and their order.  If @subcmd{CONTENTS} is omitted,
@code{CONTENTS=CORR} is assumed.

Factor variables without @code{ROWTYPE_} introduce special
requirements, illustrated below in Examples 8 and 9.

@subsubheading Example 6: Defaults without @code{ROWTYPE_}

This example shows a simple use of @cmd{MATRIX DATA} with 8 variables
named @code{var01} through @code{var08}, without @code{ROWTYPE_}.
This yields the same matrix file as Example 1 (@pxref{MATRIX DATA
Example 1}).

@example
MATRIX DATA
    VARIABLES=var01 TO var08
   /CONTENTS=MEAN SD N CORR.
BEGIN DATA.
24.3   5.4  69.7  20.1  13.4   2.7  27.9   3.7
 5.7   1.5  23.5   5.8   2.8   4.5   5.4   1.5
  92    92    92    92    92    92    92    92
1.00
 .18  1.00
-.22  -.17  1.00
 .36   .31  -.14  1.00
 .27   .16  -.12   .22  1.00
 .33   .15  -.17   .24   .21  1.00
 .50   .29  -.20   .32   .12   .38  1.00
 .17   .29  -.05   .20   .27   .20   .04  1.00
END DATA.
@end example

@subsubheading Example 7: Split variables with explicit values

This syntax defines two matrices, using the variable @code{s1} to
distinguish between them.  Each line of data begins with @code{s1}.
This yields the same matrix file as Example 4 (@pxref{MATRIX DATA
Example 4}).

@example
MATRIX DATA
    VARIABLES=s1 var01 TO var04
    /SPLIT=s1
    /FORMAT=FULL
    /CONTENTS=MEAN SD N CORR.
BEGIN DATA.
0 34 35 36 37
0 22 11 55 66
0 99 98 99 92
0  1 .9 .8 .7
0 .9  1 .6 .5
0 .8 .6  1 .4
0 .7 .5 .4  1
1 44 45 34 39
1 23 15 51 46
1 98 34 87 23
1  1 .2 .3 .4
1 .2  1 .5 .6
1 .3 .5  1 .7
1 .4 .6 .7  1
END DATA.
@end example

@subsubheading Example 8: Split variable with sequential values
@anchor{MATRIX DATA Example 8}

Like this previous example, this syntax defines two matrices with
split variable @code{s1}.  In this case, though, @code{s1} is not
listed in @subcmd{VARIABLES}, which means that its value does not
appear in the data.  Instead, @cmd{MATRIX DATA} reads matrix data
until the input is exhausted, supplying 1 for the first split, 2 for
the second, and so on.

@example
MATRIX DATA
    VARIABLES=var01 TO var04
    /SPLIT=s1
    /FORMAT=FULL
    /CONTENTS=MEAN SD N CORR.
BEGIN DATA.
34 35 36 37
22 11 55 66
99 98 99 92
 1 .9 .8 .7
.9  1 .6 .5
.8 .6  1 .4
.7 .5 .4  1
44 45 34 39
23 15 51 46
98 34 87 23
 1 .2 .3 .4
.2  1 .5 .6
.3 .5  1 .7
.4 .6 .7  1
END DATA.
@end example

@subsubsection Factor variables without @code{ROWTYPE_}

Without @subcmd{ROWTYPE_}, factor variables introduce two new wrinkles
to @cmd{MATRIX DATA} syntax.  First, the @subcmd{CELLS} subcommand
must declare the number of combinations of factor variables present in
the data.  If there is, for example, one factor variable for which the
data contains three values, one would write @code{CELLS=3}; if there
are two (or more) factor variables for which the data contains five
combinations, one would use @code{CELLS=5}; and so on.

Second, the @subcmd{CONTENTS} subcommand must distinguish within-cell
data from pooled data by enclosing within-cell row types in
parentheses.  When different within-cell row types for a single factor
appear in subsequent lines, enclose the row types in a single set of
parentheses; when different factors' values for a given within-cell
row type appear in subsequent lines, enclose each row type in
individual parentheses.

Without @subcmd{ROWTYPE_}, input lines for pooled data do not include
factor values, not even as missing values, but input lines for
within-cell data do.

The following examples aim to clarify this syntax.

@subsubheading Example 9: Factor variables, grouping within-cell records by factor

This syntax defines the same matrix file as Example 5 (@pxref{MATRIX
DATA Example 5}), without using @code{ROWTYPE_}.  It declares
@code{CELLS=2} because the data contains two values (0 and 1) for
factor variable @code{f1}.  Within-cell vector row types @code{MEAN},
@code{SD}, and @code{N} are in a single set of parentheses on
@subcmd{CONTENTS} because they are grouped together in subsequent
lines for a single factor value.  The data lines with the pooled
correlation matrix do not have any factor values.

@example
MATRIX DATA
    VARIABLES=f1 var01 TO var04
    /FACTOR=f1
    /CELLS=2
    /CONTENTS=(MEAN SD N) CORR.
BEGIN DATA.
0 34 35 36 37
0 22 11 55 66
0 99 98 99 92
1 44 45 34 39
1 23 15 51 46
1 98 34 87 23
   1
  .9  1
  .8 .6  1
  .7 .5 .4  1
END DATA.
@end example

@subsubheading Example 10: Factor variables, grouping within-cell records by row type

This syntax defines the same matrix file as the previous example.  The
only difference is that the within-cell vector rows are grouped
differently: two rows of means (one for each factor), followed by two
rows of standard deviations, followed by two rows of counts.

@example
MATRIX DATA
    VARIABLES=f1 var01 TO var04
    /FACTOR=f1
    /CELLS=2
    /CONTENTS=(MEAN) (SD) (N) CORR.
BEGIN DATA.
0 34 35 36 37
1 44 45 34 39
0 22 11 55 66
1 23 15 51 46
0 99 98 99 92
1 98 34 87 23
   1
  .9  1
  .8 .6  1
  .7 .5 .4  1
END DATA.
@end example

@node MCONVERT
@section MCONVERT
@vindex MCONVERT

@display
MCONVERT
    [[MATRIX=]
     [IN(@{@samp{*}|'@var{file}'@})]
     [OUT(@{@samp{*}|'@var{file}'@})]]
    [/@{REPLACE,APPEND@}].
@end display

The @cmd{MCONVERT} command converts matrix data from a correlation
matrix and a vector of standard deviations into a covariance matrix,
or vice versa.

By default, @cmd{MCONVERT} both reads and writes the active file.  Use
the @cmd{MATRIX} subcommand to specify other files.  To read a matrix
file, specify its name inside parentheses following @code{IN}.  To
write a matrix file, specify its name inside parentheses following
@code{OUT}.  Use @samp{*} to explicitly specify the active file for
input or output.

When @cmd{MCONVERT} reads the input, by default it substitutes a
correlation matrix and a vector of standard deviations each time it
encounters a covariance matrix, and vice versa.  Specify
@code{/APPEND} to instead have @cmd{MCONVERT} add the other form of
data without removing the existing data.  Use @code{/REPLACE} to
explicitly request removing the existing data.

The @cmd{MCONVERT} command requires its input to be a matrix file.
Use @cmd{MATRIX DATA} to convert text input into matrix file format.
@xref{MATRIX DATA}, for details.

@node MATRIX
@section MATRIX
@vindex MATRIX
@vindex END MATRIX

@display
@t{MATRIX.}
@dots{}@i{matrix commands}@dots{}
@t{END MATRIX.}
@end display

@noindent
The following basic matrix commands are supported:

@display
@t{COMPUTE} @i{variable}[@t{(}@i{index}[@t{,}@i{index}]@t{)}]@t{=}@i{expression}@t{.}
@t{CALL} @i{procedure}@t{(}@i{argument}@t{,} @dots{}).
@t{PRINT} [@i{expression}]
      [@t{/FORMAT}@t{=}@i{format}]
      [@t{/TITLE}@t{=}@i{title}]
      [@t{/SPACE}@t{=}@{@t{NEWPAGE} @math{|} @i{n}@}]
      [@{@t{/RLABELS}@t{=}@i{string}@dots{} @math{|} @t{/RNAMES}@t{=}@i{expression}@}]
      [@{@t{/CLABELS}@t{=}@i{string}@dots{} @math{|} @t{/CNAMES}@t{=}@i{expression}@}]@t{.}
@end display

@noindent
The following matrix commands offer support for flow control:

@display
@t{DO IF} @i{expression}@t{.}
  @dots{}@i{matrix commands}@dots{}
[@t{ELSE IF} @i{expression}@t{.}
  @dots{}@i{matrix commands}@dots{}]@dots{}
[@t{ELSE}
  @dots{}@i{matrix commands}@dots{}]
@t{END IF}@t{.}

@t{LOOP} [@i{var}@t{=}@i{first} @t{TO} @i{last} [@t{BY} @i{step}]] [@t{IF} @i{expression}]@t{.}
  @dots{}@i{matrix commands}@dots{}
@t{END LOOP} [@t{IF} @i{expression}]@t{.}

@t{BREAK}@t{.}
@end display

@noindent
The following matrix commands support matrix input and output:

@display
@t{READ} @i{variable}[@t{(}@i{index}[@t{,}@i{index}]@t{)}]
     [@t{/FILE}@t{=}@i{file}]
     @t{/FIELD}@t{=}@i{first} @t{TO} @i{last} [@t{BY} @i{width}]
     [@t{/FORMAT}@t{=}@i{format}]
     [@t{/SIZE}@t{=}@i{expression}]
     [@t{/MODE}@t{=}@{@t{RECTANGULAR} @math{|} @t{SYMMETRIC}@}]
     [@t{/REREAD}]@t{.}
@t{WRITE} @i{expression}
      [@t{/OUTFILE}@t{=}@i{file}]
      @t{/FIELD}@t{=}@i{first} @t{TO} @i{last} [@t{BY} @i{width}]
      [@t{/MODE}@t{=}@{@t{RECTANGULAR} @math{|} @t{TRIANGULAR}@}]
      [@t{/HOLD}]
      [@t{/FORMAT}@t{=}@i{format}]@t{.}
@t{GET} @i{variable}[@t{(}@i{index}[@t{,}@i{index}]@t{)}]
    [@t{/FILE}@t{=}@{@i{file} @math{|} @t{*}@}]
    [@t{/VARIABLES}@t{=}@i{variable}@dots{}]
    [@t{/NAMES}@t{=}@i{expression}]
    [@t{/MISSING}@t{=}@{@t{ACCEPT} @math{|} @t{OMIT} @math{|} @i{number}@}]
    [@t{/SYSMIS}@t{=}@{@t{OMIT} @math{|} @i{number}@}]@t{.}
@t{SAVE} @i{expression}
     [@t{/OUTFILE}@t{=}@{@i{file} @math{|} @t{*}@}]
     [@t{/VARIABLES}@t{=}@i{variable}@dots{}]
     [@t{/NAMES}@t{=}@i{expression}]
     [@t{/STRINGS}@t{=}@i{variable}@dots{}]@t{.}
@t{MGET} [@t{/FILE}@t{=}@i{file}]
     [@t{/TYPE}@t{=}@{@t{COV} @math{|} @t{CORR} @math{|} @t{MEAN} @math{|} @t{STDDEV} @math{|} @t{N} @math{|} @t{COUNT}@}]@t{.}
@t{MSAVE} @i{expression}
      @t{/TYPE}@t{=}@{@t{COV} @math{|} @t{CORR} @math{|} @t{MEAN} @math{|} @t{STDDEV} @math{|} @t{N} @math{|} @t{COUNT}@}
      [@t{/OUTFILE}@t{=}@i{file}]
      [@t{/VARIABLES}@t{=}@i{variable}@dots{}]
      [@t{/SNAMES}@t{=}@i{variable}@dots{}]
      [@t{/SPLIT}@t{=}@i{expression}]
      [@t{/FNAMES}@t{=}@i{variable}@dots{}]
      [@t{/FACTOR}@t{=}@i{expression}]@t{.}
@end display

@noindent
The following matrix commands provide additional support:

@display
@t{DISPLAY} [@{@t{DICTIONARY} @math{|} @t{STATUS}@}]@t{.}
@t{RELEASE} @i{variable}@dots{}@t{.}
@end display

@code{MATRIX} and @code{END MATRIX} enclose a special @pspp{}
sub-language, called the matrix language.  The matrix language does
not require an active dataset to be defined and only a few of the
matrix language commands work with any datasets that are defined.
Each instance of @code{MATRIX}@dots{}@code{END MATRIX} is a separate
program whose state is independent of any instance, so that variables
declared within a matrix program are forgotten at its end.

The matrix language works with matrices, where a @dfn{matrix} is a
rectangular array of real numbers.  An @math{@var{n}@times{}@var{m}}
matrix has @var{n} rows and @var{m} columns.  Some special cases are
important: a @math{@var{n}@times{}1} matrix is a @dfn{column vector},
a @math{1@times{}@var{n}} is a @dfn{row vector}, and a
@math{1@times{}1} matrix is a @dfn{scalar}.

The matrix language also has limited support for matrices that contain
8-byte strings instead of numbers.  Strings longer than 8 bytes are
truncated, and shorter strings are padded with spaces.  String
matrices are mainly useful for labeling rows and columns when printing
numerical matrices with the @code{MATRIX PRINT} command.  Arithmetic
operations on string matrices will not produce useful results.  The
user should not mix strings and numbers within a matrix.

The matrix language does not work with cases.  A variable in the
matrix language represents a single matrix.

The matrix language does not support missing values.

@code{MATRIX} is a procedure, so it cannot be enclosed inside @code{DO
IF}, @code{LOOP}, etc.

Macros may be used within a matrix program, and macros may expand to
include entire matrix programs.  The @code{DEFINE} command may not
appear within a matrix program.  @xref{DEFINE}, for more information
about macros.

The following sections describe the details of the matrix language:
first, the syntax of matrix expressions, then each of the supported
commands.  The @code{COMMENT} command (@pxref{COMMENT}) is also
supported.

@node Matrix Expressions
@subsection Matrix Expressions

Many matrix commands use expressions.  A matrix expression may use the
following operators, listed in descending order of operator
precedence.  Within a single level, operators associate from left to
right.

@itemize @bullet
@item
Function call @t{()} and matrix construction @t{@{@}}

@item
Indexing @t{()}

@item
Unary @t{+} and @t{-}

@item
Integer sequence @t{:}

@item
Exponentiation @t{**} and @t{&**}

@item
Multiplication @t{*} and @t{&*}, and division @t{/} and @t{&/}

@item
Addition @t{+} and subtraction @t{-}

@item
Relational @t{< <= = >= > <>}

@item
Logical @t{NOT}

@item
Logical @t{AND}

@item
Logical @t{OR} and @t{XOR}
@end itemize

@xref{Matrix Functions}, for the available matrix functions.  The
remaining operators are described in more detail below.

@cindex restricted expressions
Expressions appear in the matrix language in some contexts where there
would be ambiguity whether @samp{/} is an operator or a separator
between subcommands.  In these contexts, only the operators with
higher precedence than @samp{/} are allowed outside parentheses.
Later sections call these @dfn{restricted expressions}.

@node Matrix Construction Operator
@subsubsection Matrix Construction Operator @t{@{@}}

Use the @t{@{}@t{@}} operator to construct matrices.  Within
the curly braces, commas separate elements within a row and semicolons
separate rows.  The following examples show a @math{2@times{}3}
matrix, a @math{1@times{}4} row vector, a @math{3@times{}1} column
vector, and a scalar.

@multitable @columnfractions .4 .05 .4
@item @t{@{1, 2, 3; 4, 5, 6@}}
@tab @result{}
@tab
@ifnottex
@t{[1  2  3] @* [4  5  6]}
@end ifnottex
@iftex
@math{\left(\matrix{1 & 2 & 3 \cr 4 & 5 & 6}\right)}
@end iftex
@
@item @t{@{3.14, 6.28, 9.24, 12.57@}}
@tab @result{}
@tab
@ifnottex
[3.14  6.28  9.42  12.57]
@end ifnottex
@iftex
@math{(\matrix{3.14 & 6.28 & 9.42 & 12.57})}
@end iftex
@
@item @t{@{1.41; 1.73; 2@}}
@tab @result{}
@tab
@ifnottex
@t{[1.41] @* [1.73] @* [2.00]}
@end ifnottex
@iftex
@math{(\matrix{1.41 & 1.73 & 2.00})}
@end iftex
@
@item @t{@{5@}}
@tab @result{}
@tab 5
@end multitable

Curly braces are not limited to holding numeric literals.  They can
contain calculations, and they can paste together matrices and vectors
in any way as long as the result is rectangular.  For example, if
@samp{m} is matrix @code{@{1, 2; 3, 4@}}, @samp{r} is row vector
@code{@{5, 6@}}, and @samp{c} is column vector @code{@{7, 8@}}, then
curly braces can be used as follows:

@multitable @columnfractions .4 .05 .4
@item @t{@{m, c; r, 10@}}
@tab @result{}
@tab
@ifnottex
@t{[1 2  7] @* [3 4  8] @* [5 6 10]}
@end ifnottex
@iftex
@math{\left(\matrix{1 & 2 & 7 \cr 3 & 4 & 8 \cr 5 & 6 & 10}\right)}
@end iftex
@
@item @t{@{c, 2 * c, T(r)@}}
@tab @result{}
@tab
@ifnottex
@t{[7 14 5] @* [8 16 6]}
@end ifnottex
@iftex
@math{\left(\matrix{7 & 14 & 5 \cr 8 & 16 & 6}\right)}
@end iftex
@end multitable

The final example above uses the transposition function @code{T}.

@node Matrix Sequence Operator
@subsubsection Integer Sequence Operator @samp{:}

The syntax @code{@var{first}:@var{last}:@var{step}} yields a row
vector of consecutive integers from @var{first} to @var{last} counting
by @var{step}.  The final @code{:@var{step}} is optional and
defaults to 1 when omitted.

Each of @var{first}, @var{last}, and @var{step} must be a scalar and
should be an integer (any fractional part is discarded).  Because
@samp{:} has a high precedence, operands other than numeric literals
must usually be parenthesized.

When @var{step} is positive (or omitted) and @math{@var{end} <
@var{start}}, or if @var{step} is negative and @math{@var{end} >
@var{start}}, then the result is an empty matrix.  If @var{step} is 0,
then @pspp{} reports an error.

Here are some examples:

@multitable @columnfractions .4 .05 .4
@item @t{1:6}      @tab @result{} @tab @t{@{1, 2, 3, 4, 5, 6@}}
@item @t{1:6:2}    @tab @result{} @tab @t{@{1, 3, 5@}}
@item @t{-1:-5:-1} @tab @result{} @tab @t{@{-1, -2, -3, -4, -5@}}
@item @t{-1:-5}    @tab @result{} @tab @t{@{@}}
@item @t{2:1:0}    @tab @result{} @tab (error)
@end multitable

@node Matrix Index Operator
@subsubsection Index Operator @code{()}

The result of the submatrix or indexing operator, written
@code{@var{m}(@var{rindex}, @var{cindex})}, contains the rows of
@var{m} whose indexes are given in vector @var{rindex} and the columns
whose indexes are given in vector @var{cindex}.

In the simplest case, if @var{rindex} and @var{cindex} are both
scalars, the result is also a scalar:

@multitable @columnfractions .4 .05 .4
@item @t{@{10, 20; 30, 40@}(1, 1)} @tab @result{} @tab @t{10}
@item @t{@{10, 20; 30, 40@}(1, 2)} @tab @result{} @tab @t{20}
@item @t{@{10, 20; 30, 40@}(2, 1)} @tab @result{} @tab @t{30}
@item @t{@{10, 20; 30, 40@}(2, 2)} @tab @result{} @tab @t{40}
@end multitable

If the index arguments have multiple elements, then the result
includes multiple rows or columns:

@multitable @columnfractions .4 .05 .4
@item @t{@{10, 20; 30, 40@}(1:2, 1)} @tab @result{} @tab @t{@{10; 30@}}
@item @t{@{10, 20; 30, 40@}(2, 1:2)} @tab @result{} @tab @t{@{30, 40@}}
@item @t{@{10, 20; 30, 40@}(1:2, 1:2)} @tab @result{} @tab @t{@{10, 20; 30, 40@}}
@end multitable

The special argument @samp{:} may stand in for all the rows or columns
in the matrix being indexed, like this:

@multitable @columnfractions .4 .05 .4
@item @t{@{10, 20; 30, 40@}(:, 1)} @tab @result{} @tab @t{@{10; 30@}}
@item @t{@{10, 20; 30, 40@}(2, :)} @tab @result{} @tab @t{@{30, 40@}}
@item @t{@{10, 20; 30, 40@}(:, :)} @tab @result{} @tab @t{@{10, 20; 30, 40@}}
@end multitable

The index arguments do not have to be in order, and they may contain
repeated values, like this:

@multitable @columnfractions .4 .05 .4
@item @t{@{10, 20; 30, 40@}(@{2, 1@}, 1)} @tab @result{} @tab @t{@{30; 10@}}
@item @t{@{10, 20; 30, 40@}(2, @{2; 2; 1@})} @tab @result{} @tab @t{@{40, 40, 30@}}
@item @t{@{10, 20; 30, 40@}(2:1:-1, :)} @tab @result{} @tab @t{@{30, 40; 10, 20@}}
@end multitable

When the matrix being indexed is a row or column vector, only a single
index argument is needed, like this:

@multitable @columnfractions .4 .05 .4
@item @t{@{11, 12, 13, 14, 15@}(2:4)} @tab @result{} @tab @t{@{12, 13, 14@}}
@item @t{@{11; 12; 13; 14; 15@}(2:4)} @tab @result{} @tab @t{@{12; 13; 14@}}
@end multitable

When an index is not an integer, @pspp{} discards the fractional part.
It is an error for an index to be less than 1 or greater than the
number of rows or columns:

@multitable @columnfractions .4 .05 .4
@item @t{@{11, 12, 13, 14@}(@{2.5, 4.6@})} @tab @result{} @tab @t{@{12, 14@}}
@item @t{@{11; 12; 13; 14@}(0)} @tab @result{} @tab (error)
@end multitable

@node Matrix Unary Operators
@subsubsection Unary Operators

The unary operators take a single operand of any dimensions and
operate on each of its elements independently.  The unary operators
are:

@table @code
@item -
Inverts the sign of each element.

@item +
No change.

@item NOT
Logical inversion: each positive value becomes 0 and each zero or
negative value becomes 1.
@end table

Examples:

@multitable @columnfractions .4 .05 .4
@item @t{-@{1, -2; 3, -4@}} @tab @result{} @tab @t{@{-1, 2; -3, 4@}}
@item @t{+@{1, -2; 3, -4@}} @tab @result{} @tab @t{@{1, -2; 3, -4@}}
@item @t{NOT @{1, 0; -1, 1@}} @tab @result{} @tab @t{@{0, 1; 1, 0@}}
@end multitable

@node Matrix Elementwise Binary Operators
@subsubsection Elementwise Binary Operators

The elementwise binary operators require their operands to be matrices
with the same dimensions.  Alternatively, if one operand is a scalar,
then its value is treated as if it were duplicated to the dimensions
of the other operand.  The result is a matrix of the same size as the
operands, in which each element is the result of the applying the
operator to the corresponding elements of the operands.

The elementwise binary operators are listed below.

@itemize @bullet
@item
The arithmetic operators, for familiar arithmetic operations:

@table @asis
@item @code{+}
Addition.

@item @code{-}
Subtraction.

@item @code{*}
Multiplication, if one operand is a scalar.  (Otherwise this is matrix
multiplication, described below.)

@item @code{/} or @code{&/}
Division.

@item @code{&*}
Multiplication.

@item @code{&**}
Exponentiation.
@end table

@item
The relational operators, whose results are 1 when a comparison is
true and 0 when it is false:

@table @asis
@item @code{<} or @code{LT}
Less than.

@item @code{<=} or @code{LE}
Less than or equal.

@item @code{=} or @code{EQ}
Equal.

@item @code{>} or @code{GT}
Greater than.

@item @code{>=} or @code{GE}
Greater than or equal.

@item @code{<>} or @code{~=} or @code{NE}
Not equal.
@end table

@item
The logical operators, which treat positive operands as true and
nonpositive operands as false.  They yield 0 for false and 1 for true:

@table @code
@item AND
True if both operands are true.

@item OR
True if at least one operand is true.

@item XOR
True if exactly one operand is true.
@end table
@end itemize

Examples:

@multitable @columnfractions .4 .05 .4
@item @t{1 + 2} @tab @result{} @tab @t{3}
@item @t{1 + @{3; 4@}} @tab @result{} @tab @t{@{4; 5@}}
@item @t{@{66, 77; 88, 99@} + 5} @tab @result{} @tab @t{@{71, 82; 93, 104@}}
@item @t{@{4, 8; 3, 7@} + @{1, 0; 5, 2@}} @tab @result{} @tab @t{@{5, 8; 8, 9@}}
@item @t{@{1, 2; 3, 4@} < @{4, 3; 2, 1@}} @tab @result{} @tab @t{@{1, 1; 0, 0@}}
@item @t{@{1, 3; 2, 4@} >= 3} @tab @result{} @tab @t{@{0, 1; 0, 1@}}
@item @t{@{0, 0; 1, 1@} AND @{0, 1; 0, 1@}} @tab @result{} @tab @t{@{0, 0; 0, 1@}}
@end multitable

@node Matrix Multiplication Operator
@subsubsection Matrix Multiplication Operator @samp{*}

If @code{A} is an @math{@var{m}@times{}@var{n}} matrix and @code{B} is
an @math{@var{n}@times{}@var{p}} matrix, then @code{A*B} is the
@math{@var{m}@times{}@var{p}} matrix multiplication product @code{C}.
@pspp{} reports an error if the number of columns in @code{A} differs
from the number of rows in @code{B}.

The @code{*} operator performs elementwise multiplication (see above)
if one of its operands is a scalar.

No built-in operator yields the inverse of matrix multiplication.
Instead, multiply by the result of @code{INV} or @code{GINV}.

Some examples:

@multitable @columnfractions .4 .05 .4
@item @t{@{1, 2, 3@} * @{4; 5; 6@}} @tab @result{} @tab @t{32}
@item @t{@{4; 5; 6@} * @{1, 2, 3@}} @tab @result{} @tab @t{@{4,@w{ } 8, 12; @*@w{ }5, 10, 15; @*@w{ }6, 12, 18@}}
@end multitable

@node Matrix Exponentiation Operator
@subsubsection Matrix Exponentiation Operator @code{**}

The result of @code{A**B} is defined as follows when @code{A} is a
square matrix and @code{B} is an integer scalar:

@itemize @bullet
@item
For @code{B > 0}, @code{A**B} is @code{A*@dots{}*A}, where there are
@code{B} @samp{A}s.  (@pspp{} implements this efficiently for large
@code{B}, using exponentiation by squaring.)

@item
For @code{B < 0}, @code{A**B} is @code{INV(A**(-B))}.

@item
For @code{B = 0}, @code{A**B} is the identity matrix.
@end itemize

@noindent
@pspp{} reports an error if @code{A} is not square or @code{B} is not
an integer.

Examples:

@multitable @columnfractions .4 .05 .4
@item @t{@{2, 5; 1, 4@}**3} @tab @result{} @tab @t{@{48, 165; 33, 114@}}
@item @t{@{2, 5; 1, 4@}**0} @tab @result{} @tab @t{@{1, 0; 0, 1@}}
@item @t{10*@{4, 7; 2, 6@}**-1} @tab @result{} @tab @t{@{6, -7; -2, 4@}}
@end multitable

@node Matrix Functions
@subsection Matrix Functions

The matrix language support numerous functions in multiple categories.
The following subsections document each of the currently supported
functions.  The first letter of each parameter's name indicate the
required argument type:

@table @var
@item s
A scalar.

@item n
A nonnegative integer scalar.  (Non-integers are accepted and silently
rounded down to the nearest integer.)

@item V
A row or column vector.

@item M
A matrix.
@end table

@node Matrix Elementwise Functions
@subsubsection Elementwise Functions

These functions act on each element of their argument independently,
like the elementwise operators (@pxref{Matrix Elementwise Binary
Operators}).

@deffn {Matrix Function} ABS (@var{M})
Takes the absolute value of each element of @var{M}.

@t{ABS(@{-1, 2; -3, 0@}) @result{} @{1, 2; 3, 0@}}
@end deffn

@deffn {Matrix Function} ARSIN (@var{M})
@deffnx {Matrix Function} ARTAN (@var{M})
Computes the inverse sine or tangent, respectively, of each element in
@var{M}.  The results are in radians, between @math{-\pi/2} and
@math{+\pi/2}, inclusive.

The value of @math{\pi} can be computed as @code{4*ARTAN(1)}.

@t{ARSIN(@{-1, 0, 1@}) @result{} @{-1.57, 0, 1.57@}} (approximately)

@t{ARTAN(@{-5, -1, 1, 5@}) @result{} @{-1.37, -.79, .79, 1.37@}} (approximately)
@end deffn

@deffn {Matrix Function} COS (@var{M})
@deffnx {Matrix Function} SIN (@var{M})
Computes the cosine or sine, respectively, of each element in @var{M},
which must be in radians.

@t{COS(@{0.785, 1.57; 3.14, 1.57 + 3.14@}) @result{} @{.71, 0; -1, 0@}} (approximately)
@end deffn

@deffn {Matrix Function} EXP (@var{M})
Computes @math{e^x} for each element @var{x} in @var{M}.

@t{EXP(@{2, 3; 4, 5@}) @result{} @{7.39, 20.09; 54.6, 148.4@}} (approximately)
@end deffn

@deffn {Matrix Function} LG10 (@var{M})
@deffnx {Matrix Function} LN (@var{M})
Takes the logarithm with base 10 or base @math{e}, respectively, of
each element in @var{M}.

@t{LG10(@{1, 10, 100, 1000@}) @result{} @{0, 1, 2, 3@}} @*
@t{LG10(0) @result{}} (error)

@t{LN(@{EXP(1), 1, 2, 3, 4@}) @result{} @{1, 0, .69, 1.1, 1.39@}} (approximately) @*
@t{LN(0) @result{}} (error)
@end deffn

@deffn {Matrix Function} MOD (@var{M}, @var{s})
Takes each element in @var{M} modulo nonzero scalar value @var{s},
that is, the remainder of division by @var{s}.  The sign of the result
is the same as the sign of the dividend.

@t{MOD(@{5, 4, 3, 2, 1, 0@}, 3) @result{} @{2, 1, 0, 2, 1, 0@}} @*
@t{MOD(@{5, 4, 3, 2, 1, 0@}, -3) @result{} @{2, 1, 0, 2, 1, 0@}} @*
@t{MOD(@{-5, -4, -3, -2, -1, 0@}, 3) @result{} @{-2, -1, 0, -2, -1, 0@}} @*
@t{MOD(@{-5, -4, -3, -2, -1, 0@}, -3) @result{} @{-2, -1, 0, -2, -1, 0@}} @*
@t{MOD(@{5, 4, 3, 2, 1, 0@}, 1.5) @result{} @{.5, 1.0, .0, .5, 1.0, .0@}} @*
@t{MOD(@{5, 4, 3, 2, 1, 0@}, 0) @result{}} (error)
@end deffn

@deffn {Matrix Function} RND (@var{M})
@deffnx {Matrix Function} TRUNC (@var{M})
Rounds each element of @var{M} to an integer.  @code{RND} rounds to
the nearest integer, with halves rounded to even integers, and
@code{TRUNC} rounds toward zero.

@t{RND(@{-1.6, -1.5, -1.4@}) @result{} @{-2, -2, -1@}} @*
@t{RND(@{-.6, -.5, -.4@}) @result{} @{-1, 0, 0@}} @*
@t{RND(@{.4, .5, .6@} @result{} @{0, 0, 1@}} @*
@t{RND(@{1.4, 1.5, 1.6@}) @result{} @{1, 2, 2@}}

@t{TRUNC(@{-1.6, -1.5, -1.4@}) @result{} @{-1, -1, -1@}} @*
@t{TRUNC(@{-.6, -.5, -.4@}) @result{} @{0, 0, 0@}} @*
@t{TRUNC(@{.4, .5, .6@} @result{} @{0, 0, 0@}} @*
@t{TRUNC(@{1.4, 1.5, 1.6@}) @result{} @{1, 1, 1@}}
@end deffn

@deffn {Matrix Function} SQRT (@var{M})
Takes the square root of each element of @var{M}, which must not be
negative.

@t{SQRT(@{0, 1, 2, 4, 9, 81@}) @result{} @{0, 1, 1.41, 2, 3, 9@}} (approximately) @*
@t{SQRT(-1) @result{}} (error)
@end deffn

@node Matrix Logical Functions
@subsubsection Logical Functions

@deffn {Matrix Function} ALL (@var{M})
Returns a scalar with value 1 if all of the elements in @var{M} are
nonzero, or 0 if at least one element is zero.

@t{ALL(@{1, 2, 3@} < @{2, 3, 4@}) @result{} 1} @*
@t{ALL(@{2, 2, 3@} < @{2, 3, 4@}) @result{} 0} @*
@t{ALL(@{2, 3, 3@} < @{2, 3, 4@}) @result{} 0} @*
@t{ALL(@{2, 3, 4@} < @{2, 3, 4@}) @result{} 0}
@end deffn

@deffn {Matrix Function} ANY (@var{M})
Returns a scalar with value 1 if any of the elements in @var{M} is
nonzero, or 0 if all of them are zero.

@t{ANY(@{1, 2, 3@} < @{2, 3, 4@}) @result{} 1} @*
@t{ANY(@{2, 2, 3@} < @{2, 3, 4@}) @result{} 1} @*
@t{ANY(@{2, 3, 3@} < @{2, 3, 4@}) @result{} 1} @*
@t{ANY(@{2, 3, 4@} < @{2, 3, 4@}) @result{} 0}
@end deffn

@node Matrix Construction Functions
@subsubsection Matrix Construction Functions

@deffn {Matrix Function} BLOCK (@var{M1}, @dots{}, @var{Mn})
Returns a block diagonal matrix with as many rows as the sum of its
arguments' row counts and as many columns as the sum of their columns.
Each argument matrix is placed along the main diagonal of the result,
and all other elements are zero.

@format
@t{BLOCK(@{1, 2; 3, 4@}, 5, @{7; 8; 9@}, @{10, 11@}) @result{}
   1   2   0   0   0   0
   3   4   0   0   0   0
   0   0   5   0   0   0
   0   0   0   7   0   0
   0   0   0   8   0   0
   0   0   0   9   0   0
   0   0   0   0  10  11}
@end format
@end deffn

@deffn {Matrix Function} IDENT (@var{n})
@deffnx {Matrix Function} IDENT (@var{nr}, @var{nc})
Returns an identity matrix, whose main diagonal elements are one and
whose other elements are zero.  The returned matrix has @var{n} rows
and columns or @var{nr} rows and @var{nc} columns, respectively.

@format
@t{IDENT(1) @result{} 1
IDENT(2) @result{}
  1  0
  0  1
IDENT(3, 5) @result{}
  1  0  0  0  0
  0  1  0  0  0
  0  0  1  0  0
IDENT(5, 3) @result{}
  1  0  0
  0  1  0
  0  0  1
  0  0  0
  0  0  0}
@end format
@end deffn

@deffn {Matrix Function} MAGIC (@var{n})
Returns an @math{@var{n}@times{}@var{n}} matrix that contains each of
the integers @math{1@dots{}@var{n}} once, in which each column, each
row, and each diagonal sums to @math{n(n^2+1)/2}.  There are many
magic squares with given dimensions, but this function always returns
the same one for a given value of @var{n}.

@t{MAGIC(3) @result{} @{8, 1, 6; 3, 5, 7; 4, 9, 2@}} @*
@t{MAGIC(4) @result{} @{1, 5, 12, 16; 15, 11, 6, 2; 14, 8, 9, 3; 4, 10, 7, 13@}}
@end deffn

@deffn {Matrix Function} MAKE (@var{nr}, @var{nc}, @var{s})
Returns an @math{@var{nr}@times{}@var{nc}} matrix whose elements are
all @var{s}.

@t{MAKE(1, 2, 3) @result{} @{3, 3@}} @*
@t{MAKE(2, 1, 4) @result{} @{4; 4@}} @*
@t{MAKE(2, 3, 5) @result{} @{5, 5, 5; 5, 5, 5@}}
@end deffn

@deffn {Matrix Function} MDIAG (@var{V})
@anchor{MDIAG} Given @var{n}-element vector @var{V}, returns a
@math{@var{n}@times{}@var{n}} matrix whose main diagonal is copied
from @var{V}.  The other elements in the returned vector are zero.

Use @code{CALL SETDIAG} (@pxref{CALL SETDIAG}) to replace the main
diagonal of a matrix in-place.

@format
@t{MDIAG(@{1, 2, 3, 4@}) @result{}
  1  0  0  0
  0  2  0  0
  0  0  3  0
  0  0  0  4}
@end format
@end deffn

@deffn {Matrix Function} RESHAPE (@var{M}, @var{nr}, @var{nc})
Returns an @math{@var{nr}@times{}@var{nc}} matrix whose elements come
from @var{M}, which must have the same number of elements as the new
matrix, copying elements from @var{M} to the new matrix row by row.

@format
@t{RESHAPE(1:12, 1, 12) @result{}
   1   2   3   4   5   6   7   8   9  10  11  12
RESHAPE(1:12, 2, 6) @result{}
   1   2   3   4   5   6
   7   8   9  10  11  12
RESHAPE(1:12, 3, 4) @result{}
   1   2   3   4
   5   6   7   8
   9  10  11  12
RESHAPE(1:12, 4, 3) @result{}
   1   2   3
   4   5   6
   7   8   9
  10  11  12}
@end format
@end deffn

@deffn {Matrix Function} T (@var{M})
@deffnx {Matrix Function} TRANSPOS (@var{M})
Returns @var{M} with rows exchanged for columns.

@t{T(@{1, 2, 3@}) @result{} @{1; 2; 3@}} @*
@t{T(@{1; 2; 3@}) @result{} @{1, 2, 3@}}
@end deffn

@deffn {Matrix Function} UNIFORM (@var{nr}, @var{nc})
Returns a @math{@var{nr}@times{}@var{nc}} matrix in which each element
is randomly chosen from a uniform distribution of real numbers between
0 and 1.  Random number generation honors the current seed setting
(@pxref{SET SEED}).

The following example shows one possible output, but of course every
result will be different (given different seeds):

@format
@t{UNIFORM(4, 5)*10 @result{}
  7.71  2.99   .21  4.95  6.34
  4.43  7.49  8.32  4.99  5.83
  2.25   .25  1.98  7.09  7.61
  2.66  1.69  2.64   .88  1.50}
@end format
@end deffn

@node Matrix Minimum and Maximum and Sum Functions
@subsubsection Minimum, Maximum, and Sum Functions

@deffn {Matrix Function} CMIN (@var{M})
@deffnx {Matrix Function} CMAX (@var{M})
@deffnx {Matrix Function} CSUM (@var{M})
@deffnx {Matrix Function} CSSQ (@var{M})
Returns a row vector with the same number of columns as @var{M}, in
which each element is the minimum, maximum, sum, or sum of squares,
respectively, of the elements in the same column of @var{M}.

@t{CMIN(@{1, 2, 3; 4, 5, 6; 7, 8, 9@} @result{} @{1, 2, 3@}} @*
@t{CMAX(@{1, 2, 3; 4, 5, 6; 7, 8, 9@} @result{} @{7, 8, 9@}} @*
@t{CSUM(@{1, 2, 3; 4, 5, 6; 7, 8, 9@} @result{} @{12, 15, 18@}} @*
@t{CSSQ(@{1, 2, 3; 4, 5, 6; 7, 8, 9@} @result{} @{66, 93, 126@}}
@end deffn

@deffn {Matrix Function} MMIN (@var{M})
@deffnx {Matrix Function} MMAX (@var{M})
@deffnx {Matrix Function} MSUM (@var{M})
@deffnx {Matrix Function} MSSQ (@var{M})
Returns the minimum, maximum, sum, or sum of squares, respectively, of
the elements of @var{M}.

@t{MMIN(@{1, 2, 3; 4, 5, 6; 7, 8, 9@} @result{} 1} @*
@t{MMAX(@{1, 2, 3; 4, 5, 6; 7, 8, 9@} @result{} 9} @*
@t{MSUM(@{1, 2, 3; 4, 5, 6; 7, 8, 9@} @result{} 45} @*
@t{MSSQ(@{1, 2, 3; 4, 5, 6; 7, 8, 9@} @result{} 285}
@end deffn

@deffn {Matrix Function} RMIN (@var{M})
@deffnx {Matrix Function} RMAX (@var{M})
@deffnx {Matrix Function} RSUM (@var{M})
@deffnx {Matrix Function} RSSQ (@var{M})
Returns a column vector with the same number of rows as @var{M}, in
which each element is the minimum, maximum, sum, or sum of squares,
respectively, of the elements in the same row of @var{M}.

@t{RMIN(@{1, 2, 3; 4, 5, 6; 7, 8, 9@} @result{} @{1; 4; 7@}} @*
@t{RMAX(@{1, 2, 3; 4, 5, 6; 7, 8, 9@} @result{} @{3; 6; 9@}} @*
@t{RSUM(@{1, 2, 3; 4, 5, 6; 7, 8, 9@} @result{} @{6; 15; 24@}} @*
@t{RSSQ(@{1, 2, 3; 4, 5, 6; 7, 8, 9@} @result{} @{14; 77; 194@}}
@end deffn

@deffn {Matrix Function} SSCP (@var{M})
Returns @math{@var{M}^T @times{} @var{M}}.

@t{SSCP(@{1, 2, 3; 4, 5, 6@}) @result{} @{17, 22, 27; 22, 29, 36; 27, 36, 45@}}
@end deffn

@deffn {Matrix Function} TRACE (@var{M})
Returns the sum of the elements along @var{M}'s main diagonal,
equivalent to @code{MSUM(DIAG(@var{M}))}.

@t{TRACE(MDIAG(1:5)) @result{} 15}
@end deffn

@node Matrix Property Functions
@subsubsection Matrix Property Functions

@deffn {Matrix Function} NROW (@var{M})
@deffnx {Matrix Function} NCOL (@var{M})
Returns the number of row or columns, respectively, in @var{M}.

@format
@t{NROW(@{1, 0; -2, -3; 3, 3@}) @result{} 3
NROW(1:5) @result{} 1

NCOL(@{1, 0; -2, -3; 3, 3@}) @result{} 2
NCOL(1:5) @result{} 5}
@end format
@end deffn

@deffn {Matrix Function} DIAG (@var{M})
Returns a column vector containing a copy of @var{M}'s main diagonal.
The vector's length is the lesser of @code{NCOL(@var{M})} and
@code{NROW(@var{M})}.

@t{DIAG(@{1, 0; -2, -3; 3, 3@}) @result{} @{1; -3@}}
@end deffn

@node Matrix Rank Ordering Functions
@subsubsection Matrix Rank Ordering Functions

The @code{GRADE} and @code{RANK} functions each take a matrix @var{M}
and return a matrix @var{r} with the same dimensions.  Each element in
@var{r} ranges between 1 and the number of elements @var{n} in
@var{M}, inclusive.  When the elements in @var{M} all have unique
values, both of these functions yield the same results: the smallest
element in @var{M} corresponds to value 1 in @var{r}, the next
smallest to 2, and so on, up to the largest to @var{n}.  When multiple
elements in @var{M} have the same value, these functions use different
rules for handling the ties.

@deffn {Matrix Function} GRADE (@var{M})
Returns a ranking of @var{M}, turning duplicate values into sequential
ranks.  The returned matrix always contains each of the integers 1
through the number of elements in the matrix exactly once.

@t{GRADE(@{1, 0, 3; 3, 1, 2; 3, 0, 5@})} @result{} @t{@{3, 1, 6; 7, 4, 5; 8, 2, 9@}}
@end deffn

@deffn {Matrix Function} RNKORDER (@var{M})
Returns a ranking of @var{M}, turning duplicate values into the mean
of their sequential ranks.

@t{RNKORDER(@{1, 0, 3; 3, 1, 2; 3, 0, 5@})} @*@w{ }@result{} @t{@{3.5, 1.5, 7; 7, 3.5, 5; 7, 1.5, 9@}}
@end deffn

@noindent
One may use @code{GRADE} to sort a vector:

@example
COMPUTE v(GRADE(v))=v.   /* Sort v in ascending order.
COMPUTE v(GRADE(-v))=v.  /* Sort v in descending order.
@end example

@node Matrix Algebra Functions
@subsubsection Matrix Algebra Functions

@deffn {Matrix Function} CHOL (@var{M})
Matrix @var{M} must be an @math{@var{n}@times{}@var{n}} symmetric
positive-definite matrix.  Returns an @math{@var{n}@times{}@var{n}}
matrix @var{B} such that @math{@var{B}^T@times{}@var{B}=@var{M}}.

@format
@t{CHOL(@{4, 12, -16; 12, 37, -43; -16, -43, 98@}) @result{}
  2  6 -8
  0  1  5
  0  0  3}
@end format
@end deffn

@deffn {Matrix Function} DESIGN (@var{M})
Returns a design matrix for @var{M}.  The design matrix has the same
number of rows as @var{M}.  Each column @var{c} in @var{M}, from left
to right, yields a group of columns in the output.  For each unique
value @var{v} in @var{c}, from top to bottom, add a column to the
output in which @var{v} becomes 1 and other values become 0.

@pspp{} issues a warning if a column only contains a single unique value.

@format
@t{DESIGN(@{1; 2; 3@}) @result{} @{1, 0, 0; 0, 1, 0; 0, 0, 1@}}
@t{DESIGN(@{5; 8; 5@}) @result{} @{1, 0; 0, 1; 1, 0@}}
@t{DESIGN(@{1, 5; 2, 8; 3, 5@})}
 @result{} @t{@{1, 0, 0, 1, 0; 0, 1, 0, 0, 1; 0, 0, 1, 1, 0@}}
@t{DESIGN(@{5; 5; 5@})} @result{} (warning)
@end format
@end deffn

@deffn {Matrix Function} DET (@var{M})
Returns the determinant of square matrix @var{M}.

@t{DET(@{3, 7; 1, -4@}) @result{} -19}
@end deffn

@deffn {Matrix Function} EVAL (@var{M})
@anchor{EVAL}
Returns a column vector containing the eigenvalues of symmetric matrix
@var{M}, sorted in ascending order.

Use @code{CALL EIGEN} (@pxref{CALL EIGEN}) to compute eigenvalues and
eigenvectors of a matrix.

@t{EVAL(@{2, 0, 0; 0, 3, 4; 0, 4, 9@}) @result{} @{11; 2; 1@}}
@end deffn

@deffn {Matrix Function} GINV (@var{M})
Returns the @math{@var{k}@times{}@var{n}} matrix @var{A} that is the
@dfn{generalized inverse} of @math{@var{n}@times{}@var{k}} matrix
@var{M}, defined such that
@math{@var{M}@times{}@var{A}@times{}@var{M}=@var{M}} and
@math{@var{A}@times{}@var{M}@times{}@var{A}=@var{A}}.

@t{GINV(@{1, 2@}) @result{} @{.2; .4@}} (approximately) @*
@t{@{1:9@} * GINV(1:9) * @{1:9@} @result{} @{1:9@}} (approximately)
@end deffn

@deffn {Matrix Function} GSCH (@var{M})
@var{M} must be a @math{@var{n}@times{}@var{m}} matrix, @math{@var{m}
@geq{} @var{n}}, with rank @var{n}.  Returns an
@math{@var{n}@times{}@var{n}} orthonormal basis for @var{M}, obtained
using the Gram-Schmidt process.

@t{GSCH(@{3, 2; 1, 2@}) * SQRT(10) @result{} @{3, -1; 1, 3@}} (approximately)
@end deffn

@deffn {Matrix Function} INV (@var{M})
Returns the @math{@var{n}@times{}@var{n}} matrix @var{A} that is the
inverse of @math{@var{n}@times{}@var{n}} matrix @var{M}, defined such
that @math{@var{M}@times{}@var{A} = @var{A}@times{}@var{M} = I}, where
@var{I} is the identity matrix.  @var{M} must not be singular, that
is, @math{\det(@var{M}) @ne{} 0}.

@t{INV(@{4, 7; 2, 6@}) @result{} @{.6, -.7; -.2, .4@}} (approximately)
@end deffn

@deffn {Matrix Function} KRONEKER (@var{Ma}, @var{Mb})
Returns the @math{@var{pm}@times{}@var{qn}} matrix @var{P} that is the
@dfn{Kroneker product} of @math{@var{m}@times{}@var{n}} matrix
@var{Ma} and @math{@var{p}@times{}@var{q}} matrix @var{Mb}.  One may
view @var{P} as the concatenation of multiple
@math{@var{p}@times{}@var{q}} blocks, each of which is the scalar
product of @var{Mb} by a different element of @var{Ma}.  For example,
when @code{A} is a @math{2@times{}2} matrix, @code{KRONEKER(A, B)} is
equivalent to @code{@{A(1,1)*B, A(1,2)*B; A(2,1)*B, A(2,2)*B@}}.

@format
@t{KRONEKER(@{1, 2; 3, 4@}, @{0, 5; 6, 7@}) @result{}
   0   5   0  10
   6   7  12  14
   0  15   0  20
  18  21  24  28}
@end format
@end deffn

@deffn {Matrix Function} RANK (@var{M})
Returns the rank of matrix @var{M}, an integer scalar whose value is
the dimension of the vector space spanned by its columns or,
equivalently, by its rows.

@format
@t{RANK(@{1, 0, 1; -2, -3, 1; 3, 3, 0@}) @result{} 2
RANK(@{1, 1, 0, 2; -1, -1, 0, -2@}) @result{} 1
RANK(@{1, -1; 1, -1; 0, 0; 2, -2@}) @result{} 1
RANK(@{1, 2, 1; -2, -3, 1; 3, 5, 0@}) @result{} 2
RANK(@{1, 0, 2; 2, 1, 0; 3, 2, 1@}) @result{} 3}
@end format
@end deffn

@deffn {Matrix Function} SOLVE (@var{Ma}, @var{Mb})
@var{Ma} must be an @math{@var{n}@times{}@var{n}} matrix, with
@math{\det(@var{Ma}) @ne{} 0}, and @var{Mb} an
@math{@var{n}@times{}@var{k}} matrix.  Returns an
@math{@var{n}@times{}@var{k}} matrix @var{X} such that @math{@var{Ma}
@times{} @var{X} = @var{Mb}}.

All of the following examples show approximate results:

@format
@t{SOLVE(@{2, 3; 4, 9@}, @{6, 2; 15, 5@}) @result{}
   1.50    .50
   1.00    .33
SOLVE(@{1, 3, -2; 3, 5, 6; 2, 4, 3@}, @{5; 7; 8@}) @result{}
 -15.00
   8.00
   2.00
SOLVE(@{2, 1, -1; -3, -1, 2; -2, 1, 2@}, @{8; -11; -3@}) @result{}
   2.00
   3.00
  -1.00}
@end format
@end deffn

@deffn {Matrix Function} SVAL (@var{M})
@anchor{SVAL}

Given @math{@var{n}@times{}@var{k}} matrix @var{M}, returns a
@math{\min(@var{n},@var{k})}-element column vector containing the
singular values of @var{M} in descending order.

Use @code{CALL SVD} (@pxref{CALL SVD}) to compute the full singular
value decomposition of a matrix.

@format
@t{SVAL(@{1, 1; 0, 0@}) @result{} @{1.41; .00@}
SVAL(@{1, 0, 1; 0, 1, 1; 0, 0, 0@}) @result{} @{1.73; 1.00; .00@}
SVAL(@{2, 4; 1, 3; 0, 0; 0, 0@}) @result{} @{5.46; .37@}}
@end format
@end deffn

@deffn {Matrix Function} SWEEP (@var{M}, @var{nk})
Given @math{@var{r}@times{}@var{c}} matrix @var{M} and integer scalar
@math{k = @var{nk}} such that @math{1 @leq{} k @leq{}
\min(@var{r},@var{c})}, returns the @math{@var{r}@times{}@var{c}}
sweep matrix @var{A}.

If @math{@var{M}_{kk} @ne{} 0}, then:

@display
@math{@var{A}_{kk} = 1/@var{M}_{kk}},
@math{@var{A}_{ik} = -@var{M}_{ik}/@var{M}_{kk} @r{for} i @ne{} k},
@math{@var{A}_{kj} = @var{M}_{kj}/@var{M}_{kk} @r{for} j @ne{} k, @r{and}}
@math{@var{A}_{ij} = @var{M}_{ij} - @var{M}_{ik}@var{M}_{kj}/@var{M}_{kk} @r{for} i @ne{} k @r{and} j @ne{} k}.
@end display

If @math{@var{M}_{kk} = 0}, then:

@display
@math{@var{A}_{ik} = @var{A}_{ki} = 0 @r{and}}
@math{@var{A}_{ij} = @var{M}_{ij}, @r{for} i @ne{} k @r{and} j @ne{} k}.
@end display

Given @t{M = @{0, 1, 2; 3, 4, 5; 6, 7, 8@}}, then (approximately):

@format
@t{SWEEP(M, 1) @result{}
   .00   .00   .00
   .00  4.00  5.00
   .00  7.00  8.00
SWEEP(M, 2) @result{}
  -.75  -.25   .75
   .75   .25  1.25
   .75 -1.75  -.75
SWEEP(M, 3) @result{}
 -1.50  -.75  -.25
  -.75  -.38  -.63
   .75   .88   .13}
@end format
@end deffn

@node Matrix Statistical Distribution Functions
@subsubsection Matrix Statistical Distribution Functions

The matrix language can calculate several functions of standard
statistical distributions using the same syntax and semantics as in
@pspp{} transformation expressions.  @xref{Statistical Distribution
Functions}, for details.

The matrix language extends the PDF, CDF, SIG, IDF, NPDF, and NCDF
functions by allowing the first parameters to each of these functions
to be a vector or matrix with any dimensions.  In addition,
@code{CDF.BVNOR} and @code{PDF.BVNOR} allow either or both of their
first two parameters to be vectors or matrices; if both are non-scalar
then they must have the same dimensions.  In each case, the result is
a matrix or vector with the same dimensions as the input populated
with elementwise calculations.

@node Matrix EOF Function
@subsubsection EOF Function

This function works with files being used on the @code{READ} statement.

@deffn {Matrix Function} EOF (@var{file})
@anchor{EOF Matrix Function}

Given a file handle or file name @var{file}, returns an integer scalar
1 if the last line in the file has been read or 0 if more lines are
available.  Determining this requires attempting to read another line,
which means that @code{REREAD} on the next @code{READ} command
following @code{EOF} on the same file will be ineffective.
@end deffn

The @code{EOF} function gives a matrix program the flexibility to read
a file with text data without knowing the length of the file in
advance.  For example, the following program will read all the lines
of data in @file{data.txt}, each consisting of three numbers, as rows
in matrix @code{data}:

@verbatim
MATRIX.
COMPUTE data={}.
LOOP IF NOT EOF('data.txt').
  READ row/FILE='data.txt'/FIELD=1 TO 1000/SIZE={1,3}.
  COMPUTE data={data; row}.
END LOOP.
PRINT data.
END MATRIX.

@end verbatim

@node Matrix COMPUTE Command
@subsection The @code{COMPUTE} Command

@display
@t{COMPUTE} @i{variable}[@t{(}@i{index}[@t{,}@i{index}]@t{)}]@t{=}@i{expression}@t{.}
@end display

The @code{COMPUTE} command evaluates an expression and assigns the
result to a variable or a submatrix of a variable.  Assigning to a
submatrix uses the same syntax as the index operator (@pxref{Matrix
Index Operator}).

@node Matrix CALL command
@subsection The @code{CALL} Command

A matrix function returns a single result.  The @code{CALL} command
implements procedures, which take a similar syntactic form to
functions but yield results by modifying their arguments rather than
returning a value.

Output arguments to a @code{CALL} procedure must be a single variable
name.

The following procedures are implemented via @code{CALL} to allow them
to return multiple results.  For these procedures, the output
arguments need not name existing variables; if they do, then their
previous values are replaced:

@table @asis
@item @t{CALL EIGEN(@var{M}, @var{evec}, @var{eval})}
@anchor{CALL EIGEN}

Computes the eigenvalues and eigenvector of symmetric
@math{@var{n}@times{}@var{n}} matrix @var{M}.  Assigns the
eigenvectors of @var{M} to the columns of
@math{@var{n}@times{}@var{n}} matrix @var{evec} and the eigenvalues in
descending order to @var{n}-element column vector @var{eval}.

Use the @code{EVAL} function (@pxref{EVAL}) to compute just the
eigenvalues of a symmetric matrix.

For example, the following matrix language commands:
@example
CALL EIGEN(@{1, 0; 0, 1@}, evec, eval).
PRINT evec.
PRINT eval.

CALL EIGEN(@{3, 2, 4; 2, 0, 2; 4, 2, 3@}, evec2, eval2).
PRINT evec2.
PRINT eval2.
@end example

@noindent
yield this output:

@example
evec
  1  0
  0  1

eval
  1
  1

evec2
  -.6666666667   .0000000000   .7453559925
  -.3333333333  -.8944271910  -.2981423970
  -.6666666667   .4472135955  -.5962847940

eval2
  8.0000000000
 -1.0000000000
 -1.0000000000
@end example

@item @t{CALL SVD(@var{M}, @var{U}, @var{S}, @var{V})}
@anchor{CALL SVD}

Computes the singular value decomposition of
@math{@var{n}@times{}@var{k}} matrix @var{M}, assigning @var{S} a
@math{@var{n}@times{}@var{k}} diagonal matrix and to @var{U} and
@var{V} unitary @math{@var{k}@times{}@var{k}} matrices such that
@math{@var{M} = @var{U}@times{}@var{S}@times{}@var{V}^T}.  The main
diagonal of @var{Q} contains the singular values of @var{M}.

Use the @code{SVAL} function (@pxref{SVAL}) to compute just the
singular values of a matrix.

For example, the following matrix program:

@example
CALL SVD(@{3, 2, 2; 2, 3, -2@}, u, s, v).
PRINT (u * s * T(v))/FORMAT F5.1.
@end example

@noindent
yields this output:

@example
(u * s * T(v))
   3.0   2.0   2.0
   2.0   3.0  -2.0
@end example
@end table

The final procedure is implemented via @code{CALL} to allow it to
modify a matrix instead of returning a modified version.  For this
procedure, the output argument must name an existing variable.

@table @asis
@item @t{CALL SETDIAG(@var{M}, @var{V})}
@anchor{CALL SETDIAG}

Replaces the main diagonal of @math{@var{n}@times{}@var{p}} matrix
@var{M} by the contents of @var{k}-element vector @var{V}.  If
@math{@var{k} = 1}, so that @var{V} is a scalar, replaces all of the
diagonal elements of @var{M} by @var{V}.  If @math{@var{k} <
\min(@var{n},@var{p})}, only the upper @var{k} diagonal elements are
replaced; if @math{@var{k} > \min(@var{n},@var{p})}, then the
extra elements of @var{V} are ignored.

Use the @code{MDIAG} function (@pxref{MDIAG}) to construct a new
matrix with a specified main diagonal.

For example, this matrix program:

@example
COMPUTE x=@{1, 2, 3; 4, 5, 6; 7, 8, 9@}.
CALL SETDIAG(x, 10).
PRINT x.
@end example

@noindent
outputs the following:

@example
x
  10   2   3
   4  10   6
   7   8  10
@end example
@end table

@node Matrix PRINT Command
@subsection The @code{PRINT} Command

@display
@t{PRINT} [@i{expression}]
      [@t{/FORMAT}@t{=}@i{format}]
      [@t{/TITLE}@t{=}@i{title}]
      [@t{/SPACE}@t{=}@{@t{NEWPAGE} @math{|} @i{n}@}]
      [@{@t{/RLABELS}@t{=}@i{string}@dots{} @math{|} @t{/RNAMES}@t{=}@i{expression}@}]
      [@{@t{/CLABELS}@t{=}@i{string}@dots{} @math{|} @t{/CNAMES}@t{=}@i{expression}@}]@t{.}
@end display

The @code{PRINT} command is commonly used to display a matrix.  It
evaluates the restricted @var{expression}, if present, and outputs it
either as text or a pivot table, depending on the setting of
@code{MDISPLAY} (@pxref{SET MDISPLAY}).

Use the @code{FORMAT} subcommand to specify a format, such as
@code{F8.2}, for displaying the matrix elements.  @code{FORMAT} is
optional for numerical matrices.  When it is omitted, @pspp{} chooses
how to format entries automatically using @var{m}, the magnitude of
the largest-magnitude element in the matrix to be displayed:

@enumerate
@item
If @math{@var{m} < 10^{11}} and the matrix's elements are all
integers, @pspp{} chooses the narrowest @code{F} format that fits
@var{m} plus a sign.  For example, if the matrix is @t{@{1:10@}}, then
@math{m = 10}, which fits in 3 columns with room for a sign, the
format is @code{F3.0}.

@item
Otherwise, if @math{@var{m} @geq{} 10^9} or @math{@var{m} @leq{}
10^{-4}}, @pspp{} scales all of the numbers in the matrix by
@math{10^x}, where @var{x} is the exponent that would be used to
display @var{m} in scientific notation.  For example, for
@math{@var{m} = 5.123@times{}10^{20}}, the scale factor is
@math{10^{20}}.  @pspp{} displays the scaled values in format
@code{F13.10} and notes the scale factor in the output.

@item
Otherwise, @pspp{} displays the matrix values, without scaling, in
format @code{F13.10}.
@end enumerate

The optional @code{TITLE} subcommand specifies a title for the output
text or table, as a quoted string.  When it is omitted, the syntax of
the matrix expression is used as the title.

Use the @code{SPACE} subcommand to request extra space above the
matrix output.  With a numerical argument, it adds the specified
number of lines of blank space above the matrix.  With @code{NEWPAGE}
as an argument, it prints the matrix at the top of a new page.  The
@code{SPACE} subcommand has no effect when a matrix is output as a
pivot table.

The @code{RLABELS} and @code{RNAMES} subcommands, which are mutually
exclusive, can supply a label to accompany each row in the output.
With @code{RLABELS}, specify the labels as comma-separated strings or
other tokens.  With @code{RNAMES}, specify a single expression that
evaluates to a vector of strings.  Either way, if there are more
labels than rows, the extra labels are ignored, and if there are more
rows than labels, the extra rows are unlabeled.  For output to a pivot
table with @code{RLABELS}, the labels can be any length; otherwise,
the labels are truncated to 8 bytes.

The @code{CLABELS} and @code{CNAMES} subcommands work for labeling
columns as @code{RLABELS} and @code{RNAMES} do for labeling rows.

When the @var{expression} is omitted, @code{PRINT} does not output a
matrix.  Instead, it outputs only the text specified on @code{TITLE},
if any, preceded by any space specified on the @code{SPACE}
subcommand, if any.  Any other subcommands are ignored, and the
command acts as if @code{MDISPLAY} is set to @code{TEXT} regardless of
its actual setting.

The following syntax demonstrates two different ways to label the rows
and columns of a matrix with @code{PRINT}:

@example
MATRIX.
COMPUTE m=@{1, 2, 3; 4, 5, 6; 7, 8, 9@}.
PRINT m/RLABELS=a, b, c/CLABELS=x, y, z.

COMPUTE rlabels=@{"a", "b", "c"@}.
COMPUTE clabels=@{"x", "y", "z"@}.
PRINT m/RNAMES=rlabels/CNAMES=clabels.
END MATRIX.
@end example

@noindent
With @code{MDISPLAY=TEXT} (the default), this program outputs the
following (twice):

@example
m
                x        y        z
a               1        2        3
b               4        5        6
c               7        8        9
@end example

@noindent
With @samp{SET MDISPLAY=TABLES.} added above @samp{MATRIX.}, the
output becomes the following (twice):

@psppoutput {matrix-print}

@node Matrix DO IF Command
@subsection The @code{DO IF} Command

@display
@t{DO IF} @i{expression}@t{.}
  @dots{}@i{matrix commands}@dots{}
[@t{ELSE IF} @i{expression}@t{.}
  @dots{}@i{matrix commands}@dots{}]@dots{}
[@t{ELSE}
  @dots{}@i{matrix commands}@dots{}]
@t{END IF}@t{.}
@end display

A @code{DO IF} command evaluates its expression argument.  If the
@code{DO IF} expression evaluates to true, then @pspp{} executes the
associated commands.  Otherwise, @pspp{} evaluates the expression on
each @code{ELSE IF} clause (if any) in order, and executes the
commands associated with the first one that yields a true value.
Finally, if the @code{DO IF} and all the @code{ELSE IF} expressions
all evaluate to false, @pspp{} executes the commands following the
@code{ELSE} clause (if any).

Each expression on @code{DO IF} and @code{ELSE IF} must evaluate to a
scalar.  Positive scalars are considered to be true, and scalars that
are zero or negative are considered to be false.

The following matrix language fragment sets @samp{b} to the term
following @samp{a} in the
@url{https://en.wikipedia.org/wiki/Juggler_sequence, Juggler
sequence}:

@example
DO IF MOD(a, 2) = 0.
  COMPUTE b = TRUNC(a &** (1/2)).
ELSE.
  COMPUTE b = TRUNC(a &** (3/2)).
END IF.
@end example

@node Matrix LOOP and BREAK Commands
@subsection The @code{LOOP} and @code{BREAK} Commands

@display
@t{LOOP} [@i{var}@t{=}@i{first} @t{TO} @i{last} [@t{BY} @i{step}]] [@t{IF} @i{expression}]@t{.}
  @dots{}@i{matrix commands}@dots{}
@t{END LOOP} [@t{IF} @i{expression}]@t{.}

@t{BREAK}@t{.}
@end display

The @code{LOOP} command executes a nested group of matrix commands,
called the loop's @dfn{body}, repeatedly.  It has three optional
clauses that control how many times the loop body executes.
Regardless of these clauses, the global @code{MXLOOPS} setting, which
defaults to 40, also limits the number of iterations of a loop.  To
iterate more times, raise the maximum with @code{SET MXLOOPS} outside
of the @code{MATRIX} command (@pxref{SET MXLOOPS}).

The optional index clause causes @var{var} to be assigned successive
values on each trip through the loop: first @var{first}, then
@math{@var{first} + @var{step}}, then @math{@var{first} + 2 @times{}
@var{step}}, and so on.  The loop ends when @math{@var{var} >
@var{last}}, for positive @var{step}, or @math{@var{var} <
@var{last}}, for negative @var{step}.  If @var{step} is not specified,
it defaults to 1.  All the index clause expressions must evaluate to
scalars, and non-integers are rounded toward zero.  If @var{step}
evaluates as zero (or rounds to zero), then the loop body never
executes.

The optional @code{IF} on @code{LOOP} is evaluated before each
iteration through the loop body.  If its expression, which must
evaluate to a scalar, is zero or negative, then the loop terminates
without executing the loop body.

The optional @code{IF} on @code{END LOOP} is evaluated after each
iteration through the loop body.  If its expression, which must
evaluate to a scalar, is zero or negative, then the loop terminates.

The following computes and prints @math{l(n)}, whose value is the
number of steps in the
@url{https://en.wikipedia.org/wiki/Juggler_sequence, Juggler sequence}
for @math{n}, for @math{n} from 2 to 10 inclusive:

@example
COMPUTE l = @{@}.
LOOP n = 2 TO 10.
  COMPUTE a = n.
  LOOP i = 1 TO 100.
    DO IF MOD(a, 2) = 0.
      COMPUTE a = TRUNC(a &** (1/2)).
    ELSE.
      COMPUTE a = TRUNC(a &** (3/2)).
    END IF.
  END LOOP IF a = 1.
  COMPUTE l = @{l; i@}.
END LOOP.
PRINT l.
@end example

@menu
* Matrix BREAK Command::
@end menu

@node Matrix BREAK Command
@subsubsection The @code{BREAK} Command

The @code{BREAK} command may be used inside a loop body, ordinarily
within a @code{DO IF} command.  If it is executed, then the loop
terminates immediately, jumping to the command just following
@code{END LOOP}.  When multiple @code{LOOP} commands nest,
@code{BREAK} terminates the innermost loop.

The following example is a revision of the one above that shows how
@code{BREAK} could substitute for the index and @code{IF} clauses on
@code{LOOP} and @code{END LOOP}:

@example
COMPUTE l = @{@}.
LOOP n = 2 TO 10.
  COMPUTE a = n.
  COMPUTE i = 1.
  LOOP.
    DO IF MOD(a, 2) = 0.
      COMPUTE a = TRUNC(a &** (1/2)).
    ELSE.
      COMPUTE a = TRUNC(a &** (3/2)).
    END IF.
    DO IF a = 1.
      BREAK.
    END IF.
    COMPUTE i = i + 1.
  END LOOP.
  COMPUTE l = @{l; i@}.
END LOOP.
PRINT l.
@end example

@node Matrix READ and WRITE Commands
@subsection The @code{READ} and @code{WRITE} Commands

The @code{READ} and @code{WRITE} commands perform matrix input and
output with text files.  They share the following syntax for
specifying how data is divided among input lines:

@display
@t{/FIELD}@t{=}@i{first} @t{TO} @i{last} [@t{BY} @i{width}]
[@t{/FORMAT}@t{=}@i{format}]
@end display

Both commands require the @code{FIELD} subcommand.  It specifies the
range of columns, from @var{first} to @var{last}, inclusive, that the
data occupies on each line of the file.  The leftmost column is column
1.  The columns must be literal numbers, not expressions.  To use
entire lines, even if they might be very long, specify a column range
such as @code{1 TO 100000}.

The @code{FORMAT} subcommand is optional for numerical matrices.  For
string matrix input and output, specify an @code{A} format.  In
addition to @code{FORMAT}, the optional @code{BY} specification on
@code{FIELD} determine the meaning of each text line:

@itemize @bullet
@item
With neither @code{BY} nor @code{FORMAT}, the numbers in the text file
are in @code{F} format separated by spaces or commas.  For
@code{WRITE}, @pspp{} uses as many digits of precision as needed to
accurately represent the numbers in the matrix.

@item
@code{BY @i{width}} divides the input area into fixed-width fields
with the given @i{width}.  The input area must be a multiple of
@i{width} columns wide.  Numbers are read or written as
@code{F@i{width}.0} format.

@item
@code{FORMAT="@i{count}F"} divides the input area into integer @i{count}
equal-width fields per line.  The input area must be a multiple of
@i{count} columns wide.  Another format type may be substituted for
@code{F}.

@item
@code{FORMAT=F@i{w}}[@code{.@i{d}}] divides the input area into fixed-width
fields with width @i{w}.  The input area must be a multiple of @i{w}
columns wide.  Another format type may be substituted for @code{F}.
The @code{READ} command disregards @i{d}.

@item
@code{FORMAT=F} specifies format @code{F} without indicating a field
width.  Another format type may be substituted for @code{F}.  The
@code{WRITE} command accepts this form, but it has no effect unless
@code{BY} is also used to specify a field width.
@end itemize

If @code{BY} and @code{FORMAT} both specify or imply a field width,
then they must indicate the same field width.

@node Matrix READ Command
@subsubsection The @code{READ} Command

@display
@t{READ} @i{variable}[@t{(}@i{index}[@t{,}@i{index}]@t{)}]
     [@t{/FILE}@t{=}@i{file}]
     @t{/FIELD}@t{=}@i{first} @t{TO} @i{last} [@t{BY} @i{width}]
     [@t{/FORMAT}@t{=}@i{format}]
     [@t{/SIZE}@t{=}@i{expression}]
     [@t{/MODE}@t{=}@{@t{RECTANGULAR} @math{|} @t{SYMMETRIC}@}]
     [@t{/REREAD}]@t{.}
@end display

The @code{READ} command reads from a text file into a matrix variable.
Specify the target variable just after the command name, either just a
variable name to create or replace an entire variable, or a variable
name followed by an indexing expression to replace a submatrix of an
existing variable.

The @code{FILE} subcommand is required in the first @code{READ}
command that appears within @code{MATRIX}.  It specifies the text file
to be read, either as a file name in quotes or a file handle
previously declared on @code{FILE HANDLE} (@pxref{FILE HANDLE}).
Later @code{READ} commands (in syntax order) use the previous
referenced file if @code{FILE} is omitted.

The @code{FIELD} and @code{FORMAT} subcommands specify how input lines
are interpreted.  @code{FIELD} is required, but @code{FORMAT} is
optional.  @xref{Matrix READ and WRITE Commands}, for details.

The @code{SIZE} subcommand is required for reading into an entire
variable.  Its restricted expression argument should evaluate to a
2-element vector @code{@{@var{n},@w{ }@var{m}@}} or
@code{@{@var{n};@w{ }@var{m}@}}, which indicates a
@math{@var{n}@times{}@var{m}} matrix destination.  A scalar @var{n} is
also allowed and indicates a @math{@var{n}@times{}1} column vector
destination.  When the destination is a submatrix, @code{SIZE} is
optional, and if it is present then it must match the size of the
submatrix.

By default, or with @code{MODE=RECTANGULAR}, the command reads an
entry for every row and column.  With @code{MODE=SYMMETRIC}, the
command reads only the entries on and below the matrix's main
diagonal, and copies the entries above the main diagonal from the
corresponding symmetric entries below it.  Only square matrices
may use @code{MODE=SYMMETRIC}.

Ordinarily, each @code{READ} command starts from a new line in the
text file.  Specify the @code{REREAD} subcommand to instead start from
the last line read by the previous @code{READ} command.  This has no
effect for the first @code{READ} command to read from a particular
file.  It is also ineffective just after a command that uses the
@code{EOF} matrix function (@pxref{EOF Matrix Function}) on a
particular file, because @code{EOF} has to try to read the next line
from the file to determine whether the file contains more input.

@subsubheading Example 1: Basic Use

The following matrix program reads the same matrix @code{@{1, 2, 4; 2,
3, 5; 4, 5, 6@}} into matrix variables @code{v}, @code{w}, and
@code{x}:

@example
READ v /FILE='input.txt' /FIELD=1 TO 100 /SIZE=@{3, 3@}.
READ w /FIELD=1 TO 100 /SIZE=@{3; 3@} /MODE=SYMMETRIC.
READ x /FIELD=1 TO 100 BY 1/SIZE=@{3, 3@} /MODE=SYMMETRIC.
@end example

@noindent
given that @file{input.txt} contains the following:

@example
1, 2, 4
2, 3, 5
4, 5, 6
1
2 3
4 5 6
1
23
456
@end example

The @code{READ} command will read as many lines of input as needed for
a particular row, so it's also acceptable to break any of the lines
above into multiple lines.  For example, the first line @code{1, 2, 4}
could be written with a line break following either or both commas.

@subsubheading Example 2: Reading into a Submatrix

The following reads a @math{5@times{}5} matrix from @file{input2.txt},
reversing the order of the rows:

@example
COMPUTE m = MAKE(5, 5, 0).
LOOP r = 5 TO 1 BY -1.
  READ m(r, :) /FILE='input2.txt' /FIELD=1 TO 100.
END LOOP.
@end example

@subsubheading Example 3: Using @code{REREAD}

Suppose each of the 5 lines in a file @file{input3.txt} starts with an
integer @var{count} followed by @var{count} numbers, e.g.:

@example
1 5
3 1 2 3
5 6 -1 2 5 1
2 8 9
3 1 3 2
@end example

@noindent
Then, the following reads this file into a matrix @code{m}:

@example
COMPUTE m = MAKE(5, 5, 0).
LOOP i = 1 TO 5.
  READ count /FILE='input3.txt' /FIELD=1 TO 1 /SIZE=1.
  READ m(i, 1:count) /FIELD=3 TO 100 /REREAD.
END LOOP.
@end example

@node Matrix WRITE Command
@subsubsection The @code{WRITE} Command

@display
@t{WRITE} @i{expression}
      [@t{/OUTFILE}@t{=}@i{file}]
      @t{/FIELD}@t{=}@i{first} @t{TO} @i{last} [@t{BY} @i{width}]
      [@t{/FORMAT}@t{=}@i{format}]
      [@t{/MODE}@t{=}@{@t{RECTANGULAR} @math{|} @t{TRIANGULAR}@}]
      [@t{/HOLD}]@t{.}
@end display

The @code{WRITE} command evaluates @i{expression} and writes its value
to a text file in a specified format.  Write the expression to
evaluate just after the command name.

The @code{OUTFILE} subcommand is required in the first @code{WRITE}
command that appears within @code{MATRIX}.  It specifies the text file
to be written, either as a file name in quotes or a file handle
previously declared on @code{FILE HANDLE} (@pxref{FILE HANDLE}).
Later @code{WRITE} commands (in syntax order) use the previous
referenced file if @code{FILE} is omitted.

The @code{FIELD} and @code{FORMAT} subcommands specify how output
lines are formed.  @code{FIELD} is required, but @code{FORMAT} is
optional.  @xref{Matrix READ and WRITE Commands}, for details.

By default, or with @code{MODE=RECTANGULAR}, the command writes an
entry for every row and column.  With @code{MODE=TRIANGULAR}, the
command writes only the entries on and below the matrix's main
diagonal.  Entries above the diagonal are not written.  Only square
matrices may be written with @code{MODE=TRIANGULAR}.

Ordinarily, each @code{WRITE} command writes complete lines to the
output file.  With @code{HOLD}, the final line written by @code{WRITE}
will be held back for the next @code{WRITE} command to augment.  This
can be useful to write more than one matrix on a single output line.

@subsubheading Example 1: Basic Usage

This matrix program:

@example
WRITE @{1, 2; 3, 4@} /OUTFILE='matrix.txt' /FIELD=1 TO 80.
@end example

@noindent
writes the following to @file{matrix.txt}:

@example
 1 2
 3 4
@end example

@subsubheading Example 2: Triangular Matrix

This matrix program:

@example
WRITE MAGIC(5) /OUTFILE='matrix.txt' /FIELD=1 TO 80 BY 5 /MODE=TRIANGULAR.
@end example

@noindent
writes the following to @file{matrix.txt}:

@example
    17
    23    5
     4    6   13
    10   12   19   21
    11   18   25    2    9
@end example

@node Matrix GET Command
@subsection The @code{GET} Command

@display
@t{GET} @i{variable}[@t{(}@i{index}[@t{,}@i{index}]@t{)}]
    [@t{/FILE}@t{=}@{@i{file} @math{|} @t{*}@}]
    [@t{/VARIABLES}@t{=}@i{variable}@dots{}]
    [@t{/NAMES}@t{=}@i{variable}]
    [@t{/MISSING}@t{=}@{@t{ACCEPT} @math{|} @t{OMIT} @math{|} @i{number}@}]
    [@t{/SYSMIS}@t{=}@{@t{OMIT} @math{|} @i{number}@}]@t{.}
@end display

The @code{READ} command reads numeric data from an SPSS system file,
SPSS/PC+ system file, or SPSS portable file into a matrix variable or
submatrix:

@itemize @bullet
@item
To read data into a variable, specify just its name following
@code{GET}.  The variable need not already exist; if it does, it is
replaced.  The variable will have as many columns as there are
variables specified on the @code{VARIABLES} subcommand and as many
rows as there are cases in the input file.

@item
To read data into a submatrix, specify the name of an existing
variable, followed by an indexing expression, just after @code{GET}.
The submatrix must have as many columns as variables specified on
@code{VARIABLES} and as many rows as cases in the input file.
@end itemize

Specify the name or handle of the file to be read on @code{FILE}.  Use
@samp{*}, or simply omit the @code{FILE} subcommand, to read from the
active file.  Reading from the active file is only permitted if it was
already defined outside @code{MATRIX}.

List the variables to be read as columns in the matrix on the
@code{VARIABLES} subcommand.  The list can use @code{TO} for
collections of variables or @code{ALL} for all variables.  If
@code{VARIABLES} is omitted, all variables are read.  Only numeric
variables may be read.

If a variable is named on @code{NAMES}, then the names of the
variables read as data columns are stored in a string vector within
the given name, replacing any existing matrix variable with that name.
Variable names are truncated to 8 bytes.

The @code{MISSING} and @code{SYSMIS} subcommands control the treatment
of missing values in the input file.  By default, any user- or
system-missing data in the variables being read from the input causes
an error that prevents @code{GET} from executing.  To accept missing
values, specify one of the following settings on @code{MISSING}:

@table @asis
@item @code{ACCEPT}
Accept user-missing values with no change.

By default, system-missing values still yield an error.  Use the
@code{SYSMIS} subcommand to change this treatment:

@table @asis
@item @code{OMIT}
Skip any case that contains a system-missing value.

@item @i{number}
Recode the system-missing value to @i{number}.
@end table

@item @code{OMIT}
Skip any case that contains any user- or system-missing value.

@item @i{number}
Recode all user- and system-missing values to @i{number}.
@end table

The @code{SYSMIS} subcommand has an effect only with
@code{MISSING=ACCEPT}.

@node Matrix SAVE Command
@subsection The @code{SAVE} Command

@display
@t{SAVE} @i{expression}
     [@t{/OUTFILE}@t{=}@{@i{file} @math{|} @t{*}@}]
     [@t{/VARIABLES}@t{=}@i{variable}@dots{}]
     [@t{/NAMES}@t{=}@i{expression}]
     [@t{/STRINGS}@t{=}@i{variable}@dots{}]@t{.}
@end display

The @code{SAVE} matrix command evaluates @i{expression} and writes the
resulting matrix to an SPSS system file.  In the system file, each
matrix row becomes a case and each column becomes a variable.

Specify the name or handle of the SPSS system file on the
@code{OUTFILE} subcommand, or @samp{*} to write the output as the new
active file.  The @code{OUTFILE} subcommand is required on the first
@code{SAVE} command, in syntax order, within @code{MATRIX}.  For
@code{SAVE} commands after the first, the default output file is the
same as the previous.

When multiple @code{SAVE} commands write to one destination within a
single @code{MATRIX}, the later commands append to the same output
file.  All the matrices written to the file must have the same number
of columns.  The @code{VARIABLES}, @code{NAMES}, and @code{STRINGS}
subcommands are honored only for the first @code{SAVE} command that
writes to a given file.

By default, @code{SAVE} names the variables in the output file
@code{COL1} through @code{COL@i{n}}.  Use @code{VARIABLES} or
@code{NAMES} to give the variables meaningful names.  The
@code{VARIABLES} subcommand accepts a comma-separated list of variable
names.  Its alternative, @code{NAMES}, instead accepts an expression
that must evaluate to a row or column string vector of names.  The
number of names need not exactly match the number of columns in the
matrix to be written: extra names are ignored; extra columns use
default names.

By default, @code{SAVE} assumes that the matrix to be written is all
numeric.  To write string columns, specify a comma-separated list of
the string columns' variable names on @code{STRINGS}.

@node Matrix MGET Command
@subsection The @code{MGET} Command

@display
@t{MGET} [@t{/FILE}@t{=}@i{file}]
     [@t{/TYPE}@t{=}@{@t{COV} @math{|} @t{CORR} @math{|} @t{MEAN} @math{|} @t{STDDEV} @math{|} @t{N} @math{|} @t{COUNT}@}]@t{.}
@end display

The @code{MGET} command reads the data from a matrix file
(@pxref{Matrix Files}) into matrix variables.

All of @code{MGET}'s subcommands are optional.  Specify the name or
handle of the matrix file to be read on the @code{FILE} subcommand; if
it is omitted, then the command reads the active file.

By default, @code{MGET} reads all of the data from the matrix file.
Specify a space-delimited list of matrix types on @code{TYPE} to limit
the kinds of data to the one specified:

@table @code
@item COV
Covariance matrix.

@item CORR
Correlation coefficient matrix.

@item MEAN
Vector of means.

@item STDDEV
Vector of standard deviations.

@item N
Vector of case counts.

@item COUNT
Vector of counts.
@end table

@code{MGET} reads the entire matrix file and automatically names,
creates, and populates matrix variables using its contents.  It
constructs the name of each variable by concatenating the following:

@itemize @bullet
@item
A 2-character prefix that identifies the type of the matrix:

@table @code
@item CV
Covariance matrix.

@item CR
Correlation coefficient matrix.

@item MN
Vector of means.

@item SD
Vector of standard deviations.

@item NC
Vector of case counts.

@item CN
Vector of counts.
@end table

@item
If the matrix file has factor variables, @code{F@i{n}}, where @i{n} is
a number identifying a group of factors: @code{F1} for the first
group, @code{F2} for the second, and so on.  This part is omitted for
pooled data (where the factors all have the system-missing value).

@item
If the matrix file has split file variables, @code{S@i{n}}, where
@i{n} is a number identifying a split group: @code{S1} for the first
group, @code{S2} for the second, and so on.
@end itemize

If @code{MGET} chooses the name of an existing variable, it issues a
warning and does not change the variable.

@node Matrix MSAVE Command
@subsection The @code{MSAVE} Command

@display
@t{MSAVE} @i{expression}
      @t{/TYPE}@t{=}@{@t{COV} @math{|} @t{CORR} @math{|} @t{MEAN} @math{|} @t{STDDEV} @math{|} @t{N} @math{|} @t{COUNT}@}
      [@t{/FACTOR}@t{=}@i{expression}]
      [@t{/SPLIT}@t{=}@i{expression}]
      [@t{/OUTFILE}@t{=}@i{file}]
      [@t{/VARIABLES}@t{=}@i{variable}@dots{}]
      [@t{/SNAMES}@t{=}@i{variable}@dots{}]
      [@t{/FNAMES}@t{=}@i{variable}@dots{}]@t{.}
@end display

The @code{MSAVE} command evaluates the @i{expression} specified just
after the command name, and writes the resulting matrix to a matrix
file (@pxref{Matrix Files}).

The @code{TYPE} subcommand is required.  It specifies the
@code{ROWTYPE_} to write along with this matrix.

The @code{FACTOR} and @code{SPLIT} subcommands are required on the
first @code{MSAVE} if and only if the matrix file has factor or split
variables, respectively.  After that, their values are carried along
from one @code{MSAVE} command to the next in syntax order as defaults.
Each one takes an expression that must evaluate to a vector with the
same number of entries as the matrix has factor or split variables,
respectively.  Each @code{MSAVE} only writes data for a single
combination of factor and split variables, so many @code{MSAVE}
commands (or one inside a loop) may be needed to write a complete set.

The remaining @code{MSAVE} subcommands define the format of the matrix
file.  All of the @code{MSAVE} commands within a given matrix program
write to the same matrix file, so these subcommands are only
meaningful on the first @code{MSAVE} command within a matrix program.
(If they are given again on later @code{MSAVE} commands, then they
must have the same values as on the first.)

The @code{OUTFILE} subcommand specifies the name or handle of the
matrix file to be written.  Output must go to an external file, not a
data set or the active file.

The @code{VARIABLES} subcommand specifies a comma-separated list of
the names of the continuous variables to be written to the matrix
file.  The @code{TO} keyword can be used to define variables named
with consecutive integer suffixes.  These names become column names
and names that appear in @code{VARNAME_} in the matrix file.
@code{ROWTYPE_} and @code{VARNAME_} are not allowed on
@code{VARIABLES}.  If @code{VARIABLES} is omitted, then @pspp{} uses
the names @code{COL1}, @code{COL2}, and so on.

The @code{FNAMES} subcommand may be used to supply a comma-separated
list of factor variable names.  The default names are @code{FAC1},
@code{FAC2}, and so on.

The @code{SNAMES} subcommand can supply a comma-separated list of
split variable names.  The default names are @code{SPL1}, @code{SPL2},
and so on.

@node Matrix DISPLAY Command
@subsection The @code{DISPLAY} Command

@display
@t{DISPLAY} [@{@t{DICTIONARY} @math{|} @t{STATUS}@}]@t{.}
@end display

The @code{DISPLAY} command makes @pspp{} display a table with the name
and dimensions of each matrix variable.  The @code{DICTIONARY} and
@code{STATUS} keywords are accepted but have no effect.

@node Matrix RELEASE Command
@subsection The @code{RELEASE} Command

@display
@t{RELEASE} @i{variable}@dots{}@t{.}
@end display

The @code{RELEASE} command accepts a comma-separated list of matrix
variable names.  It deletes each variable and releases the memory
associated with it.

The @code{END MATRIX} command releases all matrix variables.