1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727
|
@c PSPP - a program for statistical analysis.
@c Copyright (C) 2017, 2020 Free Software Foundation, Inc.
@c Permission is granted to copy, distribute and/or modify this document
@c under the terms of the GNU Free Documentation License, Version 1.3
@c or any later version published by the Free Software Foundation;
@c with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
@c A copy of the license is included in the section entitled "GNU
@c Free Documentation License".
@c
@node Statistics
@chapter Statistics
This chapter documents the statistical procedures that @pspp{} supports so
far.
@menu
* DESCRIPTIVES:: Descriptive statistics.
* FREQUENCIES:: Frequency tables.
* EXAMINE:: Testing data for normality.
* GRAPH:: Plot data.
* CORRELATIONS:: Correlation tables.
* CROSSTABS:: Crosstabulation tables.
* CTABLES:: Custom tables.
* FACTOR:: Factor analysis and Principal Components analysis.
* GLM:: Univariate Linear Models.
* LOGISTIC REGRESSION:: Bivariate Logistic Regression.
* MEANS:: Average values and other statistics.
* NPAR TESTS:: Nonparametric tests.
* T-TEST:: Test hypotheses about means.
* ONEWAY:: One way analysis of variance.
* QUICK CLUSTER:: K-Means clustering.
* RANK:: Compute rank scores.
* REGRESSION:: Linear regression.
* RELIABILITY:: Reliability analysis.
* ROC:: Receiver Operating Characteristic.
@end menu
@node DESCRIPTIVES
@section DESCRIPTIVES
@vindex DESCRIPTIVES
@display
DESCRIPTIVES
/VARIABLES=@var{var_list}
/MISSING=@{VARIABLE,LISTWISE@} @{INCLUDE,NOINCLUDE@}
/FORMAT=@{LABELS,NOLABELS@} @{NOINDEX,INDEX@} @{LINE,SERIAL@}
/SAVE
/STATISTICS=@{ALL,MEAN,SEMEAN,STDDEV,VARIANCE,KURTOSIS,
SKEWNESS,RANGE,MINIMUM,MAXIMUM,SUM,DEFAULT,
SESKEWNESS,SEKURTOSIS@}
/SORT=@{NONE,MEAN,SEMEAN,STDDEV,VARIANCE,KURTOSIS,SKEWNESS,
RANGE,MINIMUM,MAXIMUM,SUM,SESKEWNESS,SEKURTOSIS,NAME@}
@{A,D@}
@end display
The @cmd{DESCRIPTIVES} procedure reads the active dataset and outputs
linear descriptive statistics requested by the user. In addition, it can optionally
compute Z-scores.
The @subcmd{VARIABLES} subcommand, which is required, specifies the list of
variables to be analyzed. Keyword @subcmd{VARIABLES} is optional.
All other subcommands are optional:
The @subcmd{MISSING} subcommand determines the handling of missing variables. If
@subcmd{INCLUDE} is set, then user-missing values are included in the
calculations. If @subcmd{NOINCLUDE} is set, which is the default, user-missing
values are excluded. If @subcmd{VARIABLE} is set, then missing values are
excluded on a variable by variable basis; if @subcmd{LISTWISE} is set, then
the entire case is excluded whenever any value in that case has a
system-missing or, if @subcmd{INCLUDE} is set, user-missing value.
The @subcmd{FORMAT} subcommand has no effect. It is accepted for
backward compatibility.
The @subcmd{SAVE} subcommand causes @cmd{DESCRIPTIVES} to calculate Z scores for all
the specified variables. The Z scores are saved to new variables.
Variable names are generated by trying first the original variable name
with Z prepended and truncated to a maximum of 8 characters, then the
names ZSC000 through ZSC999, STDZ00 through STDZ09, ZZZZ00 through
ZZZZ09, ZQZQ00 through ZQZQ09, in that sequence. In addition, Z score
variable names can be specified explicitly on @subcmd{VARIABLES} in the variable
list by enclosing them in parentheses after each variable.
When Z scores are calculated, @pspp{} ignores @cmd{TEMPORARY},
treating temporary transformations as permanent.
The @subcmd{STATISTICS} subcommand specifies the statistics to be displayed:
@table @code
@item @subcmd{ALL}
All of the statistics below.
@item @subcmd{MEAN}
Arithmetic mean.
@item @subcmd{SEMEAN}
Standard error of the mean.
@item @subcmd{STDDEV}
Standard deviation.
@item @subcmd{VARIANCE}
Variance.
@item @subcmd{KURTOSIS}
Kurtosis and standard error of the kurtosis.
@item @subcmd{SKEWNESS}
Skewness and standard error of the skewness.
@item @subcmd{RANGE}
Range.
@item MINIMUM
Minimum value.
@item MAXIMUM
Maximum value.
@item SUM
Sum.
@item DEFAULT
Mean, standard deviation of the mean, minimum, maximum.
@item SEKURTOSIS
Standard error of the kurtosis.
@item SESKEWNESS
Standard error of the skewness.
@end table
The @subcmd{SORT} subcommand specifies how the statistics should be sorted. Most
of the possible values should be self-explanatory. @subcmd{NAME} causes the
statistics to be sorted by name. By default, the statistics are listed
in the order that they are specified on the @subcmd{VARIABLES} subcommand.
The @subcmd{A} and @subcmd{D} settings request an ascending or descending
sort order, respectively.
@subsection Descriptives Example
The @file{physiology.sav} file contains various physiological data for a sample
of persons. Running the @cmd{DESCRIPTIVES} command on the variables @exvar{height}
and @exvar{temperature} with the default options allows one to see simple linear
statistics for these two variables. In @ref{descriptives:ex}, these variables
are specfied on the @subcmd{VARIABLES} subcommand and the @subcmd{SAVE} option
has been used, to request that Z scores be calculated.
After the command has completed, this example runs @cmd{DESCRIPTIVES} again, this
time on the @exvar{zheight} and @exvar{ztemperature} variables,
which are the two normalized (Z-score) variables generated by the
first @cmd{DESCRIPTIVES} command.
@float Example, descriptives:ex
@psppsyntax {descriptives.sps}
@caption {Running two @cmd{DESCRIPTIVES} commands, one with the @subcmd{SAVE} subcommand}
@end float
@float Screenshot, descriptives:scr
@psppimage {descriptives}
@caption {The Descriptives dialog box with two variables and Z-Scores option selected}
@end float
In @ref{descriptives:res}, we can see that there are 40 valid data for each of the variables
and no missing values. The mean average of the height and temperature is 16677.12
and 37.02 respectively. The descriptive statistics for temperature seem reasonable.
However there is a very high standard deviation for @exvar{height} and a suspiciously
low minimum. This is due to a data entry error in the
data (@pxref{Identifying incorrect data}).
In the second Descriptive Statistics command, one can see that the mean and standard
deviation of both Z score variables is 0 and 1 respectively. All Z score statistics
should have these properties since they are normalized versions of the original scores.
@float Result, descriptives:res
@psppoutput {descriptives}
@caption {Descriptives statistics including two normalized variables (Z-scores)}
@end float
@node FREQUENCIES
@section FREQUENCIES
@vindex FREQUENCIES
@display
FREQUENCIES
/VARIABLES=@var{var_list}
/FORMAT=@{TABLE,NOTABLE,LIMIT(@var{limit})@}
@{AVALUE,DVALUE,AFREQ,DFREQ@}
/MISSING=@{EXCLUDE,INCLUDE@}
/STATISTICS=@{DEFAULT,MEAN,SEMEAN,MEDIAN,MODE,STDDEV,VARIANCE,
KURTOSIS,SKEWNESS,RANGE,MINIMUM,MAXIMUM,SUM,
SESKEWNESS,SEKURTOSIS,ALL,NONE@}
/NTILES=@var{ntiles}
/PERCENTILES=percent@dots{}
/HISTOGRAM=[MINIMUM(@var{x_min})] [MAXIMUM(@var{x_max})]
[@{FREQ[(@var{y_max})],PERCENT[(@var{y_max})]@}] [@{NONORMAL,NORMAL@}]
/PIECHART=[MINIMUM(@var{x_min})] [MAXIMUM(@var{x_max})]
[@{FREQ,PERCENT@}] [@{NOMISSING,MISSING@}]
/BARCHART=[MINIMUM(@var{x_min})] [MAXIMUM(@var{x_max})]
[@{FREQ,PERCENT@}]
/ORDER=@{ANALYSIS,VARIABLE@}
(These options are not currently implemented.)
/HBAR=@dots{}
/GROUPED=@dots{}
@end display
The @cmd{FREQUENCIES} procedure outputs frequency tables for specified
variables.
@cmd{FREQUENCIES} can also calculate and display descriptive statistics
(including median and mode) and percentiles, and various graphical representations
of the frequency distribution.
The @subcmd{VARIABLES} subcommand is the only required subcommand. Specify the
variables to be analyzed.
The @subcmd{FORMAT} subcommand controls the output format. It has several
possible settings:
@itemize @subcmd{}
@item
@subcmd{TABLE}, the default, causes a frequency table to be output for every
variable specified. @subcmd{NOTABLE} prevents them from being output. @subcmd{LIMIT}
with a numeric argument causes them to be output except when there are
more than the specified number of values in the table.
@item
Normally frequency tables are sorted in ascending order by value. This
is @subcmd{AVALUE}. @subcmd{DVALUE} tables are sorted in descending order by value.
@subcmd{AFREQ} and @subcmd{DFREQ} tables are sorted in ascending and descending order,
respectively, by frequency count.
@end itemize
The @subcmd{MISSING} subcommand controls the handling of user-missing values.
When @subcmd{EXCLUDE}, the default, is set, user-missing values are not included
in frequency tables or statistics. When @subcmd{INCLUDE} is set, user-missing
are included. System-missing values are never included in statistics,
but are listed in frequency tables.
The available @subcmd{STATISTICS} are the same as available
in @cmd{DESCRIPTIVES} (@pxref{DESCRIPTIVES}), with the addition
of @subcmd{MEDIAN}, the data's median
value, and MODE, the mode. (If there are multiple modes, the smallest
value is reported.) By default, the mean, standard deviation of the
mean, minimum, and maximum are reported for each variable.
@cindex percentiles
@subcmd{PERCENTILES} causes the specified percentiles to be reported.
The percentiles should be presented at a list of numbers between 0
and 100 inclusive.
The @subcmd{NTILES} subcommand causes the percentiles to be reported at the
boundaries of the data set divided into the specified number of ranges.
For instance, @subcmd{/NTILES=4} would cause quartiles to be reported.
@cindex histogram
The @subcmd{HISTOGRAM} subcommand causes the output to include a histogram for
each specified numeric variable. The X axis by default ranges from
the minimum to the maximum value observed in the data, but the @subcmd{MINIMUM}
and @subcmd{MAXIMUM} keywords can set an explicit range.
@footnote{The number of
bins is chosen according to the Freedman-Diaconis rule:
@math{2 \times IQR(x)n^{-1/3}}, where @math{IQR(x)} is the interquartile range of @math{x}
and @math{n} is the number of samples. Note that
@cmd{EXAMINE} uses a different algorithm to determine bin sizes.}
Histograms are not created for string variables.
Specify @subcmd{NORMAL} to superimpose a normal curve on the
histogram.
@cindex piechart
The @subcmd{PIECHART} subcommand adds a pie chart for each variable to the data. Each
slice represents one value, with the size of the slice proportional to
the value's frequency. By default, all non-missing values are given
slices.
The @subcmd{MINIMUM} and @subcmd{MAXIMUM} keywords can be used to limit the
displayed slices to a given range of values.
The keyword @subcmd{NOMISSING} causes missing values to be omitted from the
piechart. This is the default.
If instead, @subcmd{MISSING} is specified, then the pie chart includes
a single slice representing all system missing and user-missing cases.
@cindex bar chart
The @subcmd{BARCHART} subcommand produces a bar chart for each variable.
The @subcmd{MINIMUM} and @subcmd{MAXIMUM} keywords can be used to omit
categories whose counts which lie outside the specified limits.
The @subcmd{FREQ} option (default) causes the ordinate to display the frequency
of each category, whereas the @subcmd{PERCENT} option displays relative
percentages.
The @subcmd{FREQ} and @subcmd{PERCENT} options on @subcmd{HISTOGRAM} and
@subcmd{PIECHART} are accepted but not currently honoured.
The @subcmd{ORDER} subcommand is accepted but ignored.
@subsection Frequencies Example
@ref{frequencies:ex} runs a frequency analysis on the @exvar{sex}
and @exvar{occupation} variables from the @file{personnel.sav} file.
This is useful to get a general idea of the way in which these nominal
variables are distributed.
@float Example, frequencies:ex
@psppsyntax {frequencies.sps}
@caption {Running frequencies on the @exvar{sex} and @exvar{occupation} variables}
@end float
If you are using the graphic user interface, the dialog box is set up such that
by default, several statistics are calculated. Some are not particularly useful
for categorical variables, so you may want to disable those.
@float Screenshot, frequencies:scr
@psppimage {frequencies}
@caption {The frequencies dialog box with the @exvar{sex} and @exvar{occupation} variables selected}
@end float
From @ref{frequencies:res} it is evident that there are 33 males, 21 females and
2 persons for whom their sex has not been entered.
One can also see how many of each occupation there are in the data.
When dealing with string variables used as nominal values, running a frequency
analysis is useful to detect data input entries. Notice that
one @exvar{occupation} value has been mistyped as ``Scrientist''. This entry should
be corrected, or marked as missing before using the data.
@float Result, frequencies:res
@psppoutput {frequencies}
@caption {The relative frequencies of @exvar{sex} and @exvar{occupation}}
@end float
@node EXAMINE
@section EXAMINE
@vindex EXAMINE
@cindex Exploratory data analysis
@cindex normality, testing
@display
EXAMINE
VARIABLES= @var{var1} [@var{var2}] @dots{} [@var{varN}]
[BY @var{factor1} [BY @var{subfactor1}]
[ @var{factor2} [BY @var{subfactor2}]]
@dots{}
[ @var{factor3} [BY @var{subfactor3}]]
]
/STATISTICS=@{DESCRIPTIVES, EXTREME[(@var{n})], ALL, NONE@}
/PLOT=@{BOXPLOT, NPPLOT, HISTOGRAM, SPREADLEVEL[(@var{t})], ALL, NONE@}
/CINTERVAL @var{p}
/COMPARE=@{GROUPS,VARIABLES@}
/ID=@var{identity_variable}
/@{TOTAL,NOTOTAL@}
/PERCENTILE=[@var{percentiles}]=@{HAVERAGE, WAVERAGE, ROUND, AEMPIRICAL, EMPIRICAL @}
/MISSING=@{LISTWISE, PAIRWISE@} [@{EXCLUDE, INCLUDE@}]
[@{NOREPORT,REPORT@}]
@end display
The @cmd{EXAMINE} command is used to perform exploratory data analysis.
In particular, it is useful for testing how closely a distribution follows a
normal distribution, and for finding outliers and extreme values.
The @subcmd{VARIABLES} subcommand is mandatory.
It specifies the dependent variables and optionally variables to use as
factors for the analysis.
Variables listed before the first @subcmd{BY} keyword (if any) are the
dependent variables.
The dependent variables may optionally be followed by a list of
factors which tell @pspp{} how to break down the analysis for each
dependent variable.
Following the dependent variables, factors may be specified.
The factors (if desired) should be preceded by a single @subcmd{BY} keyword.
The format for each factor is
@display
@var{factorvar} [BY @var{subfactorvar}].
@end display
Each unique combination of the values of @var{factorvar} and
@var{subfactorvar} divide the dataset into @dfn{cells}.
Statistics are calculated for each cell
and for the entire dataset (unless @subcmd{NOTOTAL} is given).
The @subcmd{STATISTICS} subcommand specifies which statistics to show.
@subcmd{DESCRIPTIVES} produces a table showing some parametric and
non-parametrics statistics.
@subcmd{EXTREME} produces a table showing the extremities of each cell.
A number in parentheses, @var{n} determines
how many upper and lower extremities to show.
The default number is 5.
The subcommands @subcmd{TOTAL} and @subcmd{NOTOTAL} are mutually exclusive.
If @subcmd{TOTAL} appears, then statistics for the entire dataset
as well as for each cell are produced.
If @subcmd{NOTOTAL} appears, then statistics are produced only for the cells
(unless no factor variables have been given).
These subcommands have no effect if there have been no factor variables
specified.
@cindex boxplot
@cindex histogram
@cindex npplot
@cindex spreadlevel plot
The @subcmd{PLOT} subcommand specifies which plots are to be produced if any.
Available plots are @subcmd{HISTOGRAM}, @subcmd{NPPLOT}, @subcmd{BOXPLOT} and
@subcmd{SPREADLEVEL}.
The first three can be used to visualise how closely each cell conforms to a
normal distribution, whilst the spread vs.@: level plot can be useful to visualise
how the variance differs between factors.
Boxplots show you the outliers and extreme values.
@footnote{@subcmd{HISTOGRAM} uses Sturges' rule to determine the number of
bins, as approximately @math{1 + \log2(n)}, where @math{n} is the number of samples.
Note that @cmd{FREQUENCIES} uses a different algorithm to find the bin size.}
The @subcmd{SPREADLEVEL} plot displays the interquartile range versus the
median. It takes an optional parameter @var{t}, which specifies how the data
should be transformed prior to plotting.
The given value @var{t} is a power to which the data are raised. For example, if
@var{t} is given as 2, then the square of the data is used.
Zero, however is a special value. If @var{t} is 0 or
is omitted, then data are transformed by taking its natural logarithm instead of
raising to the power of @var{t}.
@cindex Shapiro-Wilk
When one or more plots are requested, @subcmd{EXAMINE} also performs the
Shapiro-Wilk test for each category.
There are however a number of provisos:
@itemize
@item All weight values must be integer.
@item The cumulative weight value must be in the range [3, 5000]
@end itemize
The @subcmd{COMPARE} subcommand is only relevant if producing boxplots, and it is only
useful there is more than one dependent variable and at least one factor.
If
@subcmd{/COMPARE=GROUPS} is specified, then one plot per dependent variable is produced,
each of which contain boxplots for all the cells.
If @subcmd{/COMPARE=VARIABLES} is specified, then one plot per cell is produced,
each containing one boxplot per dependent variable.
If the @subcmd{/COMPARE} subcommand is omitted, then @pspp{} behaves as if
@subcmd{/COMPARE=GROUPS} were given.
The @subcmd{ID} subcommand is relevant only if @subcmd{/PLOT=BOXPLOT} or
@subcmd{/STATISTICS=EXTREME} has been given.
If given, it should provide the name of a variable which is to be used
to labels extreme values and outliers.
Numeric or string variables are permissible.
If the @subcmd{ID} subcommand is not given, then the case number is used for
labelling.
The @subcmd{CINTERVAL} subcommand specifies the confidence interval to use in
calculation of the descriptives command. The default is 95%.
@cindex percentiles
The @subcmd{PERCENTILES} subcommand specifies which percentiles are to be calculated,
and which algorithm to use for calculating them. The default is to
calculate the 5, 10, 25, 50, 75, 90, 95 percentiles using the
@subcmd{HAVERAGE} algorithm.
The @subcmd{TOTAL} and @subcmd{NOTOTAL} subcommands are mutually exclusive. If @subcmd{NOTOTAL}
is given and factors have been specified in the @subcmd{VARIABLES} subcommand,
then statistics for the unfactored dependent variables are
produced in addition to the factored variables. If there are no
factors specified then @subcmd{TOTAL} and @subcmd{NOTOTAL} have no effect.
The following example generates descriptive statistics and histograms for
two variables @var{score1} and @var{score2}.
Two factors are given, @i{viz}: @var{gender} and @var{gender} BY @var{culture}.
Therefore, the descriptives and histograms are generated for each
distinct value
of @var{gender} @emph{and} for each distinct combination of the values
of @var{gender} and @var{race}.
Since the @subcmd{NOTOTAL} keyword is given, statistics and histograms for
@var{score1} and @var{score2} covering the whole dataset are not produced.
@example
EXAMINE @var{score1} @var{score2} BY
@var{gender}
@var{gender} BY @var{culture}
/STATISTICS = DESCRIPTIVES
/PLOT = HISTOGRAM
/NOTOTAL.
@end example
Here is a second example showing how the @cmd{examine} command can be used to find extremities.
@example
EXAMINE @var{height} @var{weight} BY
@var{gender}
/STATISTICS = EXTREME (3)
/PLOT = BOXPLOT
/COMPARE = GROUPS
/ID = @var{name}.
@end example
In this example, we look at the height and weight of a sample of individuals and
how they differ between male and female.
A table showing the 3 largest and the 3 smallest values of @exvar{height} and
@exvar{weight} for each gender, and for the whole dataset as are shown.
In addition, the @subcmd{/PLOT} subcommand requests boxplots.
Because @subcmd{/COMPARE = GROUPS} was specified, boxplots for male and female are
shown in juxtaposed in the same graphic, allowing us to easily see the difference between
the genders.
Since the variable @var{name} was specified on the @subcmd{ID} subcommand,
values of the @var{name} variable are used to label the extreme values.
@strong{Warning!}
If you specify many dependent variables or factor variables
for which there are many distinct values, then @cmd{EXAMINE} will produce a very
large quantity of output.
@node GRAPH
@section GRAPH
@vindex GRAPH
@cindex Exploratory data analysis
@cindex normality, testing
@display
GRAPH
/HISTOGRAM [(NORMAL)]= @var{var}
/SCATTERPLOT [(BIVARIATE)] = @var{var1} WITH @var{var2} [BY @var{var3}]
/BAR = @{@var{summary-function}(@var{var1}) | @var{count-function}@} BY @var{var2} [BY @var{var3}]
[ /MISSING=@{LISTWISE, VARIABLE@} [@{EXCLUDE, INCLUDE@}] ]
[@{NOREPORT,REPORT@}]
@end display
The @cmd{GRAPH} command produces graphical plots of data. Only one of the subcommands
@subcmd{HISTOGRAM}, @subcmd{BAR} or @subcmd{SCATTERPLOT} can be specified, @i{i.e.} only one plot
can be produced per call of @cmd{GRAPH}. The @subcmd{MISSING} is optional.
@menu
* SCATTERPLOT:: Cartesian Plots
* HISTOGRAM:: Histograms
* BAR CHART:: Bar Charts
@end menu
@node SCATTERPLOT
@subsection Scatterplot
@cindex scatterplot
The subcommand @subcmd{SCATTERPLOT} produces an xy plot of the
data.
@cmd{GRAPH} uses the third variable @var{var3}, if specified, to determine
the colours and/or markers for the plot.
The following is an example for producing a scatterplot.
@example
GRAPH
/SCATTERPLOT = @var{height} WITH @var{weight} BY @var{gender}.
@end example
This example produces a scatterplot where @var{height} is plotted versus @var{weight}. Depending
on the value of the @var{gender} variable, the colour of the datapoint is different. With
this plot it is possible to analyze gender differences for @var{height} versus @var{weight} relation.
@node HISTOGRAM
@subsection Histogram
@cindex histogram
The subcommand @subcmd{HISTOGRAM} produces a histogram. Only one variable is allowed for
the histogram plot.
The keyword @subcmd{NORMAL} may be specified in parentheses, to indicate that the ideal normal curve
should be superimposed over the histogram.
For an alternative method to produce histograms @pxref{EXAMINE}. The
following example produces a histogram plot for the variable @var{weight}.
@example
GRAPH
/HISTOGRAM = @var{weight}.
@end example
@node BAR CHART
@subsection Bar Chart
@cindex bar chart
The subcommand @subcmd{BAR} produces a bar chart.
This subcommand requires that a @var{count-function} be specified (with no arguments) or a @var{summary-function} with a variable @var{var1} in parentheses.
Following the summary or count function, the keyword @subcmd{BY} should be specified and then a catagorical variable, @var{var2}.
The values of the variable @var{var2} determine the labels of the bars to be plotted.
Optionally a second categorical variable @var{var3} may be specified in which case a clustered (grouped) bar chart is produced.
Valid count functions are
@table @subcmd
@item COUNT
The weighted counts of the cases in each category.
@item PCT
The weighted counts of the cases in each category expressed as a percentage of the total weights of the cases.
@item CUFREQ
The cumulative weighted counts of the cases in each category.
@item CUPCT
The cumulative weighted counts of the cases in each category expressed as a percentage of the total weights of the cases.
@end table
The summary function is applied to @var{var1} across all cases in each category.
The recognised summary functions are:
@table @subcmd
@item SUM
The sum.
@item MEAN
The arithmetic mean.
@item MAXIMUM
The maximum value.
@item MINIMUM
The minimum value.
@end table
The following examples assume a dataset which is the results of a survey.
Each respondent has indicated annual income, their sex and city of residence.
One could create a bar chart showing how the mean income varies between of residents of different cities, thus:
@example
GRAPH /BAR = MEAN(@var{income}) BY @var{city}.
@end example
This can be extended to also indicate how income in each city differs between the sexes.
@example
GRAPH /BAR = MEAN(@var{income}) BY @var{city} BY @var{sex}.
@end example
One might also want to see how many respondents there are from each city. This can be achieved as follows:
@example
GRAPH /BAR = COUNT BY @var{city}.
@end example
Bar charts can also be produced using the @ref{FREQUENCIES} and @ref{CROSSTABS} commands.
@node CORRELATIONS
@section CORRELATIONS
@vindex CORRELATIONS
@display
CORRELATIONS
/VARIABLES = @var{var_list} [ WITH @var{var_list} ]
[
.
.
.
/VARIABLES = @var{var_list} [ WITH @var{var_list} ]
/VARIABLES = @var{var_list} [ WITH @var{var_list} ]
]
[ /PRINT=@{TWOTAIL, ONETAIL@} @{SIG, NOSIG@} ]
[ /STATISTICS=DESCRIPTIVES XPROD ALL]
[ /MISSING=@{PAIRWISE, LISTWISE@} @{INCLUDE, EXCLUDE@} ]
@end display
@cindex correlation
The @cmd{CORRELATIONS} procedure produces tables of the Pearson correlation coefficient
for a set of variables. The significance of the coefficients are also given.
At least one @subcmd{VARIABLES} subcommand is required. If you specify the @subcmd{WITH}
keyword, then a non-square correlation table is produced.
The variables preceding @subcmd{WITH}, are used as the rows of the table,
and the variables following @subcmd{WITH} are used as the columns of the table.
If no @subcmd{WITH} subcommand is specified, then @cmd{CORRELATIONS} produces a
square, symmetrical table using all variables.
The @cmd{MISSING} subcommand determines the handling of missing variables.
If @subcmd{INCLUDE} is set, then user-missing values are included in the
calculations, but system-missing values are not.
If @subcmd{EXCLUDE} is set, which is the default, user-missing
values are excluded as well as system-missing values.
If @subcmd{LISTWISE} is set, then the entire case is excluded from analysis
whenever any variable specified in any @cmd{/VARIABLES} subcommand
contains a missing value.
If @subcmd{PAIRWISE} is set, then a case is considered missing only if either of the
values for the particular coefficient are missing.
The default is @subcmd{PAIRWISE}.
The @subcmd{PRINT} subcommand is used to control how the reported significance values are printed.
If the @subcmd{TWOTAIL} option is used, then a two-tailed test of significance is
printed. If the @subcmd{ONETAIL} option is given, then a one-tailed test is used.
The default is @subcmd{TWOTAIL}.
If the @subcmd{NOSIG} option is specified, then correlation coefficients with significance less than
0.05 are highlighted.
If @subcmd{SIG} is specified, then no highlighting is performed. This is the default.
@cindex covariance
The @subcmd{STATISTICS} subcommand requests additional statistics to be displayed. The keyword
@subcmd{DESCRIPTIVES} requests that the mean, number of non-missing cases, and the non-biased
estimator of the standard deviation are displayed.
These statistics are displayed in a separated table, for all the variables listed
in any @subcmd{/VARIABLES} subcommand.
The @subcmd{XPROD} keyword requests cross-product deviations and covariance estimators to
be displayed for each pair of variables.
The keyword @subcmd{ALL} is the union of @subcmd{DESCRIPTIVES} and @subcmd{XPROD}.
@node CROSSTABS
@section CROSSTABS
@vindex CROSSTABS
@display
CROSSTABS
/TABLES=@var{var_list} BY @var{var_list} [BY @var{var_list}]@dots{}
/MISSING=@{TABLE,INCLUDE,REPORT@}
/FORMAT=@{TABLES,NOTABLES@}
@{AVALUE,DVALUE@}
/CELLS=@{COUNT,ROW,COLUMN,TOTAL,EXPECTED,RESIDUAL,SRESIDUAL,
ASRESIDUAL,ALL,NONE@}
/COUNT=@{ASIS,CASE,CELL@}
@{ROUND,TRUNCATE@}
/STATISTICS=@{CHISQ,PHI,CC,LAMBDA,UC,BTAU,CTAU,RISK,GAMMA,D,
KAPPA,ETA,CORR,ALL,NONE@}
/BARCHART
(Integer mode.)
/VARIABLES=@var{var_list} (@var{low},@var{high})@dots{}
@end display
The @cmd{CROSSTABS} procedure displays crosstabulation
tables requested by the user. It can calculate several statistics for
each cell in the crosstabulation tables. In addition, a number of
statistics can be calculated for each table itself.
The @subcmd{TABLES} subcommand is used to specify the tables to be reported. Any
number of dimensions is permitted, and any number of variables per
dimension is allowed. The @subcmd{TABLES} subcommand may be repeated as many
times as needed. This is the only required subcommand in @dfn{general
mode}.
Occasionally, one may want to invoke a special mode called @dfn{integer
mode}. Normally, in general mode, @pspp{} automatically determines
what values occur in the data. In integer mode, the user specifies the
range of values that the data assumes. To invoke this mode, specify the
@subcmd{VARIABLES} subcommand, giving a range of data values in parentheses for
each variable to be used on the @subcmd{TABLES} subcommand. Data values inside
the range are truncated to the nearest integer, then assigned to that
value. If values occur outside this range, they are discarded. When it
is present, the @subcmd{VARIABLES} subcommand must precede the @subcmd{TABLES}
subcommand.
In general mode, numeric and string variables may be specified on
TABLES. In integer mode, only numeric variables are allowed.
The @subcmd{MISSING} subcommand determines the handling of user-missing values.
When set to @subcmd{TABLE}, the default, missing values are dropped on a table by
table basis. When set to @subcmd{INCLUDE}, user-missing values are included in
tables and statistics. When set to @subcmd{REPORT}, which is allowed only in
integer mode, user-missing values are included in tables but marked with
a footnote and excluded from statistical calculations.
The @subcmd{FORMAT} subcommand controls the characteristics of the
crosstabulation tables to be displayed. It has a number of possible
settings:
@itemize @w{}
@item
@subcmd{TABLES}, the default, causes crosstabulation tables to be output.
@subcmd{NOTABLES}, which is equivalent to @code{CELLS=NONE}, suppresses them.
@item
@subcmd{AVALUE}, the default, causes values to be sorted in ascending order.
@subcmd{DVALUE} asserts a descending sort order.
@end itemize
The @subcmd{CELLS} subcommand controls the contents of each cell in the displayed
crosstabulation table. The possible settings are:
@table @asis
@item COUNT
Frequency count.
@item ROW
Row percent.
@item COLUMN
Column percent.
@item TOTAL
Table percent.
@item EXPECTED
Expected value.
@item RESIDUAL
Residual.
@item SRESIDUAL
Standardized residual.
@item ASRESIDUAL
Adjusted standardized residual.
@item ALL
All of the above.
@item NONE
Suppress cells entirely.
@end table
@samp{/CELLS} without any settings specified requests @subcmd{COUNT}, @subcmd{ROW},
@subcmd{COLUMN}, and @subcmd{TOTAL}.
If @subcmd{CELLS} is not specified at all then only @subcmd{COUNT}
is selected.
By default, crosstabulation and statistics use raw case weights,
without rounding. Use the @subcmd{/COUNT} subcommand to perform
rounding: CASE rounds the weights of individual weights as cases are
read, CELL rounds the weights of cells within each crosstabulation
table after it has been constructed, and ASIS explicitly specifies the
default non-rounding behavior. When rounding is requested, ROUND, the
default, rounds to the nearest integer and TRUNCATE rounds toward
zero.
The @subcmd{STATISTICS} subcommand selects statistics for computation:
@table @asis
@item CHISQ
@cindex chi-square
Pearson chi-square, likelihood ratio, Fisher's exact test, continuity
correction, linear-by-linear association.
@item PHI
Phi.
@item CC
Contingency coefficient.
@item LAMBDA
Lambda.
@item UC
Uncertainty coefficient.
@item BTAU
Tau-b.
@item CTAU
Tau-c.
@item RISK
Risk estimate.
@item GAMMA
Gamma.
@item D
Somers' D.
@item KAPPA
Cohen's Kappa.
@item ETA
Eta.
@item CORR
Spearman correlation, Pearson's r.
@item ALL
All of the above.
@item NONE
No statistics.
@end table
Selected statistics are only calculated when appropriate for the
statistic. Certain statistics require tables of a particular size, and
some statistics are calculated only in integer mode.
@samp{/STATISTICS} without any settings selects CHISQ. If the
@subcmd{STATISTICS} subcommand is not given, no statistics are calculated.
@cindex bar chart
The @samp{/BARCHART} subcommand produces a clustered bar chart for the first two
variables on each table.
If a table has more than two variables, the counts for the third and subsequent levels
are aggregated and the chart is produced as if there were only two variables.
@strong{Please note:} Currently the implementation of @cmd{CROSSTABS} has the
following limitations:
@itemize @bullet
@item
Significance of some directional measures is not calculated.
@item
Asymptotic standard error is not calculated for
Goodman and Kruskal's tau or symmetric Somers' d.
@item
Approximate T is not calculated for symmetric uncertainty coefficient.
@end itemize
Fixes for any of these deficiencies would be welcomed.
@subsection Crosstabs Example
@cindex chi-square test of independence
A researcher wishes to know if, in an industry, a person's sex is related to
the person's occupation. To investigate this, she has determined that the
@file{personnel.sav} is a representative, randomly selected sample of persons.
The researcher's null hypothesis is that a person's sex has no relation to a
person's occupation. She uses a chi-squared test of independence to investigate
the hypothesis.
@float Example, crosstabs:ex
@psppsyntax {crosstabs.sps}
@caption {Running crosstabs on the @exvar{sex} and @exvar{occupation} variables}
@end float
The syntax in @ref{crosstabs:ex} conducts a chi-squared test of independence.
The line @code{/tables = occupation by sex} indicates that @exvar{occupation}
and @exvar{sex} are the variables to be tabulated. To do this using the @gui{}
you must place these variable names respectively in the @samp{Row} and
@samp{Column} fields as shown in @ref{crosstabs:scr}.
@float Screenshot, crosstabs:scr
@psppimage {crosstabs}
@caption {The Crosstabs dialog box with the @exvar{sex} and @exvar{occupation} variables selected}
@end float
Similarly, the @samp{Cells} button shows a dialog box to select the @code{count}
and @code{expected} options. All other cell options can be deselected for this
test.
You would use the @samp{Format} and @samp{Statistics} buttons to select options
for the @subcmd{FORMAT} and @subcmd{STATISTICS} subcommands. In this example,
the @samp{Statistics} requires only the @samp{Chisq} option to be checked. All
other options should be unchecked. No special settings are required from the
@samp{Format} dialog.
As shown in @ref{crosstabs:res} @cmd{CROSSTABS} generates a contingency table
containing the observed count and the expected count of each sex and each
occupation. The expected count is the count which would be observed if the
null hypothesis were true.
The significance of the Pearson Chi-Square value is very much larger than the
normally accepted value of 0.05 and so one cannot reject the null hypothesis.
Thus the researcher must conclude that a person's sex has no relation to the
person's occupation.
@float Results, crosstabs:res
@psppoutput {crosstabs}
@caption {The results of a test of independence between @exvar{sex} and @exvar{occupation}}
@end float
@node CTABLES
@section CTABLES
@vindex CTABLES
@cindex custom tables
@cindex tables, custom
@code{CTABLES} has the following overall syntax. At least one
@code{TABLE} subcommand is required:
@display
@t{CTABLES}
@dots{}@i{global subcommands}@dots{}
[@t{/TABLE} @i{axis} [@t{BY} @i{axis} [@t{BY} @i{axis}]]
@dots{}@i{per-table subcommands}@dots{}]@dots{}
@end display
@noindent
where each @i{axis} may be empty or take one of the following forms:
@display
@i{variable}
@i{variable} @t{[}@{@t{C} @math{|} @t{S}@}@t{]}
@i{axis} + @i{axis}
@i{axis} > @i{axis}
(@i{axis})
@i{axis} @t{[}@i{summary} [@i{string}] [@i{format}]@t{]}
@end display
The following subcommands precede the first @code{TABLE} subcommand
and apply to all of the output tables. All of these subcommands are
optional:
@display
@t{/FORMAT}
[@t{MINCOLWIDTH=}@{@t{DEFAULT} @math{|} @i{width}@}]
[@t{MAXCOLWIDTH=}@{@t{DEFAULT} @math{|} @i{width}@}]
[@t{UNITS=}@{@t{POINTS} @math{|} @t{INCHES} @math{|} @t{CM}@}]
[@t{EMPTY=}@{@t{ZERO} @math{|} @t{BLANK} @math{|} @i{string}@}]
[@t{MISSING=}@i{string}]
@t{/VLABELS}
@t{VARIABLES=}@i{variables}
@t{DISPLAY}=@{@t{DEFAULT} @math{|} @t{NAME} @math{|} @t{LABEL} @math{|} @t{BOTH} @math{|} @t{NONE}@}
@ignore @c not yet implemented
@t{/MRSETS COUNTDUPLICATES=}@{@t{YES} @math{|} @t{NO}@}
@end ignore
@t{/SMISSING} @{@t{VARIABLE} @math{|} @t{LISTWISE}@}
@t{/PCOMPUTE} @t{&}@i{postcompute}@t{=EXPR(}@i{expression}@t{)}
@t{/PPROPERTIES} @t{&}@i{postcompute}@dots{}
[@t{LABEL=}@i{string}]
[@t{FORMAT=}[@i{summary} @i{format}]@dots{}]
[@t{HIDESOURCECATS=}@{@t{NO} @math{|} @t{YES}@}
@t{/WEIGHT VARIABLE=}@i{variable}
@t{/HIDESMALLCOUNTS COUNT=@i{count}}
@end display
The following subcommands follow @code{TABLE} and apply only to the
previous @code{TABLE}. All of these subcommands are optional:
@display
@t{/SLABELS}
[@t{POSITION=}@{@t{COLUMN} @math{|} @t{ROW} @math{|} @t{LAYER}@}]
[@t{VISIBLE=}@{@t{YES} @math{|} @t{NO}@}]
@t{/CLABELS} @{@t{AUTO} @math{|} @{@t{ROWLABELS}@math{|}@t{COLLABELS}@}@t{=}@{@t{OPPOSITE}@math{|}@t{LAYER}@}@}
@t{/CATEGORIES} @t{VARIABLES=}@i{variables}
@{@t{[}@i{value}@t{,} @i{value}@dots{}@t{]}
@math{|} [@t{ORDER=}@{@t{A} @math{|} @t{D}@}]
[@t{KEY=}@{@t{VALUE} @math{|} @t{LABEL} @math{|} @i{summary}@t{(}@i{variable}@t{)}@}]
[@t{MISSING=}@{@t{EXCLUDE} @math{|} @t{INCLUDE}@}]@}
[@t{TOTAL=}@{@t{NO} @math{|} @t{YES}@} [@t{LABEL=}@i{string}] [@t{POSITION=}@{@t{AFTER} @math{|} @t{BEFORE}@}]]
[@t{EMPTY=}@{@t{INCLUDE} @math{|} @t{EXCLUDE}@}]
@t{/TITLES}
[@t{TITLE=}@i{string}@dots{}]
[@t{CAPTION=}@i{string}@dots{}]
[@t{CORNER=}@i{string}@dots{}]
@ignore @c not yet implemented
@t{/CRITERIA CILEVEL=}@i{percentage}
@t{/SIGTEST TYPE=CHISQUARE}
[@t{ALPHA=}@i{siglevel}]
[@t{INCLUDEMRSETS=}@{@t{YES} @math{|} @t{NO}@}]
[@t{CATEGORIES=}@{@t{ALLVISIBLE} @math{|} @t{SUBTOTALS}@}]
@t{/COMPARETEST TYPE=}@{@t{PROP} @math{|} @t{MEAN}@}
[@t{ALPHA=}@i{value}[@t{,} @i{value}]]
[@t{ADJUST=}@{@t{BONFERRONI} @math{|} @t{BH} @math{|} @t{NONE}@}]
[@t{INCLUDEMRSETS=}@{@t{YES} @math{|} @t{NO}@}]
[@t{MEANSVARIANCE=}@{@t{ALLCATS} @math{|} @t{TESTEDCATS}@}]
[@t{CATEGORIES=}@{@t{ALLVISIBLE} @math{|} @t{SUBTOTALS}@}]
[@t{MERGE=}@{@t{NO} @math{|} @t{YES}@}]
[@t{STYLE=}@{@t{APA} @math{|} @t{SIMPLE}@}]
[@t{SHOWSIG=}@{@t{NO} @math{|} @t{YES}@}]
@end ignore
@end display
The @code{CTABLES} (aka ``custom tables'') command produces
multi-dimensional tables from categorical and scale data. It offers
many options for data summarization and formatting.
This section's examples use data from the 2008 (USA) National Survey
of Drinking and Driving Attitudes and Behaviors, a public domain data
set from the (USA) National Highway Traffic Administration and
available at @url{https://data.transportation.gov}. @pspp{} includes
this data set, with a modified dictionary, as
@file{examples/nhtsa.sav}.
@node CTABLES Basics
@subsection Basics
The only required subcommand is @code{TABLE}, which specifies the
variables to include along each axis:
@display
@t{/TABLE} @i{rows} [@t{BY} @i{columns} [@t{BY} @i{layers}]]
@end display
@noindent
In @code{TABLE}, each of @var{rows}, @var{columns}, and @var{layers}
is either empty or an axis expression that specifies one or more
variables. At least one must specify an axis expression.
@node CTABLES Categorical Variable Basics
@subsubsection Categorical Variables
An axis expression that names a categorical variable divides the data
into cells according to the values of that variable. When all the
variables named on @code{TABLE} are categorical, by default each cell
displays the number of cases that it contains, so specifying a single
variable yields a frequency table, much like the output of the
@code{FREQUENCIES} command (@pxref{FREQUENCIES}):
@example
CTABLES /TABLE=ageGroup.
@end example
@psppoutput {ctables1}
@noindent
Specifying a row and a column categorical variable yields a
crosstabulation, much like the output of the @code{CROSSTABS} command
(@pxref{CROSSTABS}):
@example
CTABLES /TABLE=ageGroup BY gender.
@end example
@psppoutput {ctables2}
@noindent
The @samp{>} ``nesting'' operator nests multiple variables on a single
axis, e.g.:
@example
CTABLES /TABLE likelihoodOfBeingStoppedByPolice BY ageGroup > gender.
@end example
@psppoutput {ctables3}
@noindent
The @samp{+} ``stacking'' operator allows a single output table to
include multiple data analyses. With @samp{+}, @code{CTABLES} divides
the output table into multiple @dfn{sections}, each of which includes
an analysis of the full data set. For example, the following command
separately tabulates age group and driving frequency by gender:
@example
CTABLES /TABLE ageGroup + freqOfDriving BY gender.
@end example
@psppoutput {ctables4}
@noindent
When @samp{+} and @samp{>} are used together, @samp{>} binds more
tightly. Use parentheses to override operator precedence. Thus:
@example
CTABLES /TABLE hasConsideredReduction + hasBeenCriticized > gender.
CTABLES /TABLE (hasConsideredReduction + hasBeenCriticized) > gender.
@end example
@psppoutput {ctables5}
@node CTABLES Scalar Variable Basics
@subsubsection Scalar Variables
For a categorical variable, @code{CTABLES} divides the table into a
cell per category. For a scalar variable, @code{CTABLES} instead
calculates a summary measure, by default the mean, of the values that
fall into a cell. For example, if the only variable specified is a
scalar variable, then the output is a single cell that holds the mean
of all of the data:
@example
CTABLES /TABLE age.
@end example
@psppoutput {ctables6}
A scalar variable may nest with categorical variables. The following
example shows the mean age of survey respondents across gender and
language groups:
@example
CTABLES /TABLE gender > age BY region.
@end example
@psppoutput {ctables7}
The order of nesting of scalar and categorical variables affects table
labeling, but it does not affect the data displayed in the table. The
following example shows how the output changes when the nesting order
of the scalar and categorical variable are interchanged:
@example
CTABLES /TABLE age > gender BY region.
@end example
@psppoutput {ctables8}
Only a single scalar variable may appear in each section; that is, a
scalar variable may not nest inside a scalar variable directly or
indirectly. Scalar variables may only appear on one axis within
@code{TABLE}.
@node CTABLES Overriding Measurement Level
@subsubsection Overriding Measurement Level
By default, @code{CTABLES} uses a variable's measurement level to
decide whether to treat it as categorical or scalar. Variables
assigned the nominal or ordinal measurement level are treated as
categorical, and scalar variables are treated as scalar.
When @pspp{} reads data from a file in an external format, such as a
text file, variables' measurement levels are often unknown. If
@code{CTABLES} runs when a variable has an unknown measurement level,
it makes an initial pass through the data to guess measurement levels
using the rules described in an earlier section (@pxref{Measurement
Level}). Use the @code{VARIABLE LEVEL} command to set or change a
variable's measurement level (@pxref{VARIABLE LEVEL}).
To treat a variable as categorical or scalar only for one use on
@code{CTABLES}, add @samp{[C]} or @samp{[S]}, respectively, after the
variable name. The following example shows the output when variable
@code{monthDaysMin1drink} is analyzed as scalar (the default for its measurement
level) and as categorical:
@example
CTABLES
/TABLE monthDaysMin1drink BY gender
/TABLE monthDaysMin1drink [C] BY gender.
@end example
@psppoutput {ctables9}
@ignore
@node CTABLES Multiple Response Sets
@subsubheading Multiple Response Sets
The @code{CTABLES} command does not yet support multiple response
sets.
@end ignore
@node CTABLES Data Summarization
@subsection Data Summarization
The @code{CTABLES} command allows the user to control how the data are
summarized with @dfn{summary specifications}, syntax that lists one or
more summary function names, optionally separated by commas, and which
are enclosed in square brackets following a variable name on the
@code{TABLE} subcommand. When all the variables are categorical,
summary specifications can be given for the innermost nested variables
on any one axis. When a scalar variable is present, only the scalar
variable may have summary specifications.
The following example includes a summary specification for column and
row percentages for categorical variables, and mean and median for a
scalar variable:
@example
CTABLES
/TABLE=age [MEAN, MEDIAN] BY gender
/TABLE=ageGroup [COLPCT, ROWPCT] BY gender.
@end example
@psppoutput {ctables10}
A summary specification may override the default label and format by
appending a string or format specification or both (in that order) to
the summary function name. For example:
@example
CTABLES /TABLE=ageGroup [COLPCT 'Gender %' PCT5.0,
ROWPCT 'Age Group %' PCT5.0]
BY gender.
@end example
@psppoutput {ctables11}
In addition to the standard formats, @code{CTABLES} allows the user to
specify the following special formats:
@multitable {@code{NEGPAREN@i{w}.@i{d}}} {Encloses all numbers in parentheses.} {@t{(42.96%)}} {@t{(-42.96%)}}
@item @code{NEGPAREN@i{w}.@i{d}}
@tab Encloses negative numbers in parentheses.
@tab @t{@w{ }42.96}
@tab @t{@w{ }(42.96)}
@item @code{NEQUAL@i{w}.@i{d}}
@tab Adds a @code{N=} prefix.
@tab @t{@w{ }N=42.96}
@tab @t{@w{ }N=-42.96}
@item @code{@code{PAREN@i{w}.@i{d}}}
@tab Encloses all numbers in parentheses.
@tab @t{@w{ }(42.96)}
@tab @t{@w{ }(-42.96)}
@item @code{PCTPAREN@i{w}.@i{d}}
@tab Encloses all numbers in parentheses with a @samp{%} suffix.
@tab @t{@w{ }(42.96%)}
@tab @t{(-42.96%)}
@end multitable
Parentheses provide a shorthand to apply summary specifications to
multiple variables. For example, both of these commands:
@example
CTABLES /TABLE=ageGroup[COLPCT] + membersOver16[COLPCT] BY gender.
CTABLES /TABLE=(ageGroup + membersOver16)[COLPCT] BY gender.
@end example
@noindent
produce the same output shown below:
@psppoutput {ctables12}
The following sections list the available summary functions. After
each function's name is given its default label and format. If no
format is listed, then the default format is the print format for the
variable being summarized.
@node CTABLES Summary Functions for Individual Cells
@subsubsection Summary Functions for Individual Cells
This section lists the summary functions that consider only an
individual cell in @code{CTABLES}. Only one such summary function,
@code{COUNT}, may be applied to both categorical and scale variables:
@table @asis
@item @code{COUNT} (``Count'', F40.0)
The sum of weights in a cell.
If @code{CATEGORIES} for one or more of the variables in a table
include missing values (@pxref{CTABLES Per-Variable Category
Options}), then some or all of the categories for a cell might be
missing values. @code{COUNT} counts data included in a cell
regardless of whether its categories are missing.
@end table
The following summary functions apply only to scale variables or
totals and subtotals for categorical variables. Be cautious about
interpreting the summary value in the latter case, because it is not
necessarily meaningful; however, the mean of a Likert scale, etc.@:
may have a straightforward interpreation.
@table @asis
@item @code{MAXIMUM} (``Maximum'')
The largest value.
@item @code{MEAN} (``Mean'')
The mean.
@item @code{MEDIAN} (``Median'')
The median value.
@item @code{MINIMUM} (``Minimum'')
The smallest value.
@item @code{MISSING} (``Missing'')
Sum of weights of user- and system-missing values.
@item @code{MODE} (``Mode'')
The highest-frequency value. Ties are broken by taking the smallest mode.
@item @code{PTILE} @i{n} (``Percentile @i{n}'')
The @var{n}th percentile, where @math{0 @leq{} @var{n} @leq{} 100}.
@item @code{RANGE} (``Range'')
The maximum minus the minimum.
@item @code{SEMEAN} (``Std Error of Mean'')
The standard error of the mean.
@item @code{STDDEV} (``Std Deviation'')
The standard deviation.
@item @code{SUM} (``Sum'')
The sum.
@item @code{TOTALN} (``Total N'', F40.0)
The sum of weights in a cell.
For scale data, @code{COUNT} and @code{TOTALN} are the same.
For categorical data, @code{TOTALN} counts missing values in excluded
categories, that is, user-missing values not in an explicit category
list on @code{CATEGORIES} (@pxref{CTABLES Per-Variable Category
Options}), or user-missing values excluded because
@code{MISSING=EXCLUDE} is in effect on @code{CATEGORIES}, or
system-missing values. @code{COUNT} does not count these.
@xref{CTABLES Missing Values for Summary Variables}, for details of
how @code{CTABLES} summarizes missing values.
@item @code{VALIDN} (``Valid N'', F40.0)
The sum of valid count weights in included categories.
For categorical variables, @code{VALIDN} does not count missing values
regardless of whether they are in included categories via
@code{CATEGORIES}. @code{VALIDN} does not count valid values that are
in excluded categories. @xref{CTABLES Missing Values for Summary
Variables}, for details.
@item @code{VARIANCE} (``Variance'')
The variance.
@end table
@node CTABLES Summary Functions for Groups of Cells
@subsubsection Summary Functions for Groups of Cells
These summary functions summarize over multiple cells within an area
of the output chosen by the user and specified as part of the function
name. The following basic @var{area}s are supported, in decreasing
order of size:
@table @code
@item TABLE
A @dfn{section}. Stacked variables divide sections of the output from
each other. sections may span multiple layers.
@item LAYER
A section within a single layer.
@item SUBTABLE
A @dfn{subtable}, whose contents are the cells that pair an innermost
row variable and an innermost column variable within a single layer.
@end table
The following shows how the output for the table expression
@code{hasBeenPassengerOfDesignatedDriver >
hasBeenPassengerOfDrunkDriver BY isLicensedDriver >
hasHostedEventWithAlcohol + hasBeenDesignatedDriver BY
gender}@footnote{This is not necessarily a meaningful table. To make
it easier to read, short variable labels are used.} is divided up into
@code{TABLE}, @code{LAYER}, and @code{SUBTABLE} areas. Each unique
value for Table ID is one section, and similarly for Layer ID and
Subtable ID. Thus, this output has two @code{TABLE} areas (one for
@code{isLicensedDriver} and one for @code{hasBeenDesignatedDriver}),
four @code{LAYER} areas (for those two variables, per layer), and 12
@code{SUBTABLE} areas.
@psppoutput {ctables22}
@code{CTABLES} also supports the following @var{area}s that further
divide a subtable or a layer within a section:
@table @code
@item LAYERROW
@itemx LAYERCOL
A row or column, respectively, in one layer of a section.
@item ROW
@itemx COL
A row or column, respectively, in a subtable.
@end table
The following summary functions for groups of cells are available for
each @var{area} described above, for both categorical and scale
variables:
@table @asis
@item @code{@i{area}PCT} or @code{@i{area}PCT.COUNT} (``@i{Area} %'', PCT40.1)
A percentage of total counts within @var{area}.
@item @code{@i{area}PCT.VALIDN} (``@i{Area} Valid N %'', PCT40.1)
A percentage of total counts for valid values within @var{area}.
@item @code{@i{area}PCT.TOTALN} (``@i{Area} Total N %'', PCT40.1)
A percentage of total counts for all values within @var{area}.
@end table
Scale variables and totals and subtotals for categorical variables may
use the following additional group cell summary function:
@table @asis
@item @code{@i{area}PCT.SUM} (``@i{Area} Sum %'', PCT40.1)
Percentage of the sum of the values within @var{area}.
@end table
@node CTABLES Summary Functions for Adjusted Weights
@subsubsection Summary Functions for Adjusted Weights
If the @code{WEIGHT} subcommand specified an effective weight variable
(@pxref{CTABLES Effective Weight}), then the following summary functions
use its value instead of the dictionary weight variable. Otherwise,
they are equivalent to the summary function without the
@samp{E}-prefix:
@itemize @bullet
@item
@code{ECOUNT} (``Adjusted Count'', F40.0)
@item
@code{ETOTALN} (``Adjusted Total N'', F40.0)
@item
@code{EVALIDN} (``Adjusted Valid N'', F40.0)
@end itemize
@node CTABLES Unweighted Summary Functions
@subsubsection Unweighted Summary Functions
The following summary functions with a @samp{U}-prefix are equivalent
to the same ones without the prefix, except that they use unweighted
counts:
@itemize @bullet
@item
@code{UCOUNT} (``Unweighted Count'', F40.0)
@item
@code{U@i{area}PCT} or @code{U@i{area}PCT.COUNT} (``Unweighted @i{Area} %'', PCT40.1)
@item
@code{U@i{area}PCT.VALIDN} (``Unweighted @i{Area} Valid N %'', PCT40.1)
@item
@code{U@i{area}PCT.TOTALN} (``Unweighted @i{Area} Total N %'', PCT40.1)
@item
@code{UMEAN} (``Unweighted Mean'')
@item
@code{UMEDIAN} (``Unweighted Median'')
@item
@code{UMISSING} (``Unweighted Missing'')
@item
@code{UMODE} (``Unweighted Mode'')
@item
@code{U@i{area}PCT.SUM} (``Unweighted @i{Area} Sum %'', PCT40.1)
@item
@code{UPTILE} @i{n} (``Unweighted Percentile @i{n}'')
@item
@code{USEMEAN} (``Unweighted Std Error of Mean'')
@item
@code{USTDDEV} (``Unweighted Std Deviation'')
@item
@code{USUM} (``Unweighted Sum'')
@item
@code{UTOTALN} (``Unweighted Total N'', F40.0)
@item
@code{UVALIDN} (``Unweighted Valid N'', F40.0)
@item
@code{UVARIANCE} (``Unweighted Variance'', F40.0)
@end itemize
@node CTABLES Statistics Positions and Labels
@subsection Statistics Positions and Labels
@display
@t{/SLABELS}
[@t{POSITION=}@{@t{COLUMN} @math{|} @t{ROW} @math{|} @t{LAYER}@}]
[@t{VISIBLE=}@{@t{YES} @math{|} @t{NO}@}]
@end display
The @code{SLABELS} subcommand controls the position and visibility of
summary statistics for the @code{TABLE} subcommand that it follows.
@code{POSITION} sets the axis on which summary statistics appear.
With @t{POSITION=COLUMN}, which is the default, each summary statistic
appears in a column. For example:
@example
CTABLES /TABLE=age [MEAN, MEDIAN] BY gender.
@end example
@psppoutput {ctables13}
@noindent
With @t{POSITION=ROW}, each summary statistic appears in a row, as
shown below:
@example
CTABLES /TABLE=age [MEAN, MEDIAN] BY gender /SLABELS POSITION=ROW.
@end example
@psppoutput {ctables14}
@noindent
@t{POSITION=LAYER} is also available to place each summary statistic in
a separate layer.
Labels for summary statistics are shown by default. Use
@t{VISIBLE=NO} to suppress them. Because unlabeled data can cause
confusion, it should only be considered if the meaning of the data is
evident, as in a simple case like this:
@example
CTABLES /TABLE=ageGroup [TABLEPCT] /SLABELS VISIBLE=NO.
@end example
@psppoutput {ctables15}
@node CTABLES Category Label Positions
@subsection Category Label Positions
@display
@t{/CLABELS} @{@t{AUTO} @math{|} @{@t{ROWLABELS}@math{|}@t{COLLABELS}@}@t{=}@{@t{OPPOSITE}@math{|}@t{LAYER}@}@}
@end display
The @code{CLABELS} subcommand controls the position of category labels
for the @code{TABLE} subcommand that it follows. By default, or if
@t{AUTO} is specified, category labels for a given variable nest
inside the variable's label on the same axis. For example, the
command below results in age categories nesting within the age group
variable on the rows axis and gender categories within the gender
variable on the columns axis:
@example
CTABLES /TABLE ageGroup BY gender.
@end example
@psppoutput {ctables16}
@t{ROWLABELS=OPPOSITE} or @t{COLLABELS=OPPOSITE} move row or column
variable category labels, respectively, to the opposite axis. The
setting affects only the innermost variable or variables, which must
be categorical, on the given axis. For example:
@example
CTABLES /TABLE ageGroup BY gender /CLABELS ROWLABELS=OPPOSITE.
CTABLES /TABLE ageGroup BY gender /CLABELS COLLABELS=OPPOSITE.
@end example
@psppoutput {ctables17}
@t{ROWLABELS=LAYER} or @t{COLLABELS=LAYER} move the innermost row or
column variable category labels, respectively, to the layer axis.
Only one axis's labels may be moved, whether to the opposite axis or
to the layer axis.
@subsubheading Effect on Summary Statistics
@code{CLABELS} primarily affects the appearance of tables, not the
data displayed in them. However, @code{CTABLES} can affect the values
displayed for statistics that summarize areas of a table, since it can
change the definitions of these areas.
For example, consider the following syntax and output:
@example
CTABLES /TABLE ageGroup BY gender [ROWPCT, COLPCT].
@end example
@psppoutput {ctables23}
@noindent
Using @code{COLLABELS=OPPOSITE} changes the definitions of rows and
columns, so that column percentages display what were previously row
percentages and the new row percentages become meaningless (because
there is only one cell per row):
@example
CTABLES
/TABLE ageGroup BY gender [ROWPCT, COLPCT]
/CLABELS COLLABELS=OPPOSITE.
@end example
@psppoutput {ctables24}
@subsubheading Moving Categories for Stacked Variables
If @code{CLABELS} moves category labels from an axis with stacked
variables, the variables that are moved must have the same category
specifications (@pxref{CTABLES Per-Variable Category Options}) and the
same value labels.
The following shows both moving stacked category variables and
adapting to the changing definitions of rows and columns:
@example
CTABLES /TABLE (likelihoodOfBeingStoppedByPolice
+ likelihoodOfHavingAnAccident) [COLPCT].
CTABLES /TABLE (likelihoodOfBeingStoppedByPolice
+ likelihoodOfHavingAnAccident) [ROWPCT]
/CLABELS ROW=OPPOSITE.
@end example
@psppoutput {ctables25}
@node CTABLES Per-Variable Category Options
@subsection Per-Variable Category Options
@display
@t{/CATEGORIES} @t{VARIABLES=}@i{variables}
@{@t{[}@i{value}@t{,} @i{value}@dots{}@t{]}
@math{|} [@t{ORDER=}@{@t{A} @math{|} @t{D}@}]
[@t{KEY=}@{@t{VALUE} @math{|} @t{LABEL} @math{|} @i{summary}@t{(}@i{variable}@t{)}@}]
[@t{MISSING=}@{@t{EXCLUDE} @math{|} @t{INCLUDE}@}]@}
[@t{TOTAL=}@{@t{NO} @math{|} @t{YES}@} [@t{LABEL=}@i{string}] [@t{POSITION=}@{@t{AFTER} @math{|} @t{BEFORE}@}]]
[@t{EMPTY=}@{@t{INCLUDE} @math{|} @t{EXCLUDE}@}]
@end display
The @code{CATEGORIES} subcommand specifies, for one or more
categorical variables, the categories to include and exclude, the sort
order for included categories, and treatment of missing values. It
also controls the totals and subtotals to display. It may be
specified any number of times, each time for a different set of
variables. @code{CATEGORIES} applies to the table produced by the
@code{TABLE} subcommand that it follows.
@code{CATEGORIES} does not apply to scalar variables.
@t{VARIABLES} is required and must list the variables for the subcommand
to affect.
The syntax may specify the categories to include and their sort order
either explicitly or implicitly. The following sections give the
details of each form of syntax, followed by information on totals and
subtotals and the @code{EMPTY} setting.
@node CTABLES Explicit Categories
@subsubsection Explicit Categories
@anchor{CTABLES Explicit Category List}
To use @code{CTABLES} to explicitly specify categories to include,
list the categories within square brackets in the desired sort order.
Use spaces or commas to separate values. Categories not covered by
the list are excluded from analysis.
Each element of the list takes one of the following forms:
@table @t
@item @i{number}
@itemx '@i{string}'
A numeric or string category value, for variables that have the
corresponding type.
@item '@i{date}'
@itemx '@i{time}'
A date or time category value, for variables that have a date or time
print format.
@item @i{min} THRU @i{max}
@itemx LO THRU @i{max}
@itemx @i{min} THRU HI
A range of category values, where @var{min} and @var{max} each takes
one of the forms above, in increasing order.
@item MISSING
All user-missing values. (To match individual user-missing values,
specify their category values.)
@item OTHERNM
Any non-missing value not covered by any other element of the list
(regardless of where @t{OTHERNM} is placed in the list).
@item &@i{postcompute}
A computed category name (@pxref{CTABLES Computed Categories}).
@item SUBTOTAL
@itemx HSUBTOTAL
A subtotal (@pxref{CTABLES Totals and Subtotals}).
@end table
If multiple elements of the list cover a given category, the last one
in the list takes precedence.
The following example syntax and output show how an explicit category
can limit the displayed categories:
@example
CTABLES /TABLE freqOfDriving.
CTABLES /TABLE freqOfDriving /CATEGORIES VARIABLES=freqOfDriving [1, 2, 3].
@end example
@psppoutput {ctables27}
@node CTABLES Implicit Categories
@subsubsection Implicit Categories
In the absence of an explicit list of categories, @code{CATEGORIES}
allows @code{KEY}, @code{ORDER}, and @code{MISSING} to specify how to
select and sort categories.
The @code{KEY} setting specifies the sort key. By default, or with
@code{KEY=VALUE}, categories are sorted by default. Categories may
also be sorted by value label, with @code{KEY=LABEL}, or by the value
of a summary function, e.g.@: @code{KEY=COUNT}.
@ignore @c Not yet implemented
For summary functions, a variable name may be specified in
parentheses, e.g.@: @code{KEY=MAXIUM(age)}, and this is required for
functions that apply only to scalar variables. The @code{PTILE}
function also requires a percentage argument, e.g.@:
@code{KEY=PTILE(age, 90)}. Only summary functions used in the table
may be used, except that @code{COUNT} is always allowed.
@end ignore
By default, or with @code{ORDER=A}, categories are sorted in ascending
order. Specify @code{ORDER=D} to sort in descending order.
User-missing values are excluded by default, or with
@code{MISSING=EXCLUDE}. Specify @code{MISSING=INCLUDE} to include
user-missing values. The system-missing value is always excluded.
The following example syntax and output show how
@code{MISSING=INCLUDE} causes missing values to be included in a
category list.
@example
CTABLES /TABLE freqOfDriving.
CTABLES /TABLE freqOfDriving
/CATEGORIES VARIABLES=freqOfDriving MISSING=INCLUDE.
@end example
@psppoutput {ctables28}
@node CTABLES Totals and Subtotals
@subsubsection Totals and Subtotals
@code{CATEGORIES} also controls display of totals and subtotals. By
default, or with @code{TOTAL=NO}, totals are not displayed. Use
@code{TOTAL=YES} to display a total. By default, the total is labeled
``Total''; use @code{LABEL="@i{label}"} to override it.
Subtotals are also not displayed by default. To add one or more
subtotals, use an explicit category list and insert @code{SUBTOTAL} or
@code{HSUBTOTAL} in the position or positions where the subtotal
should appear. The subtotal becomes an extra row or column or layer.
@code{HSUBTOTAL} additionally hides the categories that make up the
subtotal. Either way, the default label is ``Subtotal'', use
@code{SUBTOTAL="@i{label}"} or @code{HSUBTOTAL="@i{label}"} to specify
a custom label.
The following example syntax and output show how to use
@code{TOTAL=YES} and @code{SUBTOTAL}:
@example
CTABLES
/TABLE freqOfDriving
/CATEGORIES VARIABLES=freqOfDriving [OTHERNM, SUBTOTAL='Valid Total',
MISSING, SUBTOTAL='Missing Total']
TOTAL=YES LABEL='Overall Total'.
@end example
@psppoutput {ctables29}
By default, or with @code{POSITION=AFTER}, totals are displayed in the
output after the last category and subtotals apply to categories that
precede them. With @code{POSITION=BEFORE}, totals come before the
first category and subtotals apply to categories that follow them.
Only categorical variables may have totals and subtotals. Scalar
variables may be ``totaled'' indirectly by enabling totals and
subtotals on a categorical variable within which the scalar variable
is summarized. For example, the following syntax produces a mean,
count, and valid count across all data by adding a total on the
categorical @code{region} variable, as shown:
@example
CTABLES /TABLE=region > monthDaysMin1drink [MEAN, VALIDN]
/CATEGORIES VARIABLES=region TOTAL=YES LABEL='All regions'.
@end example
@psppoutput {ctables30}
By default, @pspp{} uses the same summary functions for totals and
subtotals as other categories. To summarize totals and subtotals
differently, specify the summary functions for totals and subtotals
after the ordinary summary functions inside a nested set of @code{[]}
following @code{TOTALS}. For example, the following syntax displays
@code{COUNT} for individual categories and totals and @code{VALIDN}
for totals, as shown:
@example
CTABLES
/TABLE isLicensedDriver [COUNT, TOTALS[COUNT, VALIDN]]
/CATEGORIES VARIABLES=isLicensedDriver TOTAL=YES MISSING=INCLUDE.
@end example
@psppoutput {ctables26}
@node CTABLES Categories Without Values
@subsubsection Categories Without Values
Some categories might not be included in the data set being analyzed.
For example, our example data set has no cases in the ``15 or
younger'' age group. By default, or with @code{EMPTY=INCLUDE},
@pspp{} includes these empty categories in output tables. To exclude
them, specify @code{EMPTY=EXCLUDE}.
For implicit categories, empty categories potentially include all the
values with value labels for a given variable; for explicit
categories, they include all the values listed individually and all
values with value labels that are covered by ranges or @code{MISSING}
or @code{OTHERNM}.
The following example syntax and output show the effect of
@code{EMPTY=EXCLUDE} for the @code{membersOver16} variable, in which 0
is labeled ``None'' but no cases exist with that value:
@example
CTABLES /TABLE=membersOver16.
CTABLES /TABLE=membersOver16 /CATEGORIES VARIABLES=membersOver16 EMPTY=EXCLUDE.
@end example
@psppoutput {ctables31}
@node CTABLES Titles
@subsection Titles
@display
@t{/TITLES}
[@t{TITLE=}@i{string}@dots{}]
[@t{CAPTION=}@i{string}@dots{}]
[@t{CORNER=}@i{string}@dots{}]
@end display
The @code{TITLES} subcommand sets the title, caption, and corner text
for the table output for the previous @code{TABLE} subcommand. Any
number of strings may be specified for each kind of text, with each
string appearing on a separate line in the output. The title appears
above the table, the caption below the table, and the corner text
appears in the table's upper left corner. By default, the title is
``Custom Tables'' and the caption and corner text are empty. With
some table output styles, the corner text is not displayed.
The strings provided in this subcommand may contain the following
macro-like keywords that @pspp{} substitutes at the time that it runs
the command:
@table @code @c (
@item )DATE
The current date, e.g.@: MM/DD/YY. The format is locale-dependent.
@c (
@item )TIME
The current time, e.g.@: HH:MM:SS. The format is locale-dependent.
@c (
@item )TABLE
The expression specified on the @code{TABLE} command. Summary
and measurement level specifications are omitted, and variable labels are used in place of variable names.
@end table
@node CTABLES Table Formatting
@subsection Table Formatting
@display
@t{/FORMAT}
[@t{MINCOLWIDTH=}@{@t{DEFAULT} @math{|} @i{width}@}]
[@t{MAXCOLWIDTH=}@{@t{DEFAULT} @math{|} @i{width}@}]
[@t{UNITS=}@{@t{POINTS} @math{|} @t{INCHES} @math{|} @t{CM}@}]
[@t{EMPTY=}@{@t{ZERO} @math{|} @t{BLANK} @math{|} @i{string}@}]
[@t{MISSING=}@i{string}]
@end display
The @code{FORMAT} subcommand, which must precede the first
@code{TABLE} subcommand, controls formatting for all the output
tables. @code{FORMAT} and all of its settings are optional.
Use @code{MINCOLWIDTH} and @code{MAXCOLWIDTH} to control the minimum
or maximum width of columns in output tables. By default, with
@code{DEFAULT}, column width varies based on content. Otherwise,
specify a number for either or both of these settings. If both are
specified, @code{MAXCOLWIDTH} must be greater than or equal to
@code{MINCOLWIDTH}. The default unit, or with @code{UNITS=POINTS}, is
points (1/72 inch), or specify @code{UNITS=INCHES} to use inches or
@code{UNITS=CM} for centimeters. @pspp{} does not currently honor any
of these settings.
By default, or with @code{EMPTY=ZERO}, zero values are displayed in
their usual format. Use @code{EMPTY=BLANK} to use an empty cell
instead, or @code{EMPTY="@i{string}"} to use the specified string.
By default, missing values are displayed as @samp{.}, the same as in
other tables. Specify @code{MISSING="@i{string}"} to instead use a
custom string.
@node CTABLES Display of Variable Labels
@subsection Display of Variable Labels
@display
@t{/VLABELS}
@t{VARIABLES=}@i{variables}
@t{DISPLAY}=@{@t{DEFAULT} @math{|} @t{NAME} @math{|} @t{LABEL} @math{|} @t{BOTH} @math{|} @t{NONE}@}
@end display
The @code{VLABELS} subcommand, which must precede the first
@code{TABLE} subcommand, controls display of variable labels in all
the output tables. @code{VLABELS} is optional. It may appear
multiple times to adjust settings for different variables.
@code{VARIABLES} and @code{DISPLAY} are required. The value of
@code{DISPLAY} controls how variable labels are displayed for the
variables listed on @code{VARIABLES}. The supported values are:
@table @code
@item DEFAULT
Use the setting from @code{SET TVARS} (@pxref{SET TVARS}).
@item NAME
Show only a variable name.
@item LABEL
Show only a variable label.
@item BOTH
Show variable name and label.
@item NONE
Show nothing.
@end table
@node CTABLES Missing Value Treatment
@subsection Missing Value Treatment
The @code{TABLE} subcommand on @code{CTABLES} specifies two different
kinds of variables: variables that divide tables into cells (which are
always categorical) and variables being summarized (which may be
categorical or scale). @pspp{} treats missing values differently in
each kind of variable, as described in the sections below.
@node CTABLES Missing Values for Cell-Defining Variables
@subsubsection Missing Values for Cell-Defining Variables
For variables that divide tables into cells, per-variable category
options, as described in @ref{CTABLES Per-Variable Category Options},
determine which data is analyzed. If any of the categories for such a
variable would exclude a case, then that case is not included.
As an example, consider the following entirely artificial dataset, in
which @samp{x} and @samp{y} are categorical variables with missing
value 9, and @samp{z} is scale:
@psppoutput{ctables32}
Using @samp{x} and @samp{y} to define cells, and summarizing @samp{z},
by default @pspp{} omits all the cases that have @samp{x} or @samp{y} (or both)
missing:
@example
CTABLES /TABLE x > y > z [SUM].
@end example
@psppoutput{ctables33}
If, however, we add @code{CATEGORIES} specifications to include
missing values for @samp{y} or for @samp{x} and @samp{y}, the output
table includes them, like so:
@example
CTABLES /TABLE x > y > z [SUM] /CATEGORIES VARIABLES=y MISSING=INCLUDE.
CTABLES /TABLE x > y > z [SUM] /CATEGORIES VARIABLES=x y MISSING=INCLUDE.
@end example
@psppoutput{ctables34}
@node CTABLES Missing Values for Summary Variables
@subsubsection Missing Values for Summary Variables
For summary variables, values that are valid and in included
categories are analyzed, and values that are missing or in excluded
categories are not analyzed, with the following exceptions:
@itemize @bullet
@item
The ``@t{VALIDN}'' summary functions (@code{VALIDN}, @code{EVALIDN},
@code{UVALIDN}, @code{@i{area}PCT.VALIDN}, and
@code{U@i{area}PCT.VALIDN}) only count valid values in included
categories (not missing values in included categories).
@item
The ``@t{TOTALN}'' summary functions (@code{TOTALN}, @code{ETOTALN},
@code{UTOTALN}, @code{@i{area}PCT.TOTALN}), and
@code{U@i{area}PCT.TOTALN} count all values (valid and missing) in
included categories and missing (but not valid) values in excluded
categories.
@end itemize
@noindent
For categorical variables, system-missing values are never in included
categories. For scale variables, there is no notion of included and
excluded categories, so all values are effectively included.
The following table provides another view of the above rules:
@multitable {@w{ }@w{ }@w{ }@w{ }Missing values in excluded categories} {@t{VALIDN}} {other} {@t{TOTALN}}
@headitem @tab @t{VALIDN} @tab other @tab @t{TOTALN}
@item @headitemfont{Categorical variables:}
@item @w{ }@w{ }@w{ }@w{ }Valid values in included categories @tab yes @tab yes @tab yes
@item @w{ }@w{ }@w{ }@w{ }Missing values in included categories @tab --- @tab yes @tab yes
@item @w{ }@w{ }@w{ }@w{ }Missing values in excluded categories @tab --- @tab --- @tab yes
@item @w{ }@w{ }@w{ }@w{ }Valid values in excluded categories @tab --- @tab --- @tab ---
@item @headitemfont{Scale variables:}
@item @w{ }@w{ }@w{ }@w{ }Valid values @tab yes @tab yes @tab yes
@item @w{ }@w{ }@w{ }@w{ }User- or system-missing values @tab --- @tab yes @tab yes
@end multitable
@node CTABLES Scale Missing Values
@subsubsection Scale Missing Values
@display
@t{/SMISSING} @{@t{VARIABLE} @math{|} @t{LISTWISE}@}
@end display
The @code{SMISSING} subcommand, which must precede the first
@code{TABLE} subcommand, controls treatment of missing values for
scalar variables in producing all the output tables. @code{SMISSING}
is optional.
With @code{SMISSING=VARIABLE}, which is the default, missing values
are excluded on a variable-by-variable basis. With
@code{SMISSING=LISTWISE}, when stacked scalar variables are nested
together with a categorical variable, a missing value for any of the
scalar variables causes the case to be excluded for all of them.
As an example, consider the following dataset, in which @samp{x} is a
categorical variable and @samp{y} and @samp{z} are scale:
@psppoutput{ctables18}
@noindent
With the default missing-value treatment, @samp{x}'s mean is 20, based
on the values 10, 20, and 30, and @samp{y}'s mean is 50, based on 40,
50, and 60:
@example
CTABLES /TABLE (y + z) > x.
@end example
@psppoutput{ctables19}
@noindent
By adding @code{SMISSING=LISTWISE}, only cases where @samp{y} and
@samp{z} are both non-missing are considered, so @samp{x}'s mean
becomes 15, as the average of 10 and 20, and @samp{y}'s mean becomes
55, the average of 50 and 60:
@example
CTABLES /SMISSING LISTWISE /TABLE (y + z) > x.
@end example
@psppoutput{ctables20}
@noindent
Even with @code{SMISSING=LISTWISE}, if @samp{y} and @samp{z} are
separately nested with @samp{x}, instead of using a single @samp{>}
operator, missing values revert to being considered on a
variable-by-variable basis:
@example
CTABLES /SMISSING LISTWISE /TABLE (y > x) + (z > x).
@end example
@psppoutput{ctables21}
@node CTABLES Computed Categories
@subsection Computed Categories
@display
@t{/PCOMPUTE} @t{&}@i{postcompute}@t{=EXPR(}@i{expression}@t{)}
@t{/PPROPERTIES} @t{&}@i{postcompute}@dots{}
[@t{LABEL=}@i{string}]
[@t{FORMAT=}[@i{summary} @i{format}]@dots{}]
[@t{HIDESOURCECATS=}@{@t{NO} @math{|} @t{YES}@}
@end display
@dfn{Computed categories}, also called @dfn{postcomputes}, are
categories created using arithmetic on categories obtained from the
data. The @code{PCOMPUTE} subcommand creates a postcompute, which may
then be used on @code{CATEGORIES} within an explicit category list
(@pxref{CTABLES Explicit Category List}). Optionally,
@code{PPROPERTIES} refines how a postcompute is displayed. The
following sections provide the details.
@node CTABLES PCOMPUTE
@subsubsection PCOMPUTE
@display
@t{/PCOMPUTE} @t{&}@i{postcompute}@t{=EXPR(}@i{expression}@t{)}
@end display
The @code{PCOMPUTE} subcommand, which must precede the first
@code{TABLE} command, defines computed categories. It is optional and
may be used any number of times to define multiple postcomputes.
Each @code{PCOMPUTE} defines one postcompute. Its syntax consists of
a name to identify the postcompute as a @pspp{} identifier prefixed by
@samp{&}, followed by @samp{=} and a postcompute expression enclosed
in @code{EXPR(@dots{})}. A postcompute expression consists of:
@table @t
@item [@i{category}]
This form evaluates to the summary statistic for @i{category}, e.g.@:
@code{[1]} evaluates to the value of the summary statistic associated
with category 1. The @i{category} may be a number, a quoted string,
or a quoted time or date value. All of the categories for a given
postcompute must have the same form. The category must appear in all
the @code{CATEGORIES} list in which the postcompute is used.
@item [@i{min} THRU @i{max}]
@itemx [LO THRU @i{max}]
@itemx [@i{min} THRU HI]
@itemx MISSING
@itemx OTHERNM
These forms evaluate to the summary statistics for a category
specified with the same syntax, as described in previous section
(@pxref{CTABLES Explicit Category List}). The category must appear in
all the @code{CATEGORIES} list in which the postcompute is used.
@item SUBTOTAL
The summary statistic for the subtotal category. This form is allowed
only if the @code{CATEGORIES} lists that include this postcompute have
exactly one subtotal.
@item SUBTOTAL[@i{index}]
The summary statistic for subtotal category @i{index}, where 1 is the
first subtotal, 2 is the second, and so on. This form may be used for
@code{CATEGORIES} lists with any number of subtotals.
@item TOTAL
The summary statistic for the total. The @code{CATEGORIES} lsits that
include this postcompute must have a total enabled.
@item @i{a} + @i{b}
@itemx @i{a} - @i{b}
@itemx @i{a} * @i{b}
@itemx @i{a} / @i{b}
@itemx @i{a} ** @i{b}
These forms perform arithmetic on the values of postcompute
expressions @i{a} and @i{b}. The usual operator precedence rules
apply.
@item @i{number}
Numeric constants may be used in postcompute expressions.
@item (@i{a})
Parentheses override operator precedence.
@end table
A postcompute is not associated with any particular variable.
Instead, it may be referenced within @code{CATEGORIES} for any
suitable variable (e.g.@: only a string variable is suitable for a
postcompute expression that refers to a string category, only a
variable with subtotals for an expression that refers to subtotals,
@dots{}).
Normally a named postcompute is defined only once, but if a later
@code{PCOMPUTE} redefines a postcompute with the same name as an
earlier one, the later one take precedence.
The following syntax and output shows how @code{PCOMPUTE} can compute
a total over subtotals, summing the ``Frequent Drivers'' and
``Infrequent Drivers'' subtotals to form an ``All Drivers''
postcompute. It also shows how to calculate and display a percentage,
in this case the percentage of valid responses that report never
driving. It uses @code{PPROPERTIES} (@pxref{CTABLES PPROPERTIES}) to
display the latter in @code{PCT} format.
@example
CTABLES
/PCOMPUTE &all_drivers=EXPR([1 THRU 2] + [3 THRU 4])
/PPROPERTIES &all_drivers LABEL='All Drivers'
/PCOMPUTE &pct_never=EXPR([5] / ([1 THRU 2] + [3 THRU 4] + [5]) * 100)
/PPROPERTIES &pct_never LABEL='% Not Drivers' FORMAT=COUNT PCT40.1
/TABLE=freqOfDriving BY gender
/CATEGORIES VARIABLES=freqOfDriving
[1 THRU 2, SUBTOTAL='Frequent Drivers',
3 THRU 4, SUBTOTAL='Infrequent Drivers',
&all_drivers, 5, &pct_never,
MISSING, SUBTOTAL='Not Drivers or Missing'].
@end example
@psppoutput{ctables35}
@node CTABLES PPROPERTIES
@subsubsection PPROPERTIES
@display
@t{/PPROPERTIES} @t{&}@i{postcompute}@dots{}
[@t{LABEL=}@i{string}]
[@t{FORMAT=}[@i{summary} @i{format}]@dots{}]
[@t{HIDESOURCECATS=}@{@t{NO} @math{|} @t{YES}@}
@end display
The @code{PPROPERTIES} subcommand, which must appear before
@code{TABLE}, sets properties for one or more postcomputes defined on
prior @code{PCOMPUTE} subcommands. The subcommand syntax begins with
the list of postcomputes, each prefixed with @samp{&} as specified on
@code{PCOMPUTE}.
All of the settings on @code{PPROPERTIES} are optional. Use
@code{LABEL} to set the label shown for the postcomputes in table
output. The default label for a postcompute is the expression used to
define it.
A postcompute always uses same summary functions as the variable whose
categories contain it, but @code{FORMAT} allows control over the
format used to display their values. It takes a list of summary
function names and format specifiers.
By default, or with @code{HIDESOURCECATS=NO}, categories referred to
by computed categories are displayed like other categories. Use
@code{HIDESOURCECATS=YES} to hide them.
The previous section provides an example for @code{PPROPERTIES}.
@node CTABLES Effective Weight
@subsection Effective Weight
@display
@t{/WEIGHT VARIABLE=}@i{variable}
@end display
The @code{WEIGHT} subcommand is optional and must appear before
@code{TABLE}. If it appears, it must name a numeric variable, known
as the @dfn{effective weight} or @dfn{adjustment weight}. The
effective weight variable stands in for the dictionary's weight
variable (@pxref{WEIGHT}), if any, in most calculations in
@code{CTABLES}. The only exceptions are the @code{COUNT},
@code{TOTALN}, and @code{VALIDN} summary functions, which use the
dictionary weight instead.
Weights obtained from the @pspp{} dictionary are rounded to the
nearest integer at the case level. Effective weights are not rounded.
Regardless of the weighting source, @pspp{} does not analyze cases
with zero, missing, or negative effective weights.
@node CTABLES Hiding Small Counts
@subsection Hiding Small Counts
@display
@t{/HIDESMALLCOUNTS COUNT=@i{count}}
@end display
The @code{HIDESMALLCOUNTS} subcommand is optional. If it specified,
then @code{COUNT}, @code{ECOUNT}, and @code{UCOUNT} values in output
tables less than the value of @i{count} are shown as @code{<@i{count}}
instead of their true values. The value of @i{count} must be an
integer and must be at least 2.
The following syntax and example shows how to use
@code{HIDESMALLCOUNTS}:
@example
CTABLES /HIDESMALLCOUNTS COUNT=10 /TABLE placeOfLastDrinkBeforeDrive.
@end example
@psppoutput{ctables36}
@node FACTOR
@section FACTOR
@vindex FACTOR
@cindex factor analysis
@cindex principal components analysis
@cindex principal axis factoring
@cindex data reduction
@display
FACTOR @{
VARIABLES=@var{var_list},
MATRIX IN (@{CORR,COV@}=@{*,@var{file_spec}@})
@}
[ /METHOD = @{CORRELATION, COVARIANCE@} ]
[ /ANALYSIS=@var{var_list} ]
[ /EXTRACTION=@{PC, PAF@}]
[ /ROTATION=@{VARIMAX, EQUAMAX, QUARTIMAX, PROMAX[(@var{k})], NOROTATE@}]
[ /PRINT=[INITIAL] [EXTRACTION] [ROTATION] [UNIVARIATE] [CORRELATION] [COVARIANCE] [DET] [KMO] [AIC] [SIG] [ALL] [DEFAULT] ]
[ /PLOT=[EIGEN] ]
[ /FORMAT=[SORT] [BLANK(@var{n})] [DEFAULT] ]
[ /CRITERIA=[FACTORS(@var{n})] [MINEIGEN(@var{l})] [ITERATE(@var{m})] [ECONVERGE (@var{delta})] [DEFAULT] ]
[ /MISSING=[@{LISTWISE, PAIRWISE@}] [@{INCLUDE, EXCLUDE@}] ]
@end display
The @cmd{FACTOR} command performs Factor Analysis or Principal Axis Factoring on a dataset. It may be used to find
common factors in the data or for data reduction purposes.
The @subcmd{VARIABLES} subcommand is required (unless the @subcmd{MATRIX IN}
subcommand is used).
It lists the variables which are to partake in the analysis. (The @subcmd{ANALYSIS}
subcommand may optionally further limit the variables that
participate; it is useful primarily in conjunction with @subcmd{MATRIX IN}.)
If @subcmd{MATRIX IN} instead of @subcmd{VARIABLES} is specified, then the analysis
is performed on a pre-prepared correlation or covariance matrix file instead of on
individual data cases. Typically the matrix file will have been generated by
@cmd{MATRIX DATA} (@pxref{MATRIX DATA}) or provided by a third party.
If specified, @subcmd{MATRIX IN} must be followed by @samp{COV} or @samp{CORR},
then by @samp{=} and @var{file_spec} all in parentheses.
@var{file_spec} may either be an asterisk, which indicates the currently loaded
dataset, or it may be a file name to be loaded. @xref{MATRIX DATA}, for the expected
format of the file.
The @subcmd{/EXTRACTION} subcommand is used to specify the way in which factors
(components) are extracted from the data.
If @subcmd{PC} is specified, then Principal Components Analysis is used.
If @subcmd{PAF} is specified, then Principal Axis Factoring is
used. By default Principal Components Analysis is used.
The @subcmd{/ROTATION} subcommand is used to specify the method by which the
extracted solution is rotated. Three orthogonal rotation methods are available:
@subcmd{VARIMAX} (which is the default), @subcmd{EQUAMAX}, and @subcmd{QUARTIMAX}.
There is one oblique rotation method, @i{viz}: @subcmd{PROMAX}.
Optionally you may enter the power of the promax rotation @var{k}, which must be enclosed in parentheses.
The default value of @var{k} is 5.
If you don't want any rotation to be performed, the word @subcmd{NOROTATE}
prevents the command from performing any rotation on the data.
The @subcmd{/METHOD} subcommand should be used to determine whether the
covariance matrix or the correlation matrix of the data is
to be analysed. By default, the correlation matrix is analysed.
The @subcmd{/PRINT} subcommand may be used to select which features of the analysis are reported:
@itemize
@item @subcmd{UNIVARIATE}
A table of mean values, standard deviations and total weights are printed.
@item @subcmd{INITIAL}
Initial communalities and eigenvalues are printed.
@item @subcmd{EXTRACTION}
Extracted communalities and eigenvalues are printed.
@item @subcmd{ROTATION}
Rotated communalities and eigenvalues are printed.
@item @subcmd{CORRELATION}
The correlation matrix is printed.
@item @subcmd{COVARIANCE}
The covariance matrix is printed.
@item @subcmd{DET}
The determinant of the correlation or covariance matrix is printed.
@item @subcmd{AIC}
The anti-image covariance and anti-image correlation matrices are printed.
@item @subcmd{KMO}
The Kaiser-Meyer-Olkin measure of sampling adequacy and the Bartlett test of sphericity is printed.
@item @subcmd{SIG}
The significance of the elements of correlation matrix is printed.
@item @subcmd{ALL}
All of the above are printed.
@item @subcmd{DEFAULT}
Identical to @subcmd{INITIAL} and @subcmd{EXTRACTION}.
@end itemize
If @subcmd{/PLOT=EIGEN} is given, then a ``Scree'' plot of the eigenvalues is
printed. This can be useful for visualizing the factors and deciding
which factors (components) should be retained.
The @subcmd{/FORMAT} subcommand determined how data are to be
displayed in loading matrices. If @subcmd{SORT} is specified, then
the variables are sorted in descending order of significance. If
@subcmd{BLANK(@var{n})} is specified, then coefficients whose absolute
value is less than @var{n} are not printed. If the keyword
@subcmd{DEFAULT} is specified, or if no @subcmd{/FORMAT} subcommand is
specified, then no sorting is performed, and all coefficients are printed.
You can use the @subcmd{/CRITERIA} subcommand to specify how the number of
extracted factors (components) are chosen. If @subcmd{FACTORS(@var{n})} is
specified, where @var{n} is an integer, then @var{n} factors are
extracted. Otherwise, the @subcmd{MINEIGEN} setting is used.
@subcmd{MINEIGEN(@var{l})} requests that all factors whose eigenvalues
are greater than or equal to @var{l} are extracted. The default value
of @var{l} is 1. The @subcmd{ECONVERGE} setting has effect only when
using iterative algorithms for factor extraction (such as Principal Axis
Factoring). @subcmd{ECONVERGE(@var{delta})} specifies that
iteration should cease when the maximum absolute value of the
communality estimate between one iteration and the previous is less
than @var{delta}. The default value of @var{delta} is 0.001.
The @subcmd{ITERATE(@var{m})} may appear any number of times and is
used for two different purposes. It is used to set the maximum number
of iterations (@var{m}) for convergence and also to set the maximum
number of iterations for rotation.
Whether it affects convergence or rotation depends upon which
subcommand follows the @subcmd{ITERATE} subcommand.
If @subcmd{EXTRACTION} follows, it affects convergence.
If @subcmd{ROTATION} follows, it affects rotation.
If neither @subcmd{ROTATION} nor @subcmd{EXTRACTION} follow a
@subcmd{ITERATE} subcommand, then the entire subcommand is ignored.
The default value of @var{m} is 25.
The @cmd{MISSING} subcommand determines the handling of missing
variables. If @subcmd{INCLUDE} is set, then user-missing values are
included in the calculations, but system-missing values are not.
If @subcmd{EXCLUDE} is set, which is the default, user-missing
values are excluded as well as system-missing values. This is the
default. If @subcmd{LISTWISE} is set, then the entire case is excluded
from analysis whenever any variable specified in the @cmd{VARIABLES}
subcommand contains a missing value.
If @subcmd{PAIRWISE} is set, then a case is considered missing only if
either of the values for the particular coefficient are missing.
The default is @subcmd{LISTWISE}.
@node GLM
@section GLM
@vindex GLM
@cindex univariate analysis of variance
@cindex fixed effects
@cindex factorial anova
@cindex analysis of variance
@cindex ANOVA
@display
GLM @var{dependent_vars} BY @var{fixed_factors}
[/METHOD = SSTYPE(@var{type})]
[/DESIGN = @var{interaction_0} [@var{interaction_1} [... @var{interaction_n}]]]
[/INTERCEPT = @{INCLUDE|EXCLUDE@}]
[/MISSING = @{INCLUDE|EXCLUDE@}]
@end display
The @cmd{GLM} procedure can be used for fixed effects factorial Anova.
The @var{dependent_vars} are the variables to be analysed.
You may analyse several variables in the same command in which case they should all
appear before the @code{BY} keyword.
The @var{fixed_factors} list must be one or more categorical variables. Normally it
does not make sense to enter a scalar variable in the @var{fixed_factors} and doing
so may cause @pspp{} to do a lot of unnecessary processing.
The @subcmd{METHOD} subcommand is used to change the method for producing the sums of
squares. Available values of @var{type} are 1, 2 and 3. The default is type 3.
You may specify a custom design using the @subcmd{DESIGN} subcommand.
The design comprises a list of interactions where each interaction is a
list of variables separated by a @samp{*}. For example the command
@display
GLM subject BY sex age_group race
/DESIGN = age_group sex group age_group*sex age_group*race
@end display
@noindent specifies the model @math{subject = age_group + sex + race + age_group*sex + age_group*race}.
If no @subcmd{DESIGN} subcommand is specified, then the default is all possible combinations
of the fixed factors. That is to say
@display
GLM subject BY sex age_group race
@end display
implies the model
@math{subject = age_group + sex + race + age_group*sex + age_group*race + sex*race + age_group*sex*race}.
The @subcmd{MISSING} subcommand determines the handling of missing
variables.
If @subcmd{INCLUDE} is set then, for the purposes of GLM analysis,
only system-missing values are considered
to be missing; user-missing values are not regarded as missing.
If @subcmd{EXCLUDE} is set, which is the default, then user-missing
values are considered to be missing as well as system-missing values.
A case for which any dependent variable or any factor
variable has a missing value is excluded from the analysis.
@node LOGISTIC REGRESSION
@section LOGISTIC REGRESSION
@vindex LOGISTIC REGRESSION
@cindex logistic regression
@cindex bivariate logistic regression
@display
LOGISTIC REGRESSION [VARIABLES =] @var{dependent_var} WITH @var{predictors}
[/CATEGORICAL = @var{categorical_predictors}]
[@{/NOCONST | /ORIGIN | /NOORIGIN @}]
[/PRINT = [SUMMARY] [DEFAULT] [CI(@var{confidence})] [ALL]]
[/CRITERIA = [BCON(@var{min_delta})] [ITERATE(@var{max_interations})]
[LCON(@var{min_likelihood_delta})] [EPS(@var{min_epsilon})]
[CUT(@var{cut_point})]]
[/MISSING = @{INCLUDE|EXCLUDE@}]
@end display
Bivariate Logistic Regression is used when you want to explain a dichotomous dependent
variable in terms of one or more predictor variables.
The minimum command is
@example
LOGISTIC REGRESSION @var{y} WITH @var{x1} @var{x2} @dots{} @var{xn}.
@end example
Here, @var{y} is the dependent variable, which must be dichotomous and @var{x1} @dots{} @var{xn}
are the predictor variables whose coefficients the procedure estimates.
By default, a constant term is included in the model.
Hence, the full model is
@math{
{\bf y}
= b_0 + b_1 {\bf x_1}
+ b_2 {\bf x_2}
+ \dots
+ b_n {\bf x_n}
}
Predictor variables which are categorical in nature should be listed on the @subcmd{/CATEGORICAL} subcommand.
Simple variables as well as interactions between variables may be listed here.
If you want a model without the constant term @math{b_0}, use the keyword @subcmd{/ORIGIN}.
@subcmd{/NOCONST} is a synonym for @subcmd{/ORIGIN}.
An iterative Newton-Raphson procedure is used to fit the model.
The @subcmd{/CRITERIA} subcommand is used to specify the stopping criteria of the procedure,
and other parameters.
The value of @var{cut_point} is used in the classification table. It is the
threshold above which predicted values are considered to be 1. Values
of @var{cut_point} must lie in the range [0,1].
During iterations, if any one of the stopping criteria are satisfied, the procedure is
considered complete.
The stopping criteria are:
@itemize
@item The number of iterations exceeds @var{max_iterations}.
The default value of @var{max_iterations} is 20.
@item The change in the all coefficient estimates are less than @var{min_delta}.
The default value of @var{min_delta} is 0.001.
@item The magnitude of change in the likelihood estimate is less than @var{min_likelihood_delta}.
The default value of @var{min_delta} is zero.
This means that this criterion is disabled.
@item The differential of the estimated probability for all cases is less than @var{min_epsilon}.
In other words, the probabilities are close to zero or one.
The default value of @var{min_epsilon} is 0.00000001.
@end itemize
The @subcmd{PRINT} subcommand controls the display of optional statistics.
Currently there is one such option, @subcmd{CI}, which indicates that the
confidence interval of the odds ratio should be displayed as well as its value.
@subcmd{CI} should be followed by an integer in parentheses, to indicate the
confidence level of the desired confidence interval.
The @subcmd{MISSING} subcommand determines the handling of missing
variables.
If @subcmd{INCLUDE} is set, then user-missing values are included in the
calculations, but system-missing values are not.
If @subcmd{EXCLUDE} is set, which is the default, user-missing
values are excluded as well as system-missing values.
This is the default.
@node MEANS
@section MEANS
@vindex MEANS
@cindex means
@display
MEANS [TABLES =]
@{@var{var_list}@}
[ BY @{@var{var_list}@} [BY @{@var{var_list}@} [BY @{@var{var_list}@} @dots{} ]]]
[ /@{@var{var_list}@}
[ BY @{@var{var_list}@} [BY @{@var{var_list}@} [BY @{@var{var_list}@} @dots{} ]]] ]
[/CELLS = [MEAN] [COUNT] [STDDEV] [SEMEAN] [SUM] [MIN] [MAX] [RANGE]
[VARIANCE] [KURT] [SEKURT]
[SKEW] [SESKEW] [FIRST] [LAST]
[HARMONIC] [GEOMETRIC]
[DEFAULT]
[ALL]
[NONE] ]
[/MISSING = [INCLUDE] [DEPENDENT]]
@end display
You can use the @cmd{MEANS} command to calculate the arithmetic mean and similar
statistics, either for the dataset as a whole or for categories of data.
The simplest form of the command is
@example
MEANS @var{v}.
@end example
@noindent which calculates the mean, count and standard deviation for @var{v}.
If you specify a grouping variable, for example
@example
MEANS @var{v} BY @var{g}.
@end example
@noindent then the means, counts and standard deviations for @var{v} after having
been grouped by @var{g} are calculated.
Instead of the mean, count and standard deviation, you could specify the statistics
in which you are interested:
@example
MEANS @var{x} @var{y} BY @var{g}
/CELLS = HARMONIC SUM MIN.
@end example
This example calculates the harmonic mean, the sum and the minimum values of @var{x} and @var{y}
grouped by @var{g}.
The @subcmd{CELLS} subcommand specifies which statistics to calculate. The available statistics
are:
@itemize
@item @subcmd{MEAN}
@cindex arithmetic mean
The arithmetic mean.
@item @subcmd{COUNT}
The count of the values.
@item @subcmd{STDDEV}
The standard deviation.
@item @subcmd{SEMEAN}
The standard error of the mean.
@item @subcmd{SUM}
The sum of the values.
@item @subcmd{MIN}
The minimum value.
@item @subcmd{MAX}
The maximum value.
@item @subcmd{RANGE}
The difference between the maximum and minimum values.
@item @subcmd{VARIANCE}
The variance.
@item @subcmd{FIRST}
The first value in the category.
@item @subcmd{LAST}
The last value in the category.
@item @subcmd{SKEW}
The skewness.
@item @subcmd{SESKEW}
The standard error of the skewness.
@item @subcmd{KURT}
The kurtosis
@item @subcmd{SEKURT}
The standard error of the kurtosis.
@item @subcmd{HARMONIC}
@cindex harmonic mean
The harmonic mean.
@item @subcmd{GEOMETRIC}
@cindex geometric mean
The geometric mean.
@end itemize
In addition, three special keywords are recognized:
@itemize
@item @subcmd{DEFAULT}
This is the same as @subcmd{MEAN} @subcmd{COUNT} @subcmd{STDDEV}.
@item @subcmd{ALL}
All of the above statistics are calculated.
@item @subcmd{NONE}
No statistics are calculated (only a summary is shown).
@end itemize
More than one @dfn{table} can be specified in a single command.
Each table is separated by a @samp{/}. For
example
@example
MEANS TABLES =
@var{c} @var{d} @var{e} BY @var{x}
/@var{a} @var{b} BY @var{x} @var{y}
/@var{f} BY @var{y} BY @var{z}.
@end example
has three tables (the @samp{TABLE =} is optional).
The first table has three dependent variables @var{c}, @var{d} and @var{e}
and a single categorical variable @var{x}.
The second table has two dependent variables @var{a} and @var{b},
and two categorical variables @var{x} and @var{y}.
The third table has a single dependent variables @var{f}
and a categorical variable formed by the combination of @var{y} and @var{z}.
By default values are omitted from the analysis only if missing values
(either system missing or user missing)
for any of the variables directly involved in their calculation are
encountered.
This behaviour can be modified with the @subcmd{/MISSING} subcommand.
Three options are possible: @subcmd{TABLE}, @subcmd{INCLUDE} and @subcmd{DEPENDENT}.
@subcmd{/MISSING = INCLUDE} says that user missing values, either in the dependent
variables or in the categorical variables should be taken at their face
value, and not excluded.
@subcmd{/MISSING = DEPENDENT} says that user missing values, in the dependent
variables should be taken at their face value, however cases which
have user missing values for the categorical variables should be omitted
from the calculation.
@subsection Example Means
The dataset in @file{repairs.sav} contains the mean time between failures (@exvar{mtbf})
for a sample of artifacts produced by different factories and trialed under
different operating conditions.
Since there are four combinations of categorical variables, by simply looking
at the list of data, it would be hard to how the scores vary for each category.
@ref{means:ex} shows one way of tabulating the @exvar{mtbf} in a way which is
easier to understand.
@float Example, means:ex
@psppsyntax {means.sps}
@caption {Running @cmd{MEANS} on the @exvar{mtbf} score with categories @exvar{factory} and @exvar{environment}}
@end float
The results are shown in @ref{means:res}. The figures shown indicate the mean,
standard deviation and number of samples in each category.
These figures however do not indicate whether the results are statistically
significant. For that, you would need to use the procedures @cmd{ONEWAY}, @cmd{GLM} or
@cmd{T-TEST} depending on the hypothesis being tested.
@float Result, means:res
@psppoutput {means}
@caption {The @exvar{mtbf} categorised by @exvar{factory} and @exvar{environment}}
@end float
Note that there is no limit to the number of variables for which you can calculate
statistics, nor to the number of categorical variables per layer, nor the number
of layers.
However, running @cmd{MEANS} on a large numbers of variables, or with categorical variables
containing a large number of distinct values may result in an extremely large output, which
will not be easy to interpret.
So you should consider carefully which variables to select for participation in the analysis.
@node NPAR TESTS
@section NPAR TESTS
@vindex NPAR TESTS
@cindex nonparametric tests
@display
NPAR TESTS
nonparametric test subcommands
.
.
.
[ /STATISTICS=@{DESCRIPTIVES@} ]
[ /MISSING=@{ANALYSIS, LISTWISE@} @{INCLUDE, EXCLUDE@} ]
[ /METHOD=EXACT [ TIMER [(@var{n})] ] ]
@end display
@cmd{NPAR TESTS} performs nonparametric tests.
Non parametric tests make very few assumptions about the distribution of the
data.
One or more tests may be specified by using the corresponding subcommand.
If the @subcmd{/STATISTICS} subcommand is also specified, then summary statistics are
produces for each variable that is the subject of any test.
Certain tests may take a long time to execute, if an exact figure is required.
Therefore, by default asymptotic approximations are used unless the
subcommand @subcmd{/METHOD=EXACT} is specified.
Exact tests give more accurate results, but may take an unacceptably long
time to perform. If the @subcmd{TIMER} keyword is used, it sets a maximum time,
after which the test is abandoned, and a warning message printed.
The time, in minutes, should be specified in parentheses after the @subcmd{TIMER} keyword.
If the @subcmd{TIMER} keyword is given without this figure, then a default value of 5 minutes
is used.
@menu
* BINOMIAL:: Binomial Test
* CHISQUARE:: Chi-square Test
* COCHRAN:: Cochran Q Test
* FRIEDMAN:: Friedman Test
* KENDALL:: Kendall's W Test
* KOLMOGOROV-SMIRNOV:: Kolmogorov Smirnov Test
* KRUSKAL-WALLIS:: Kruskal-Wallis Test
* MANN-WHITNEY:: Mann Whitney U Test
* MCNEMAR:: McNemar Test
* MEDIAN:: Median Test
* RUNS:: Runs Test
* SIGN:: The Sign Test
* WILCOXON:: Wilcoxon Signed Ranks Test
@end menu
@node BINOMIAL
@subsection Binomial test
@vindex BINOMIAL
@cindex binomial test
@display
[ /BINOMIAL[(@var{p})]=@var{var_list}[(@var{value1}[, @var{value2})] ] ]
@end display
The @subcmd{/BINOMIAL} subcommand compares the observed distribution of a dichotomous
variable with that of a binomial distribution.
The variable @var{p} specifies the test proportion of the binomial
distribution.
The default value of 0.5 is assumed if @var{p} is omitted.
If a single value appears after the variable list, then that value is
used as the threshold to partition the observed values. Values less
than or equal to the threshold value form the first category. Values
greater than the threshold form the second category.
If two values appear after the variable list, then they are used
as the values which a variable must take to be in the respective
category.
Cases for which a variable takes a value equal to neither of the specified
values, take no part in the test for that variable.
If no values appear, then the variable must assume dichotomous
values.
If more than two distinct, non-missing values for a variable
under test are encountered then an error occurs.
If the test proportion is equal to 0.5, then a two-tailed test is
reported. For any other test proportion, a one-tailed test is
reported.
For one-tailed tests, if the test proportion is less than
or equal to the observed proportion, then the significance of
observing the observed proportion or more is reported.
If the test proportion is more than the observed proportion, then the
significance of observing the observed proportion or less is reported.
That is to say, the test is always performed in the observed
direction.
@pspp{} uses a very precise approximation to the gamma function to
compute the binomial significance. Thus, exact results are reported
even for very large sample sizes.
@node CHISQUARE
@subsection Chi-square Test
@vindex CHISQUARE
@cindex chi-square test
@display
[ /CHISQUARE=@var{var_list}[(@var{lo},@var{hi})] [/EXPECTED=@{EQUAL|@var{f1}, @var{f2} @dots{} @var{fn}@}] ]
@end display
The @subcmd{/CHISQUARE} subcommand produces a chi-square statistic for the differences
between the expected and observed frequencies of the categories of a variable.
Optionally, a range of values may appear after the variable list.
If a range is given, then non integer values are truncated, and values
outside the specified range are excluded from the analysis.
The @subcmd{/EXPECTED} subcommand specifies the expected values of each
category.
There must be exactly one non-zero expected value, for each observed
category, or the @subcmd{EQUAL} keyword must be specified.
You may use the notation @subcmd{@var{n}*@var{f}} to specify @var{n}
consecutive expected categories all taking a frequency of @var{f}.
The frequencies given are proportions, not absolute frequencies. The
sum of the frequencies need not be 1.
If no @subcmd{/EXPECTED} subcommand is given, then equal frequencies
are expected.
@subsubsection Chi-square Example
A researcher wishes to investigate whether there are an equal number of
persons of each sex in a population. The sample chosen for invesigation
is that from the @file {physiology.sav} dataset. The null hypothesis for
the test is that the population comprises an equal number of males and females.
The analysis is performed as shown in @ref{chisquare:ex}.
@float Example, chisquare:ex
@psppsyntax {chisquare.sps}
@caption {Performing a chi-square test to check for equal distribution of sexes}
@end float
There is only one test variable, @i{viz:} @exvar{sex}. The other variables in the dataset
are ignored.
@float Screenshot, chisquare:scr
@psppimage {chisquare}
@caption {Performing a chi-square test using the graphic user interface}
@end float
In @ref{chisquare:res} the summary box shows that in the sample, there are more males
than females. However the significance of chi-square result is greater than 0.05
--- the most commonly accepted p-value --- and therefore
there is not enough evidence to reject the null hypothesis and one must conclude
that the evidence does not indicate that there is an imbalance of the sexes
in the population.
@float Result, chisquare:res
@psppoutput {chisquare}
@caption {The results of running a chi-square test on @exvar{sex}}
@end float
@node COCHRAN
@subsection Cochran Q Test
@vindex Cochran
@cindex Cochran Q test
@cindex Q, Cochran Q
@display
[ /COCHRAN = @var{var_list} ]
@end display
The Cochran Q test is used to test for differences between three or more groups.
The data for @var{var_list} in all cases must assume exactly two
distinct values (other than missing values).
The value of Q is displayed along with its Asymptotic significance
based on a chi-square distribution.
@node FRIEDMAN
@subsection Friedman Test
@vindex FRIEDMAN
@cindex Friedman test
@display
[ /FRIEDMAN = @var{var_list} ]
@end display
The Friedman test is used to test for differences between repeated measures when
there is no indication that the distributions are normally distributed.
A list of variables which contain the measured data must be given. The procedure
prints the sum of ranks for each variable, the test statistic and its significance.
@node KENDALL
@subsection Kendall's W Test
@vindex KENDALL
@cindex Kendall's W test
@cindex coefficient of concordance
@display
[ /KENDALL = @var{var_list} ]
@end display
The Kendall test investigates whether an arbitrary number of related samples come from the
same population.
It is identical to the Friedman test except that the additional statistic W, Kendall's Coefficient of Concordance is printed.
It has the range [0,1] --- a value of zero indicates no agreement between the samples whereas a value of
unity indicates complete agreement.
@node KOLMOGOROV-SMIRNOV
@subsection Kolmogorov-Smirnov Test
@vindex KOLMOGOROV-SMIRNOV
@vindex K-S
@cindex Kolmogorov-Smirnov test
@display
[ /KOLMOGOROV-SMIRNOV (@{NORMAL [@var{mu}, @var{sigma}], UNIFORM [@var{min}, @var{max}], POISSON [@var{lambda}], EXPONENTIAL [@var{scale}] @}) = @var{var_list} ]
@end display
The one-sample Kolmogorov-Smirnov subcommand is used to test whether or not a dataset is
drawn from a particular distribution. Four distributions are supported, @i{viz:}
Normal, Uniform, Poisson and Exponential.
Ideally you should provide the parameters of the distribution against
which you wish to test the data. For example, with the normal
distribution the mean (@var{mu})and standard deviation (@var{sigma})
should be given; with the uniform distribution, the minimum
(@var{min})and maximum (@var{max}) value should be provided.
However, if the parameters are omitted they are imputed from the
data. Imputing the parameters reduces the power of the test so should
be avoided if possible.
In the following example, two variables @var{score} and @var{age} are
tested to see if they follow a normal distribution with a mean of 3.5
and a standard deviation of 2.0.
@example
NPAR TESTS
/KOLMOGOROV-SMIRNOV (normal 3.5 2.0) = @var{score} @var{age}.
@end example
If the variables need to be tested against different distributions, then a separate
subcommand must be used. For example the following syntax tests @var{score} against
a normal distribution with mean of 3.5 and standard deviation of 2.0 whilst @var{age}
is tested against a normal distribution of mean 40 and standard deviation 1.5.
@example
NPAR TESTS
/KOLMOGOROV-SMIRNOV (normal 3.5 2.0) = @var{score}
/KOLMOGOROV-SMIRNOV (normal 40 1.5) = @var{age}.
@end example
The abbreviated subcommand @subcmd{K-S} may be used in place of @subcmd{KOLMOGOROV-SMIRNOV}.
@node KRUSKAL-WALLIS
@subsection Kruskal-Wallis Test
@vindex KRUSKAL-WALLIS
@vindex K-W
@cindex Kruskal-Wallis test
@display
[ /KRUSKAL-WALLIS = @var{var_list} BY var (@var{lower}, @var{upper}) ]
@end display
The Kruskal-Wallis test is used to compare data from an
arbitrary number of populations. It does not assume normality.
The data to be compared are specified by @var{var_list}.
The categorical variable determining the groups to which the
data belongs is given by @var{var}. The limits @var{lower} and
@var{upper} specify the valid range of @var{var}.
If @var{upper} is smaller than @var{lower}, the PSPP will assume their values
to be reversed. Any cases for which @var{var} falls outside
[@var{lower}, @var{upper}] are ignored.
The mean rank of each group as well as the chi-squared value and
significance of the test are printed.
The abbreviated subcommand @subcmd{K-W} may be used in place of
@subcmd{KRUSKAL-WALLIS}.
@node MANN-WHITNEY
@subsection Mann-Whitney U Test
@vindex MANN-WHITNEY
@vindex M-W
@cindex Mann-Whitney U test
@cindex U, Mann-Whitney U
@display
[ /MANN-WHITNEY = @var{var_list} BY var (@var{group1}, @var{group2}) ]
@end display
The Mann-Whitney subcommand is used to test whether two groups of data
come from different populations. The variables to be tested should be
specified in @var{var_list} and the grouping variable, that determines
to which group the test variables belong, in @var{var}.
@var{Var} may be either a string or an alpha variable.
@var{Group1} and @var{group2} specify the
two values of @var{var} which determine the groups of the test data.
Cases for which the @var{var} value is neither @var{group1} or
@var{group2} are ignored.
The value of the Mann-Whitney U statistic, the Wilcoxon W, and the
significance are printed.
You may abbreviated the subcommand @subcmd{MANN-WHITNEY} to
@subcmd{M-W}.
@node MCNEMAR
@subsection McNemar Test
@vindex MCNEMAR
@cindex McNemar test
@display
[ /MCNEMAR @var{var_list} [ WITH @var{var_list} [ (PAIRED) ]]]
@end display
Use McNemar's test to analyse the significance of the difference between
pairs of correlated proportions.
If the @code{WITH} keyword is omitted, then tests for all
combinations of the listed variables are performed.
If the @code{WITH} keyword is given, and the @code{(PAIRED)} keyword
is also given, then the number of variables preceding @code{WITH}
must be the same as the number following it.
In this case, tests for each respective pair of variables are
performed.
If the @code{WITH} keyword is given, but the
@code{(PAIRED)} keyword is omitted, then tests for each combination
of variable preceding @code{WITH} against variable following
@code{WITH} are performed.
The data in each variable must be dichotomous. If there are more
than two distinct variables an error will occur and the test will
not be run.
@node MEDIAN
@subsection Median Test
@vindex MEDIAN
@cindex Median test
@display
[ /MEDIAN [(@var{value})] = @var{var_list} BY @var{variable} (@var{value1}, @var{value2}) ]
@end display
The median test is used to test whether independent samples come from
populations with a common median.
The median of the populations against which the samples are to be tested
may be given in parentheses immediately after the
@subcmd{/MEDIAN} subcommand. If it is not given, the median is imputed from the
union of all the samples.
The variables of the samples to be tested should immediately follow the @samp{=} sign. The
keyword @code{BY} must come next, and then the grouping variable. Two values
in parentheses should follow. If the first value is greater than the second,
then a 2 sample test is performed using these two values to determine the groups.
If however, the first variable is less than the second, then a @i{k} sample test is
conducted and the group values used are all values encountered which lie in the
range [@var{value1},@var{value2}].
@node RUNS
@subsection Runs Test
@vindex RUNS
@cindex runs test
@display
[ /RUNS (@{MEAN, MEDIAN, MODE, @var{value}@}) = @var{var_list} ]
@end display
The @subcmd{/RUNS} subcommand tests whether a data sequence is randomly ordered.
It works by examining the number of times a variable's value crosses a given threshold.
The desired threshold must be specified within parentheses.
It may either be specified as a number or as one of @subcmd{MEAN}, @subcmd{MEDIAN} or @subcmd{MODE}.
Following the threshold specification comes the list of variables whose values are to be
tested.
The subcommand shows the number of runs, the asymptotic significance based on the
length of the data.
@node SIGN
@subsection Sign Test
@vindex SIGN
@cindex sign test
@display
[ /SIGN @var{var_list} [ WITH @var{var_list} [ (PAIRED) ]]]
@end display
The @subcmd{/SIGN} subcommand tests for differences between medians of the
variables listed.
The test does not make any assumptions about the
distribution of the data.
If the @code{WITH} keyword is omitted, then tests for all
combinations of the listed variables are performed.
If the @code{WITH} keyword is given, and the @code{(PAIRED)} keyword
is also given, then the number of variables preceding @code{WITH}
must be the same as the number following it.
In this case, tests for each respective pair of variables are
performed.
If the @code{WITH} keyword is given, but the
@code{(PAIRED)} keyword is omitted, then tests for each combination
of variable preceding @code{WITH} against variable following
@code{WITH} are performed.
@node WILCOXON
@subsection Wilcoxon Matched Pairs Signed Ranks Test
@vindex WILCOXON
@cindex wilcoxon matched pairs signed ranks test
@display
[ /WILCOXON @var{var_list} [ WITH @var{var_list} [ (PAIRED) ]]]
@end display
The @subcmd{/WILCOXON} subcommand tests for differences between medians of the
variables listed.
The test does not make any assumptions about the variances of the samples.
It does however assume that the distribution is symmetrical.
If the @subcmd{WITH} keyword is omitted, then tests for all
combinations of the listed variables are performed.
If the @subcmd{WITH} keyword is given, and the @subcmd{(PAIRED)} keyword
is also given, then the number of variables preceding @subcmd{WITH}
must be the same as the number following it.
In this case, tests for each respective pair of variables are
performed.
If the @subcmd{WITH} keyword is given, but the
@subcmd{(PAIRED)} keyword is omitted, then tests for each combination
of variable preceding @subcmd{WITH} against variable following
@subcmd{WITH} are performed.
@node T-TEST
@section T-TEST
@vindex T-TEST
@display
T-TEST
/MISSING=@{ANALYSIS,LISTWISE@} @{EXCLUDE,INCLUDE@}
/CRITERIA=CI(@var{confidence})
(One Sample mode.)
TESTVAL=@var{test_value}
/VARIABLES=@var{var_list}
(Independent Samples mode.)
GROUPS=var(@var{value1} [, @var{value2}])
/VARIABLES=@var{var_list}
(Paired Samples mode.)
PAIRS=@var{var_list} [WITH @var{var_list} [(PAIRED)] ]
@end display
The @cmd{T-TEST} procedure outputs tables used in testing hypotheses about
means.
It operates in one of three modes:
@itemize
@item One Sample mode.
@item Independent Groups mode.
@item Paired mode.
@end itemize
@noindent
Each of these modes are described in more detail below.
There are two optional subcommands which are common to all modes.
The @cmd{/CRITERIA} subcommand tells @pspp{} the confidence interval used
in the tests. The default value is 0.95.
The @cmd{MISSING} subcommand determines the handling of missing
variables.
If @subcmd{INCLUDE} is set, then user-missing values are included in the
calculations, but system-missing values are not.
If @subcmd{EXCLUDE} is set, which is the default, user-missing
values are excluded as well as system-missing values.
This is the default.
If @subcmd{LISTWISE} is set, then the entire case is excluded from analysis
whenever any variable specified in the @subcmd{/VARIABLES}, @subcmd{/PAIRS} or
@subcmd{/GROUPS} subcommands contains a missing value.
If @subcmd{ANALYSIS} is set, then missing values are excluded only in the analysis for
which they would be needed. This is the default.
@menu
* One Sample Mode:: Testing against a hypothesized mean
* Independent Samples Mode:: Testing two independent groups for equal mean
* Paired Samples Mode:: Testing two interdependent groups for equal mean
@end menu
@node One Sample Mode
@subsection One Sample Mode
The @subcmd{TESTVAL} subcommand invokes the One Sample mode.
This mode is used to test a population mean against a hypothesized
mean.
The value given to the @subcmd{TESTVAL} subcommand is the value against
which you wish to test.
In this mode, you must also use the @subcmd{/VARIABLES} subcommand to
tell @pspp{} which variables you wish to test.
@subsubsection Example - One-Sample T-test
A researcher wishes to know whether the weight of persons in a population
is different from the national average.
The samples are drawn from the population under investigation and recorded
in the file @file{physiology.sav}.
From the Department of Health, she
knows that the national average weight of healthy adults is 76.8kg.
Accordingly the @subcmd{TESTVAL} is set to 76.8.
The null hypothesis therefore is that the mean average weight of the
population from which the sample was drawn is 76.8kg.
As previously noted (@pxref{Identifying incorrect data}), one
sample in the dataset contains a weight value
which is clearly incorrect. So this is excluded from the analysis
using the @cmd{SELECT} command.
@float Example, one-sample-t:ex
@psppsyntax {one-sample-t.sps}
@caption {Running a one-sample T-Test after excluding all non-positive values}
@end float
@float Screenshot, one-sample-t:scr
@psppimage {one-sample-t}
@caption {Using the One-Sample T-Test dialog box to test @exvar{weight} for a mean of 76.8kg}
@end float
@ref{one-sample-t:res} shows that the mean of our sample differs from the test value
by -1.40kg. However the significance is very high (0.610). So one cannot
reject the null hypothesis, and must conclude there is not enough evidence
to suggest that the mean weight of the persons in our population is different
from 76.8kg.
@float Results, one-sample-t:res
@psppoutput {one-sample-t}
@caption {The results of a one-sample T-test of @exvar{weight} using a test value of 76.8kg}
@end float
@node Independent Samples Mode
@subsection Independent Samples Mode
The @subcmd{GROUPS} subcommand invokes Independent Samples mode or
`Groups' mode.
This mode is used to test whether two groups of values have the
same population mean.
In this mode, you must also use the @subcmd{/VARIABLES} subcommand to
tell @pspp{} the dependent variables you wish to test.
The variable given in the @subcmd{GROUPS} subcommand is the independent
variable which determines to which group the samples belong.
The values in parentheses are the specific values of the independent
variable for each group.
If the parentheses are omitted and no values are given, the default values
of 1.0 and 2.0 are assumed.
If the independent variable is numeric,
it is acceptable to specify only one value inside the parentheses.
If you do this, cases where the independent variable is
greater than or equal to this value belong to the first group, and cases
less than this value belong to the second group.
When using this form of the @subcmd{GROUPS} subcommand, missing values in
the independent variable are excluded on a listwise basis, regardless
of whether @subcmd{/MISSING=LISTWISE} was specified.
@subsubsection Example - Independent Samples T-test
A researcher wishes to know whether within a population, adult males
are taller than adult females.
The samples are drawn from the population under investigation and recorded
in the file @file{physiology.sav}.
As previously noted (@pxref{Identifying incorrect data}), one
sample in the dataset contains a height value
which is clearly incorrect. So this is excluded from the analysis
using the @cmd{SELECT} command.
@float Example, indepdendent-samples-t:ex
@psppsyntax {independent-samples-t.sps}
@caption {Running a independent samples T-Test after excluding all observations less than 200kg}
@end float
The null hypothesis is that both males and females are on average
of equal height.
@float Screenshot, independent-samples-t:scr
@psppimage {independent-samples-t}
@caption {Using the Independent Sample T-test dialog, to test for differences of @exvar{height} between values of @exvar{sex}}
@end float
In this case, the grouping variable is @exvar{sex}, so this is entered
as the variable for the @subcmd{GROUP} subcommand. The group values are 0 (male) and
1 (female).
If you are running the proceedure using syntax, then you need to enter
the values corresponding to each group within parentheses.
If you are using the graphic user interface, then you have to open
the ``Define Groups'' dialog box and enter the values corresponding
to each group as shown in @ref{define-groups-t:scr}. If, as in this case, the dataset has defined value
labels for the group variable, then you can enter them by label
or by value.
@float Screenshot, define-groups-t:scr
@psppimage {define-groups-t}
@caption {Setting the values of the grouping variable for an Independent Samples T-test}
@end float
From @ref{independent-samples-t:res}, one can clearly see that the @emph{sample} mean height
is greater for males than for females. However in order to see if this
is a significant result, one must consult the T-Test table.
The T-Test table contains two rows; one for use if the variance of the samples
in each group may be safely assumed to be equal, and the second row
if the variances in each group may not be safely assumed to be equal.
In this case however, both rows show a 2-tailed significance less than 0.001 and
one must therefore reject the null hypothesis and conclude that within
the population the mean height of males and of females are unequal.
@float Result, independent-samples-t:res
@psppoutput {independent-samples-t}
@caption {The results of an independent samples T-test of @exvar{height} by @exvar{sex}}
@end float
@node Paired Samples Mode
@subsection Paired Samples Mode
The @cmd{PAIRS} subcommand introduces Paired Samples mode.
Use this mode when repeated measures have been taken from the same
samples.
If the @subcmd{WITH} keyword is omitted, then tables for all
combinations of variables given in the @cmd{PAIRS} subcommand are
generated.
If the @subcmd{WITH} keyword is given, and the @subcmd{(PAIRED)} keyword
is also given, then the number of variables preceding @subcmd{WITH}
must be the same as the number following it.
In this case, tables for each respective pair of variables are
generated.
In the event that the @subcmd{WITH} keyword is given, but the
@subcmd{(PAIRED)} keyword is omitted, then tables for each combination
of variable preceding @subcmd{WITH} against variable following
@subcmd{WITH} are generated.
@node ONEWAY
@section ONEWAY
@vindex ONEWAY
@cindex analysis of variance
@cindex ANOVA
@display
ONEWAY
[/VARIABLES = ] @var{var_list} BY @var{var}
/MISSING=@{ANALYSIS,LISTWISE@} @{EXCLUDE,INCLUDE@}
/CONTRAST= @var{value1} [, @var{value2}] ... [,@var{valueN}]
/STATISTICS=@{DESCRIPTIVES,HOMOGENEITY@}
/POSTHOC=@{BONFERRONI, GH, LSD, SCHEFFE, SIDAK, TUKEY, ALPHA ([@var{value}])@}
@end display
The @cmd{ONEWAY} procedure performs a one-way analysis of variance of
variables factored by a single independent variable.
It is used to compare the means of a population
divided into more than two groups.
The dependent variables to be analysed should be given in the @subcmd{VARIABLES}
subcommand.
The list of variables must be followed by the @subcmd{BY} keyword and
the name of the independent (or factor) variable.
You can use the @subcmd{STATISTICS} subcommand to tell @pspp{} to display
ancillary information. The options accepted are:
@itemize
@item DESCRIPTIVES
Displays descriptive statistics about the groups factored by the independent
variable.
@item HOMOGENEITY
Displays the Levene test of Homogeneity of Variance for the
variables and their groups.
@end itemize
The @subcmd{CONTRAST} subcommand is used when you anticipate certain
differences between the groups.
The subcommand must be followed by a list of numerals which are the
coefficients of the groups to be tested.
The number of coefficients must correspond to the number of distinct
groups (or values of the independent variable).
If the total sum of the coefficients are not zero, then @pspp{} will
display a warning, but will proceed with the analysis.
The @subcmd{CONTRAST} subcommand may be given up to 10 times in order
to specify different contrast tests.
The @subcmd{MISSING} subcommand defines how missing values are handled.
If @subcmd{LISTWISE} is specified then cases which have missing values for
the independent variable or any dependent variable are ignored.
If @subcmd{ANALYSIS} is specified, then cases are ignored if the independent
variable is missing or if the dependent variable currently being
analysed is missing. The default is @subcmd{ANALYSIS}.
A setting of @subcmd{EXCLUDE} means that variables whose values are
user-missing are to be excluded from the analysis. A setting of
@subcmd{INCLUDE} means they are to be included. The default is @subcmd{EXCLUDE}.
Using the @code{POSTHOC} subcommand you can perform multiple
pairwise comparisons on the data. The following comparison methods
are available:
@itemize
@item @subcmd{LSD}
Least Significant Difference.
@item @subcmd{TUKEY}
Tukey Honestly Significant Difference.
@item @subcmd{BONFERRONI}
Bonferroni test.
@item @subcmd{SCHEFFE}
Scheff@'e's test.
@item @subcmd{SIDAK}
Sidak test.
@item @subcmd{GH}
The Games-Howell test.
@end itemize
@noindent
Use the optional syntax @code{ALPHA(@var{value})} to indicate that
@cmd{ONEWAY} should perform the posthoc tests at a confidence level of
@var{value}. If @code{ALPHA(@var{value})} is not specified, then the
confidence level used is 0.05.
@node QUICK CLUSTER
@section QUICK CLUSTER
@vindex QUICK CLUSTER
@cindex K-means clustering
@cindex clustering
@display
QUICK CLUSTER @var{var_list}
[/CRITERIA=CLUSTERS(@var{k}) [MXITER(@var{max_iter})] CONVERGE(@var{epsilon}) [NOINITIAL]]
[/MISSING=@{EXCLUDE,INCLUDE@} @{LISTWISE, PAIRWISE@}]
[/PRINT=@{INITIAL@} @{CLUSTER@}]
[/SAVE[=[CLUSTER[(@var{membership_var})]] [DISTANCE[(@var{distance_var})]]]
@end display
The @cmd{QUICK CLUSTER} command performs k-means clustering on the
dataset. This is useful when you wish to allocate cases into clusters
of similar values and you already know the number of clusters.
The minimum specification is @samp{QUICK CLUSTER} followed by the names
of the variables which contain the cluster data. Normally you will also
want to specify @subcmd{/CRITERIA=CLUSTERS(@var{k})} where @var{k} is the
number of clusters. If this is not specified, then @var{k} defaults to 2.
If you use @subcmd{/CRITERIA=NOINITIAL} then a naive algorithm to select
the initial clusters is used. This will provide for faster execution but
less well separated initial clusters and hence possibly an inferior final
result.
@cmd{QUICK CLUSTER} uses an iterative algorithm to select the clusters centers.
The subcommand @subcmd{/CRITERIA=MXITER(@var{max_iter})} sets the maximum number of iterations.
During classification, @pspp{} will continue iterating until until @var{max_iter}
iterations have been done or the convergence criterion (see below) is fulfilled.
The default value of @var{max_iter} is 2.
If however, you specify @subcmd{/CRITERIA=NOUPDATE} then after selecting the initial centers,
no further update to the cluster centers is done. In this case, @var{max_iter}, if specified.
is ignored.
The subcommand @subcmd{/CRITERIA=CONVERGE(@var{epsilon})} is used
to set the convergence criterion. The value of convergence criterion is @var{epsilon}
times the minimum distance between the @emph{initial} cluster centers. Iteration stops when
the mean cluster distance between one iteration and the next
is less than the convergence criterion. The default value of @var{epsilon} is zero.
The @subcmd{MISSING} subcommand determines the handling of missing variables.
If @subcmd{INCLUDE} is set, then user-missing values are considered at their face
value and not as missing values.
If @subcmd{EXCLUDE} is set, which is the default, user-missing
values are excluded as well as system-missing values.
If @subcmd{LISTWISE} is set, then the entire case is excluded from the analysis
whenever any of the clustering variables contains a missing value.
If @subcmd{PAIRWISE} is set, then a case is considered missing only if all the
clustering variables contain missing values. Otherwise it is clustered
on the basis of the non-missing values.
The default is @subcmd{LISTWISE}.
The @subcmd{PRINT} subcommand requests additional output to be printed.
If @subcmd{INITIAL} is set, then the initial cluster memberships will
be printed.
If @subcmd{CLUSTER} is set, the cluster memberships of the individual
cases are displayed (potentially generating lengthy output).
You can specify the subcommand @subcmd{SAVE} to ask that each case's cluster membership
and the euclidean distance between the case and its cluster center be saved to
a new variable in the active dataset. To save the cluster membership use the
@subcmd{CLUSTER} keyword and to save the distance use the @subcmd{DISTANCE} keyword.
Each keyword may optionally be followed by a variable name in parentheses to specify
the new variable which is to contain the saved parameter. If no variable name is specified,
then PSPP will create one.
@node RANK
@section RANK
@vindex RANK
@display
RANK
[VARIABLES=] @var{var_list} [@{A,D@}] [BY @var{var_list}]
/TIES=@{MEAN,LOW,HIGH,CONDENSE@}
/FRACTION=@{BLOM,TUKEY,VW,RANKIT@}
/PRINT[=@{YES,NO@}
/MISSING=@{EXCLUDE,INCLUDE@}
/RANK [INTO @var{var_list}]
/NTILES(k) [INTO @var{var_list}]
/NORMAL [INTO @var{var_list}]
/PERCENT [INTO @var{var_list}]
/RFRACTION [INTO @var{var_list}]
/PROPORTION [INTO @var{var_list}]
/N [INTO @var{var_list}]
/SAVAGE [INTO @var{var_list}]
@end display
The @cmd{RANK} command ranks variables and stores the results into new
variables.
The @subcmd{VARIABLES} subcommand, which is mandatory, specifies one or
more variables whose values are to be ranked.
After each variable, @samp{A} or @samp{D} may appear, indicating that
the variable is to be ranked in ascending or descending order.
Ascending is the default.
If a @subcmd{BY} keyword appears, it should be followed by a list of variables
which are to serve as group variables.
In this case, the cases are gathered into groups, and ranks calculated
for each group.
The @subcmd{TIES} subcommand specifies how tied values are to be treated. The
default is to take the mean value of all the tied cases.
The @subcmd{FRACTION} subcommand specifies how proportional ranks are to be
calculated. This only has any effect if @subcmd{NORMAL} or @subcmd{PROPORTIONAL} rank
functions are requested.
The @subcmd{PRINT} subcommand may be used to specify that a summary of the rank
variables created should appear in the output.
The function subcommands are @subcmd{RANK}, @subcmd{NTILES}, @subcmd{NORMAL}, @subcmd{PERCENT}, @subcmd{RFRACTION},
@subcmd{PROPORTION} and @subcmd{SAVAGE}. Any number of function subcommands may appear.
If none are given, then the default is RANK.
The @subcmd{NTILES} subcommand must take an integer specifying the number of
partitions into which values should be ranked.
Each subcommand may be followed by the @subcmd{INTO} keyword and a list of
variables which are the variables to be created and receive the rank
scores. There may be as many variables specified as there are
variables named on the @subcmd{VARIABLES} subcommand. If fewer are specified,
then the variable names are automatically created.
The @subcmd{MISSING} subcommand determines how user missing values are to be
treated. A setting of @subcmd{EXCLUDE} means that variables whose values are
user-missing are to be excluded from the rank scores. A setting of
@subcmd{INCLUDE} means they are to be included. The default is @subcmd{EXCLUDE}.
@include regression.texi
@node RELIABILITY
@section RELIABILITY
@vindex RELIABILITY
@display
RELIABILITY
/VARIABLES=@var{var_list}
/SCALE (@var{name}) = @{@var{var_list}, ALL@}
/MODEL=@{ALPHA, SPLIT[(@var{n})]@}
/SUMMARY=@{TOTAL,ALL@}
/MISSING=@{EXCLUDE,INCLUDE@}
@end display
@cindex Cronbach's Alpha
The @cmd{RELIABILITY} command performs reliability analysis on the data.
The @subcmd{VARIABLES} subcommand is required. It determines the set of variables
upon which analysis is to be performed.
The @subcmd{SCALE} subcommand determines the variables for which
reliability is to be calculated. If @subcmd{SCALE} is omitted, then analysis for
all variables named in the @subcmd{VARIABLES} subcommand are used.
Optionally, the @var{name} parameter may be specified to set a string name
for the scale.
The @subcmd{MODEL} subcommand determines the type of analysis. If @subcmd{ALPHA} is specified,
then Cronbach's Alpha is calculated for the scale. If the model is @subcmd{SPLIT},
then the variables are divided into 2 subsets. An optional parameter
@var{n} may be given, to specify how many variables to be in the first subset.
If @var{n} is omitted, then it defaults to one half of the variables in the
scale, or one half minus one if there are an odd number of variables.
The default model is @subcmd{ALPHA}.
By default, any cases with user missing, or system missing values for
any variables given in the @subcmd{VARIABLES} subcommand are omitted
from the analysis. The @subcmd{MISSING} subcommand determines whether
user missing values are included or excluded in the analysis.
The @subcmd{SUMMARY} subcommand determines the type of summary analysis to be performed.
Currently there is only one type: @subcmd{SUMMARY=TOTAL}, which displays per-item
analysis tested against the totals.
@subsection Example - Reliability
Before analysing the results of a survey -- particularly for a multiple choice survey --
it is desireable to know whether the respondents have considered their answers
or simply provided random answers.
In the following example the survey results from the file @file{hotel.sav} are used.
All five survey questions are included in the reliability analysis.
However, before running the analysis, the data must be preprocessed.
An examination of the survey questions reveals that two questions, @i{viz:} v3 and v5
are negatively worded, whereas the others are positively worded.
All questions must be based upon the same scale for the analysis to be meaningful.
One could use the @cmd{RECODE} command (@pxref{RECODE}), however a simpler way is
to use @cmd{COMPUTE} (@pxref{COMPUTE}) and this is what is done in @ref{reliability:ex}.
@float Example, reliability:ex
@psppsyntax {reliability.sps}
@caption {Investigating the reliability of survey responses}
@end float
In this case, all variables in the data set are used. So we can use the special
keyword @samp{ALL} (@pxref{BNF}).
@float Screenshot, reliability:src
@psppimage {reliability}
@caption {Reliability dialog box with all variables selected}
@end float
@ref{reliability:res} shows that Cronbach's Alpha is 0.11 which is a value normally considered too
low to indicate consistency within the data. This is possibly due to the small number of
survey questions. The survey should be redesigned before serious use of the results are
applied.
@float Result, reliability:res
@psppoutput {reliability}
@caption {The results of the reliability command on @file{hotel.sav}}
@end float
@node ROC
@section ROC
@vindex ROC
@cindex Receiver Operating Characteristic
@cindex Area under curve
@display
ROC @var{var_list} BY @var{state_var} (@var{state_value})
/PLOT = @{ CURVE [(REFERENCE)], NONE @}
/PRINT = [ SE ] [ COORDINATES ]
/CRITERIA = [ CUTOFF(@{INCLUDE,EXCLUDE@}) ]
[ TESTPOS (@{LARGE,SMALL@}) ]
[ CI (@var{confidence}) ]
[ DISTRIBUTION (@{FREE, NEGEXPO @}) ]
/MISSING=@{EXCLUDE,INCLUDE@}
@end display
The @cmd{ROC} command is used to plot the receiver operating characteristic curve
of a dataset, and to estimate the area under the curve.
This is useful for analysing the efficacy of a variable as a predictor of a state of nature.
The mandatory @var{var_list} is the list of predictor variables.
The variable @var{state_var} is the variable whose values represent the actual states,
and @var{state_value} is the value of this variable which represents the positive state.
The optional subcommand @subcmd{PLOT} is used to determine if and how the @subcmd{ROC} curve is drawn.
The keyword @subcmd{CURVE} means that the @subcmd{ROC} curve should be drawn, and the optional keyword @subcmd{REFERENCE},
which should be enclosed in parentheses, says that the diagonal reference line should be drawn.
If the keyword @subcmd{NONE} is given, then no @subcmd{ROC} curve is drawn.
By default, the curve is drawn with no reference line.
The optional subcommand @subcmd{PRINT} determines which additional
tables should be printed. Two additional tables are available. The
@subcmd{SE} keyword says that standard error of the area under the
curve should be printed as well as the area itself. In addition, a
p-value for the null hypothesis that the area under the curve equals
0.5 is printed. The @subcmd{COORDINATES} keyword says that a
table of coordinates of the @subcmd{ROC} curve should be printed.
The @subcmd{CRITERIA} subcommand has four optional parameters:
@itemize @bullet
@item The @subcmd{TESTPOS} parameter may be @subcmd{LARGE} or @subcmd{SMALL}.
@subcmd{LARGE} is the default, and says that larger values in the predictor variables are to be
considered positive. @subcmd{SMALL} indicates that smaller values should be considered positive.
@item The @subcmd{CI} parameter specifies the confidence interval that should be printed.
It has no effect if the @subcmd{SE} keyword in the @subcmd{PRINT} subcommand has not been given.
@item The @subcmd{DISTRIBUTION} parameter determines the method to be used when estimating the area
under the curve.
There are two possibilities, @i{viz}: @subcmd{FREE} and @subcmd{NEGEXPO}.
The @subcmd{FREE} method uses a non-parametric estimate, and the @subcmd{NEGEXPO} method a bi-negative
exponential distribution estimate.
The @subcmd{NEGEXPO} method should only be used when the number of positive actual states is
equal to the number of negative actual states.
The default is @subcmd{FREE}.
@item The @subcmd{CUTOFF} parameter is for compatibility and is ignored.
@end itemize
The @subcmd{MISSING} subcommand determines whether user missing values are to
be included or excluded in the analysis. The default behaviour is to
exclude them.
Cases are excluded on a listwise basis; if any of the variables in @var{var_list}
or if the variable @var{state_var} is missing, then the entire case is
excluded.
@c LocalWords: subcmd subcommand
|