1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
|
/* PSPP - a program for statistical analysis.
Copyright (C) 2011 Free Software Foundation, Inc.
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/* This file is taken from the R project source code, and modified.
The original copyright notice is reproduced below: */
/*
* Mathlib : A C Library of Special Functions
* Copyright (C) 1998 Ross Ihaka
* Copyright (C) 2000--2007 The R Development Core Team
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, a copy is available at
* http://www.r-project.org/Licenses/
*
* SYNOPSIS
*
* #include <Rmath.h>
* double ptukey(q, rr, cc, df, lower_tail, log_p);
*
* DESCRIPTION
*
* Computes the probability that the maximum of rr studentized
* ranges, each based on cc means and with df degrees of freedom
* for the standard error, is less than q.
*
* The algorithm is based on that of the reference.
*
* REFERENCE
*
* Copenhaver, Margaret Diponzio & Holland, Burt S.
* Multiple comparisons of simple effects in
* the two-way analysis of variance with fixed effects.
* Journal of Statistical Computation and Simulation,
* Vol.30, pp.1-15, 1988.
*/
#include <config.h>
#include "libpspp/compiler.h"
#include "tukey.h"
#include <gsl/gsl_sf_gamma.h>
#include <gsl/gsl_cdf.h>
#include <assert.h>
#include <math.h>
#define R_D__0 (log_p ? -INFINITY : 0.) /* 0 */
#define R_D__1 (log_p ? 0. : 1.) /* 1 */
#define R_DT_0 (lower_tail ? R_D__0 : R_D__1) /* 0 */
#define R_DT_1 (lower_tail ? R_D__1 : R_D__0) /* 1 */
#define R_D_val(x) (log_p ? log(x) : (x)) /* x in pF(x,..) */
#define R_D_Clog(p) (log_p ? log1p(-(p)) : (0.5 - (p) + 0.5)) /* [log](1-p) */
#define R_DT_val(x) (lower_tail ? R_D_val(x) : R_D_Clog(x))
#define ME_PRECISION 8
static inline double
pnorm(double x, double mu, double sigma, int lower_tail, int log_p)
{
assert (lower_tail == 1);
assert (log_p == 0);
assert (sigma == 1.0);
return gsl_cdf_gaussian_P (x - mu, sigma);
}
static double
wprob (double w, double rr, double cc)
{
const double M_1_SQRT_2PI = 1 / sqrt (2 * M_PI);
/* wprob() :
This function calculates probability integral of Hartley's
form of the range.
w = value of range
rr = no. of rows or groups
cc = no. of columns or treatments
ir = error flag = 1 if pr_w probability > 1
pr_w = returned probability integral from (0, w)
program will not terminate if ir is raised.
bb = upper limit of legendre integration
iMax = maximum acceptable value of integral
nleg = order of legendre quadrature
ihalf = int ((nleg + 1) / 2)
wlar = value of range above which wincr1 intervals are used to
calculate second part of integral,
else wincr2 intervals are used.
C1, C2, C3 = values which are used as cutoffs for terminating
or modifying a calculation.
M_1_SQRT_2PI = 1 / sqrt(2 * pi); from abramowitz & stegun, p. 3.
M_SQRT2 = sqrt(2)
xleg = legendre 12-point nodes
aleg = legendre 12-point coefficients
*/
#define nleg 12
#define ihalf 6
/* looks like this is suboptimal for double precision.
(see how C1-C3 are used) <MM>
*/
/* const double iMax = 1.; not used if = 1 */
static const double C1 = -30.;
static const double C2 = -50.;
static const double C3 = 60.;
static const double bb = 8.;
static const double wlar = 3.;
static const double wincr1 = 2.;
static const double wincr2 = 3.;
static const double xleg[ihalf] = {
0.981560634246719250690549090149,
0.904117256370474856678465866119,
0.769902674194304687036893833213,
0.587317954286617447296702418941,
0.367831498998180193752691536644,
0.125233408511468915472441369464
};
static const double aleg[ihalf] = {
0.047175336386511827194615961485,
0.106939325995318430960254718194,
0.160078328543346226334652529543,
0.203167426723065921749064455810,
0.233492536538354808760849898925,
0.249147045813402785000562436043
};
double a, ac, pr_w, b, binc, blb, c, cc1,
pminus, pplus, qexpo, qsqz, rinsum, wi, wincr, xx;
long double bub, einsum, elsum;
int j, jj;
qsqz = w * 0.5;
/* if w >= 16 then the integral lower bound (occurs for c=20) */
/* is 0.99999999999995 so return a value of 1. */
if (qsqz >= bb)
return 1.0;
/* find (f(w/2) - 1) ^ cc */
/* (first term in integral of hartley's form). */
pr_w = 2 * pnorm (qsqz, 0., 1., 1, 0) - 1.; /* erf(qsqz / M_SQRT2) */
/* if pr_w ^ cc < 2e-22 then set pr_w = 0 */
if (pr_w >= exp (C2 / cc))
pr_w = pow (pr_w, cc);
else
pr_w = 0.0;
/* if w is large then the second component of the */
/* integral is small, so fewer intervals are needed. */
if (w > wlar)
wincr = wincr1;
else
wincr = wincr2;
/* find the integral of second term of hartley's form */
/* for the integral of the range for equal-length */
/* intervals using legendre quadrature. limits of */
/* integration are from (w/2, 8). two or three */
/* equal-length intervals are used. */
/* blb and bub are lower and upper limits of integration. */
blb = qsqz;
binc = (bb - qsqz) / wincr;
bub = blb + binc;
einsum = 0.0;
/* integrate over each interval */
cc1 = cc - 1.0;
for (wi = 1; wi <= wincr; wi++)
{
elsum = 0.0;
a = 0.5 * (bub + blb);
/* legendre quadrature with order = nleg */
b = 0.5 * (bub - blb);
for (jj = 1; jj <= nleg; jj++)
{
if (ihalf < jj)
{
j = (nleg - jj) + 1;
xx = xleg[j - 1];
}
else
{
j = jj;
xx = -xleg[j - 1];
}
c = b * xx;
ac = a + c;
/* if exp(-qexpo/2) < 9e-14, */
/* then doesn't contribute to integral */
qexpo = ac * ac;
if (qexpo > C3)
break;
pplus = 2 * pnorm (ac, 0., 1., 1, 0);
pminus = 2 * pnorm (ac, w, 1., 1, 0);
/* if rinsum ^ (cc-1) < 9e-14, */
/* then doesn't contribute to integral */
rinsum = (pplus * 0.5) - (pminus * 0.5);
if (rinsum >= exp (C1 / cc1))
{
rinsum =
(aleg[j - 1] * exp (-(0.5 * qexpo))) * pow (rinsum, cc1);
elsum += rinsum;
}
}
elsum *= (((2.0 * b) * cc) * M_1_SQRT_2PI);
einsum += elsum;
blb = bub;
bub += binc;
}
/* if pr_w ^ rr < 9e-14, then return 0 */
pr_w = einsum + pr_w;
if (pr_w <= exp (C1 / rr))
return 0.;
pr_w = pow (pr_w, rr);
if (pr_w >= 1.) /* 1 was iMax was eps */
return 1.;
return pr_w;
} /* wprob() */
double
ptukey (double q, double rr, double cc, double df, int lower_tail, int log_p)
{
/* function ptukey() [was qprob() ]:
q = value of studentized range
rr = no. of rows or groups
cc = no. of columns or treatments
df = degrees of freedom of error term
ir[0] = error flag = 1 if wprob probability > 1
ir[1] = error flag = 1 if qprob probability > 1
qprob = returned probability integral over [0, q]
The program will not terminate if ir[0] or ir[1] are raised.
All references in wprob to Abramowitz and Stegun
are from the following reference:
Abramowitz, Milton and Stegun, Irene A.
Handbook of Mathematical Functions.
New York: Dover publications, Inc. (1970).
All constants taken from this text are
given to 25 significant digits.
nlegq = order of legendre quadrature
ihalfq = int ((nlegq + 1) / 2)
eps = max. allowable value of integral
eps1 & eps2 = values below which there is
no contribution to integral.
d.f. <= dhaf: integral is divided into ulen1 length intervals. else
d.f. <= dquar: integral is divided into ulen2 length intervals. else
d.f. <= deigh: integral is divided into ulen3 length intervals. else
d.f. <= dlarg: integral is divided into ulen4 length intervals.
d.f. > dlarg: the range is used to calculate integral.
M_LN2 = log(2)
xlegq = legendre 16-point nodes
alegq = legendre 16-point coefficients
The coefficients and nodes for the legendre quadrature used in
qprob and wprob were calculated using the algorithms found in:
Stroud, A. H. and Secrest, D.
Gaussian Quadrature Formulas.
Englewood Cliffs,
New Jersey: Prentice-Hall, Inc, 1966.
All values matched the tables (provided in same reference)
to 30 significant digits.
f(x) = .5 + erf(x / sqrt(2)) / 2 for x > 0
f(x) = erfc(-x / sqrt(2)) / 2 for x < 0
where f(x) is standard normal c. d. f.
if degrees of freedom large, approximate integral
with range distribution.
*/
#define nlegq 16
#define ihalfq 8
/* const double eps = 1.0; not used if = 1 */
static const double eps1 = -30.0;
static const double eps2 = 1.0e-14;
static const double dhaf = 100.0;
static const double dquar = 800.0;
static const double deigh = 5000.0;
static const double dlarg = 25000.0;
static const double ulen1 = 1.0;
static const double ulen2 = 0.5;
static const double ulen3 = 0.25;
static const double ulen4 = 0.125;
static const double xlegq[ihalfq] = {
0.989400934991649932596154173450,
0.944575023073232576077988415535,
0.865631202387831743880467897712,
0.755404408355003033895101194847,
0.617876244402643748446671764049,
0.458016777657227386342419442984,
0.281603550779258913230460501460,
0.950125098376374401853193354250e-1
};
static const double alegq[ihalfq] = {
0.271524594117540948517805724560e-1,
0.622535239386478928628438369944e-1,
0.951585116824927848099251076022e-1,
0.124628971255533872052476282192,
0.149595988816576732081501730547,
0.169156519395002538189312079030,
0.182603415044923588866763667969,
0.189450610455068496285396723208
};
double ans, f2, f21, f2lf, ff4, otsum, qsqz, rotsum, t1, twa1, ulen, wprb;
int i, j, jj;
assert (! (isnan (q) || isnan (rr) || isnan (cc) || isnan (df)));
if (q <= 0)
return R_DT_0;
/* df must be > 1 */
/* there must be at least two values */
assert (! (df < 2 || rr < 1 || cc < 2));
if (!isfinite (q))
return R_DT_1;
if (df > dlarg)
return R_DT_val (wprob (q, rr, cc));
/* calculate leading constant */
f2 = df * 0.5;
/* lgammafn(u) = log(gamma(u)) */
f2lf = ((f2 * log (df)) - (df * M_LN2)) - gsl_sf_lngamma (f2);
f21 = f2 - 1.0;
/* integral is divided into unit, half-unit, quarter-unit, or */
/* eighth-unit length intervals depending on the value of the */
/* degrees of freedom. */
ff4 = df * 0.25;
if (df <= dhaf)
ulen = ulen1;
else if (df <= dquar)
ulen = ulen2;
else if (df <= deigh)
ulen = ulen3;
else
ulen = ulen4;
f2lf += log (ulen);
/* integrate over each subinterval */
ans = 0.0;
for (i = 1; i <= 50; i++)
{
otsum = 0.0;
/* legendre quadrature with order = nlegq */
/* nodes (stored in xlegq) are symmetric around zero. */
twa1 = (2 * i - 1) * ulen;
for (jj = 1; jj <= nlegq; jj++)
{
if (ihalfq < jj)
{
j = jj - ihalfq - 1;
t1 = (f2lf + (f21 * log (twa1 + (xlegq[j] * ulen))))
- (((xlegq[j] * ulen) + twa1) * ff4);
}
else
{
j = jj - 1;
t1 = (f2lf + (f21 * log (twa1 - (xlegq[j] * ulen))))
+ (((xlegq[j] * ulen) - twa1) * ff4);
}
/* if exp(t1) < 9e-14, then doesn't contribute to integral */
if (t1 >= eps1)
{
if (ihalfq < jj)
{
qsqz = q * sqrt (((xlegq[j] * ulen) + twa1) * 0.5);
}
else
{
qsqz = q * sqrt (((-(xlegq[j] * ulen)) + twa1) * 0.5);
}
/* call wprob to find integral of range portion */
wprb = wprob (qsqz, rr, cc);
rotsum = (wprb * alegq[j]) * exp (t1);
otsum += rotsum;
}
/* end legendre integral for interval i */
/* L200: */
}
/* if integral for interval i < 1e-14, then stop.
* However, in order to avoid small area under left tail,
* at least 1 / ulen intervals are calculated.
*/
if (i * ulen >= 1.0 && otsum <= eps2)
break;
/* end of interval i */
/* L330: */
ans += otsum;
}
assert (otsum <= eps2); /* not converged */
if (ans > 1.)
ans = 1.;
return R_DT_val (ans);
}
|